特許第6771291号(P6771291)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ スリーエム イノベイティブ プロパティズ カンパニーの特許一覧
<>
  • 特許6771291-吸音構造体及び空気入りタイヤ 図000004
  • 特許6771291-吸音構造体及び空気入りタイヤ 図000005
  • 特許6771291-吸音構造体及び空気入りタイヤ 図000006
  • 特許6771291-吸音構造体及び空気入りタイヤ 図000007
  • 特許6771291-吸音構造体及び空気入りタイヤ 図000008
  • 特許6771291-吸音構造体及び空気入りタイヤ 図000009
  • 特許6771291-吸音構造体及び空気入りタイヤ 図000010
  • 特許6771291-吸音構造体及び空気入りタイヤ 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6771291
(24)【登録日】2020年10月1日
(45)【発行日】2020年10月21日
(54)【発明の名称】吸音構造体及び空気入りタイヤ
(51)【国際特許分類】
   B60C 5/00 20060101AFI20201012BHJP
【FI】
   B60C5/00 F
【請求項の数】6
【全頁数】18
(21)【出願番号】特願2016-37566(P2016-37566)
(22)【出願日】2016年2月29日
(65)【公開番号】特開2017-154543(P2017-154543A)
(43)【公開日】2017年9月7日
【審査請求日】2019年1月30日
(73)【特許権者】
【識別番号】505005049
【氏名又は名称】スリーエム イノベイティブ プロパティズ カンパニー
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100107456
【弁理士】
【氏名又は名称】池田 成人
(74)【代理人】
【識別番号】100128381
【弁理士】
【氏名又は名称】清水 義憲
(74)【代理人】
【識別番号】100162352
【弁理士】
【氏名又は名称】酒巻 順一郎
(74)【代理人】
【識別番号】100133307
【弁理士】
【氏名又は名称】西本 博之
(72)【発明者】
【氏名】今井 宏治
【審査官】 市村 脩平
(56)【参考文献】
【文献】 国際公開第2010/007834(WO,A1)
【文献】 特開2014−141109(JP,A)
【文献】 国際公開第2005/012005(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B60C1/00−19/12
(57)【特許請求の範囲】
【請求項1】
空気入りタイヤの内部に配置されて用いられる吸音構造体であって、
シート状の基材と、
前記基材の表面から突き出た不織布製の複数の突部と、
前記突部の内方に設けられた空洞部と、を備え
前記突部の前記基材の表面からの突出高さは、1mm以上且つ50mm以下であり、
前記突部の前記基材の表面に沿う幅寸法は、3mm以上且つ100mm以下である、吸音構造体。
【請求項2】
前記基材は、長尺状であり、
前記突部は、前記基材の長手方向に交差する方向である交差方向に沿って延在し、
前記複数の突部は、前記基材の長手方向に沿って並設され、
前記空洞部は、前記複数の突部それぞれの内方において、前記交差方向に沿って延在する、請求項1記載の吸音構造体。
【請求項3】
前記複数の突部は、蛇腹状をなす、請求項1又は2記載の吸音構造体。
【請求項4】
吸音構造体が内面に配置された空気入りタイヤであって、
前記吸音構造体は、
シート状の基材と、
前記基材の表面から突き出た不織布製の複数の突部と、
前記突部の内方に設けられた空洞部と、を備え
前記突部の前記基材の表面からの突出高さは、1mm以上且つ50mm以下であり、
前記突部の前記基材の表面に沿う幅寸法は、3mm以上且つ100mm以下である、空気入りタイヤ。
【請求項5】
前記基材は、長尺状であり、その長手方向が前記空気入りタイヤの周方向に沿うように前記内面に配置されており、
前記突部は、前記基材の長手方向に交差する方向である交差方向に沿って延在し、
前記複数の突部は、前記基材の長手方向に沿って並設され、
前記空洞部は、前記複数の突部それぞれの内方において、前記交差方向に沿って延在する、請求項記載の空気入りタイヤ。
【請求項6】
前記複数の突部は、蛇腹状をなす、請求項4又は5記載の空気入りタイヤ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の一側面は、吸音構造体及び空気入りタイヤに関する。
【背景技術】
【0002】
近年、インナーライナ上に不織布製の吸音層を設けたタイヤ(例えば、特許文献1参照)が知られている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2009−137568号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
空気入りタイヤを備える車両が走行する場合、空気入りタイヤの周長に応じた複数の周波数範囲で音圧のピークを有する気柱共鳴音が生じることがある。このような気柱共鳴音を低減することは、従来より望ましいとされているが、実際上、特定の周波数の気柱共鳴音(例えば乗用車用の空気入りタイヤの場合、200Hz〜300Hzの範囲で音圧のピークを有する気柱共鳴音)を低減することは難しかった。
【課題を解決するための手段】
【0005】
本発明の一形態に係る吸音構造体は、空気入りタイヤの内部に配置されて用いられる吸音構造体であって、シート状の基材と、基材の表面から突き出た不織布製の複数の突部と、突部の内方に設けられた空洞部と、を備える。
【0006】
この吸音構造体を空気入りタイヤの内部に配置した場合、タイヤの内部において音波が突部に当たると、音波の一部は突部の不織布を通り抜け、そのエネルギーが減衰される。また、不織布を通過した音波の一部は空洞部内で反射され、音波の干渉が促進されて、音波のエネルギーが一層減衰される。したがって、タイヤの内部において特定の周波数で音が共鳴することが抑制される。その結果、空気入りタイヤにおける特定の周波数の気柱共鳴音を効果的に低減することが可能となる。
【0007】
別の形態に係る吸音構造体において、基材は、長尺状であり、突部は、基材の長手方向に交差する方向である交差方向に沿って延在し、複数の突部は、基材の長手方向に沿って並設され、空洞部は、複数の突部それぞれの内方において、交差方向に沿って延在してもよい。
【0008】
別の形態に係る吸音構造体において、複数の突部は、蛇腹状をなすものであると好適である。
【0009】
別の形態に係る吸音構造体において、突部の基材の表面からの突出高さは、1mm以上且つ50mm以下であり、突部の基材の表面に沿う幅寸法は、3mm以上且つ100mm以下であってもよい。
【0010】
本発明の他の形態に係る空気入りタイヤは、吸音構造体が内面に配置された空気入りタイヤであって、吸音構造体は、シート状の基材と、基材の表面から突き出た不織布製の複数の突部と、突部の内方に設けられた空洞部と、を備える。
【0011】
別の形態に係る空気入りタイヤにおいて、基材は、長尺状であり、その長手方向が空気入りタイヤの周方向に沿うように内面に配置されており、突部は、基材の長手方向に交差する方向である交差方向に沿って延在し、複数の突部は、基材の長手方向に沿って並設され、空洞部は、複数の突部それぞれの内方において、交差方向に沿って延在してもよい。
【発明の効果】
【0012】
本発明の一側面によれば、空気入りタイヤにおける特定の周波数の気柱共鳴音を効果的に低減することが可能となる。
【図面の簡単な説明】
【0013】
図1図1は、一実施形態に係る吸音構造体の斜視図である。
図2図2は、図1の吸音構造体におけるII-II線に沿っての断面図である。
図3図3は、図1の吸音構造体の製造方法を示す模式図である。
図4図4の(a)及び(b)は、変形例に係る吸音構造体の断面図である。
図5図5の(a)及び(b)は、他の変形例に係る吸音構造体の断面図である。
図6図6の(a)及び(b)は、他の変形例に係る吸音構造体の断面図である。
図7図7の(a)及び(b)は、他の変形例に係る吸音構造体の断面図である。
図8図8の(a)は、一実施形態に係る空気入りタイヤの斜視図である。図8の(b)は、図8の(a)における吸音構造体の拡大図である。
【発明を実施するための形態】
【0014】
以下、添付図面を参照して、本発明の実施形態について説明する。なお、以下の説明において同一または相当要素には同一符号を付し、重複する説明を省略する。
【0015】
本明細書において、「空気入りタイヤ」は、使用状態において気密状態とされた内部空間に空気等を充填して用いられるタイヤを意味する。使用状態とは、ホイールのリムに空気入りタイヤのビード部を装着することで内部空間が気密状態となった状態である。「空気入りタイヤの内部」は、空気入りタイヤの内面と、空気入りタイヤの内部空間と、を含む。内面は、空気入りタイヤの表面のうち、トレッド部及びサイドウォール部の裏面に相当する面である。内部空間は、空気入りタイヤの内面に囲まれる空間であり、ホイールのリムに空気入りタイヤのビード部を装着することで閉じられる空間である。
【0016】
[吸音構造体1の構成]
吸音構造体1は、空気入りタイヤ30における特定の周波数の気柱共鳴音を低減するために、空気入りタイヤ30の内部に配置されて用いられる(図8参照)。図1及び図2に示されるように、吸音構造体1は、シート状の基材2と、基材2の表面2aから突き出た不織布製の複数の突部10と、突部10の内方に設けられた空洞部20と、を備えている。なお、図1図2及び図4〜7には、直交座標系Sが示されている。直交座標系SのX方向は基材2の長手方向を示し、Y方向は、基材2の長手方向に交差する方向である交差方向を示し、Z方向は、基材2の法線方向を示す。
【0017】
基材2は、空気入りタイヤ30に設置されると共に突部10を支持する長尺状のシート部材(バッキング)である。基材2は、耐久性と可撓性を考慮して、織布又は不織布(例えばスパンボンド等の長繊維)で構成することができる。基材2の厚さは、例えば空気入りタイヤ30の内面34(図8参照)に吸音構造体1が配置されて用いられるときの空気入りタイヤ30の内面34に対する追従性を考慮して、約2.0mm以下、約1mm以下、約0.5mm以下であってもよい。基材2の単位面積当たりの重量は、特に限定されるものではないが、例えば約100g/m以下あるいは60g/m以下であってもよい。基材2の裏面には、空気入りタイヤ30と接合するための接着層(例えば両面粘着テープ、不図示)が積層されていてもよい。
【0018】
基材2の幅の範囲は、特に限定されるものではないが、空気入りタイヤ30のトレッド部31の幅(詳しくは後述、以下、単に「トレッド幅」ともいう)に対する割合として、5%以上且つ80%以下であってもよく、5%以上且つ60%以下であってもよく、5%以上且つ50%以下であってもよい。一例として、トレッド幅が175mmである場合、基材2の幅の範囲は、8.75mm以上且つ140mm以下であってもよく、8.75mm以上且つ105mm以下であってもよく、8.75mm以上且つ87.5mm以下であってもよい。
【0019】
突部10は、空気入りタイヤ30における気柱共鳴音を低減するための部材である。突部10は、例えば、蛇腹状に折られた不織布製のシート部材3によって形成され、プリーツ状(ひだ状)をなしている。つまり、突部10は、基材2の長手方向に沿って交互に繰り返す山と谷の山部分である。また、隣り合う突部10同士の間で両方の突部10を接続し、基材2の表面に固定される部分は谷部12である。
【0020】
突部10は、頂点部分を示す尾根線13を有し、谷部12は谷底部分を示す谷線14を有する。尾根線13と谷線14とは基材2の長手方向に直交するように延在する。本実施形態では、尾根線13の延在方向が突部10の延在方向Tであり、突部10の延在方向Tは基材2の長手方向に直交する。本実施形態では、突部10の延在方向Tと基材2の長手方向との交差方向は直交しているが、直交でなくても良く、平行でない態様が広く含まれる。また、尾根線13及び谷線14が形成される部分は、鋭角な折り目が形成されている場合に限定されず、湾曲した形態であっても良い。
【0021】
突部10の幅、つまり、突部10の延在方向の長さは、基材2の幅と同じ幅であってもよいし、基材2の幅よりも狭い幅であってもよい。突部10の幅の範囲は、特に限定されるものではないが、空気入りタイヤ30のトレッド幅に対する割合として、5%以上、10%以上、あるいは20%以上であってよく、80%以下、60%以下、あるいは50%以下であってもよい。一例として、空気入りタイヤ30のトレッド幅が175mmである場合、突部10の幅の範囲は、約9mm以上、約18mm以上、あるいは約36mm以上であってよく、約140mm以下、約105mm以下、あるいは約88mm以下であってもよい。
【0022】
突部10の内方には空洞部20が形成されている。空洞部20は、基材2の表面2aと、突部10を構成するシート部材3と、によって形成される空間である。空洞部20は、突部10の延在方向Tに沿って延在している。この延在方向Tは、基材2の長手方向に直交する交差方向である。つまり、空洞部20は、複数の突部10それぞれの内方において、交差方向に沿って延在している。また、本実施形態では、一つの突部10における突部10を挟むそれぞれの谷部12におけるシート部材3の勾配角度が略等しくなっていることから、空洞部20のzx平面における断面形状は、突部10側を頂点とする略二等辺三角形状となっている。
【0023】
突部10の基材2の表面2aからの突出高さ(以下、単に「突出高さ」ともいう)は、ここでは、空洞部20の高さを意味する。すなわち、突部10の突出高さは、図2に示されるように、基材2の表面2aから空洞部20の最も高い位置までの高さであり、具体的には、基材2の表面2aから尾根線13の裏側の位置までの高さである。突部10の突出高さの範囲は、特に限定されるものではないが、1mm以上且つ50mm以下であってもよく、好ましくは2mm以上且つ40mm以下であってもよく、より好ましくは5mm以上且つ30mm以下であってもよい。突部10の突出高さを1mm以上とすることで、気柱共鳴音の低減効果を得ることができる。また、突出高さを50mm以下とすることで、例えば、タイヤをホイールに装着する際に、タイヤ内に差し込まれるタイヤレバー等の冶具との接触が生じにくくなり、装着作業の障害になることを避けることができる。突部10の突出高さは、全ての突部10について略一定でもよいし、突部10ごとに異なっていてもよい。本実施形態では、突部10の突出高さは、全ての突部10について略一定である。
【0024】
突部10の基材2の表面2aに沿う幅寸法(以下、単に「ピッチ」ともいう)は、ここでは、空洞部20のピッチを意味する。すなわち、突部10のピッチは、図2に示されるように、一つの突部10における一対の谷部12間の基材2の表面2aに沿う距離である。突部10のピッチの範囲は、特に限定されるものではないが、3mm以上且つ100mm以下であってもよく、好ましくは4mm以上且つ50mm以下であってもよく、より好ましくは5mm以上且つ30mm以下であってもよい。本実施形態では、突部10のピッチBは、約20mmである。突部10のピッチは、全ての突部10について略一定でもよいし、突部10ごとに異なっていてもよい。本実施形態では、突部10のピッチは、全ての突部10について略一定である。
【0025】
基材2の表面2aに対する突部10の角度、つまり、突部10を形成するシート部材3の勾配角度は、特に限定されるものではないが、複数の突部10の角度が略等しくてもよいし、互いに異なっていてもよい。本実施形態では、一つの突部10に着目すると、突部10を挟むそれぞれの谷部12におけるシート部材3の勾配角度は略等しくなっている。
【0026】
突部10は、補強のための1以上の補強層(不図示)を更に含んでもよい。例えば、突部10の一方の表面又は両方の表面に補強層が積層されていてもよい。補強層は、例えばスクリム層あるいはメッシュ層等で構成することができる。スクリム層は、例えば繊維から製造される織布又は不織布の補強材である。スクリム層の材料としては、ナイロン、ポリエステル、繊維ガラス等が挙げられるが、これらに限定されない。スクリム層の平均厚さは、特に限定されるものではないが、例えば25μm以上且つ1000μm以下、好ましくは25μm以上且つ500μm以下の範囲である。スクリム層は、突部10に沿わせて接合されていてもよい。メッシュ層の材料としては、ポリプロピレン、ポリエステル、EVA、ナイロン等のメッシュ状シートを使用できるが、これらに限定されない。メッシュ層の平均厚さは、特に限定されるものではないが、例えば0.1mm以上且つ3mm以下、好ましくは、0.1mm以上且つ2mm以下の範囲である。これらの補強層は、様々な接着剤あるいは熱融着等の方法で突部10に沿わせて接合されていてもよい。
【0027】
突部10のシート部材3は、それぞれの谷部12において接着部15を介して基材2と接合されている。接着部15としては、熱により溶融接着されるホットメルトタイプの樹脂、又は超音波による溶着部が挙げられる。接着部15としては、基材2及び突部10の融点よりも低い融点を有する樹脂繊維からなる不織布であってもよい。このような樹脂又は樹脂繊維の組成は、ポリエステル系、ポリオレフィン系、ポリウレタン系、ポリアクリル系等の樹脂であってもよい。なお、基材2と突部10との接合は、基材2と突部10との加熱プレス、又はニードル等による物理的な接合であってもよい。これにより、シート部材3が基材2に対して固定されるため、例えば空気入りタイヤ30に配置した吸音構造体1に空気入りタイヤ30の回転に起因する遠心力が作用したとしても、複数の突部10がなす三次元的な形状が好適に維持される。
【0028】
突部10の内方に形成された空洞部20は、基材2の表面2aと、突部10を構成するシート部材3と、によって形成される空間である。空洞部20は、突部10の延在方向Tに沿って延在している。この延在方向Tは、基材2の長手方向に直交する交差方向である。つまり、空洞部20は、複数の突部10それぞれの内方において、交差方向に沿って延在している。また、本実施形態では、一つの突部10における突部10を挟むそれぞれの谷部12におけるシート部材3の勾配角度が略等しくなっていることから、空洞部20のzx平面における断面形状は、突部10側を頂点とする略二等辺三角形状となっている。
【0029】
[突部10のシート部材3の材料]
突部10のシート部材3は、不織布製のウェブを含んで構成されている。ウェブとは、繊維同士が、連結、絡み合いなどすることにより形成される物品を表す。不織布は、単層であってもよいし、多層であってもよく、空気入りタイヤにおける気柱共鳴音の低減効果や空気入りタイヤの内部のスペース等に応じて選択してもよい。不織布の厚さは、特に限定されるものではないが、例えば15mm以下であってもよい。不織布の厚さは、後述するように不織布を折り曲げて突部10を構成する容易さを考慮して、12mm以下であってもよい。
【0030】
ウェブの単位面積当たりの重量(以下、単に「目付量」ともいう)の範囲は、特に限定されるものではないが、10g/m以上且つ600g/m以下であってもよく、好ましくは20g/m以上且つ400g/m以下であってもよく、より好ましくは50g/m以上且つ200g/m以下であってもよい。10g/m以上とすることで、気柱共鳴音の低減効果を効果的に発揮できる。また、600g/m以下とすることで、ウェブの装着によるタイヤの総重量の増加が、回転時のバランスに影響を与えることを防止できる。
【0031】
例えば、ウェブは、カード、エアレイド、ウェットレイド、スパンレース、スパンボンド、電界紡糸、又はメルトスパン若しくはメルトブローンなどのメルトブローン法、あるいはこれらの組み合わせによって製造されることができる。スパンボンド繊維は、典型的には、押し出される繊維の直径を持つ微細で通常は円形をした複数個の紡糸口金の毛管から、溶融した熱可塑性ポリマーをフィラメントとして押し出し、急激に縮小させることにより形成された小径繊維である。メルトブローン繊維とは、熱可塑性材料を溶融させ、ダイ(金型)を通して糸状(又はフィラメント状)に成形される繊維のうち、特に、高速ガス(例えば空気)の流れの中に押し出すことによって、細く形成される繊維(マイクロファイバー)を表す。ウェブは、熱可塑性ポリマーの種類及び/又は厚さが異なる単一の繊維又は2つ以上の繊維から製造されてよい。
【0032】
ウェブは、バインダー繊維としてステープルファイバを含んでいてもよい。バインダー繊維とは、繊維間を連結(例えば、融着による連結)させるバインダーの役割を果たす短繊維を表す。ウェブにステープルファイバが含まれていると、ブローマイクロファイバーのみからなるウェブよりも、より嵩高でより密度の低いものとなる傾向がある。ウェブは、約20重量%以下のステープルファイバを含むことが好ましく、より好ましくは約10重量%以下のステープルファイバを含むことが好ましい。ステープルファイバを含むウェブは、例えば米国特許第4118531号(Hauser)に開示されている。
【0033】
ウェブのマイクロファイバーは、Davies,C.N.、「The Separation of Airborne Dust and Particles,」Institution of Mechanical Engineers,London,Proceedings 1B,1952に記載された方法により計算した場合に、典型的には、約0.5μm〜15μm、好ましくは約1μm〜6μmの有効繊維長を有する。ウェブの最小引張強度は、例えば約4.0Nである。
【0034】
ウェブの嵩は、ソリディティで測定される。ここでのソリディティは、下式に示されるように、例えばαとして表わされる無単位の分数である。低いソリディティ値は、ウェブの嵩が大きいことを示す。ウェブのソリディティは、例えば、0.5%以上30%以下、好ましくは1%以上25%以下である。
α=mf/ρf×Lnv
但し、mf :サンプル表面積あたりの繊維質量
ρf :繊維密度
Lnv:ウェブの厚さ
【0035】
ウェブの材料は、1μm〜40μm、好ましくは2μm〜20μmの平均孔径を有するのが好ましい。平均孔径は、Freon TF(商標)を試験流体として使用して、Bubble Point and Mean Flow Pore Test Method Bによって、ASTM F 316−03 Standard Test Methods for Pore Size Characteristics of Membrane Filtersに従って測定されてもよい。
【0036】
ウェブの材料は、熱可塑性ポリマー材料であってもよい。熱可塑性ポリマー材料としては、ポリオレフィン、ポリ(イソプレン)、ポリ(ブタジエン)、フッ素化ポリマー、塩素化ポリマー、ポリアミド、ポリイミド、ポリエーテル、ポリ(エーテルスルホン)、ポリ(スルホン)、ポリ(ビニルアセテート)、ビニルアセテートのコポリマー(例えば、ポリ(エチレン)−コ−ポリ(ビニルアルコール))、ポリ(ホスファゼン)、ポリ(ビニルエステル)、ポリ(ビニルエーテル)、ポリ(ビニルアルコール)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、またレーヨン等及びポリ(カーボネート)、アクリロニトリルが挙げられるが、これらに限定されない。
【0037】
好適なポリオレフィンとしては、ポリ(エチレン)、ポリ(プロピレン)、ポリ(1−ブテン)、エチレンとプロピレンのコポリマー、αオレフィンコポリマー(例えば1−ブテン、1−ヘキセン、1−オクテン、及び1−デセンとエチレン又はプロピレンのコポリマー)、ポリ(エチレン−コ−1−ブテン)及びポリ(エチレン−コ−1−ブテン−コ−1−ヘキセン)が挙げられるが、これらに限定されない。
【0038】
好適なフッ素化ポリマーとしては、ポリ(フッ化ビニル)、ポリ(フッ化ビニリデン)、フッ化ビニリデンのコポリマー(ポリ(フッ化ビニリデン−コ−ヘキサフルオロプロピレン)など)、及びクロロトリフルオロエチレンのコポリマー(例えばポリ(エチレン−コ−クロロトリフルオロエチレン))が挙げられるが、これらに限定されない。
【0039】
好適ポリアミドとしては、ナイロン6、ナイロン6,6、ナイロン6,12、ポリ(イミノアジポイルイミノヘキサメチレン)、ポリ(イミノアジポイルイミノデカメチレン)、及びポリカプロラクタムが挙げられるが、これらに限定されない。好適なポリイミドには、ポリ(ピロメリットイミド)が挙げられる。
【0040】
好適なポリ(エーテルスルホン)としては、ポリ(ジフェニルエーテルスルホン)及びポリ(ジフェニルスルホン−コ−ジフェニレンオキシドスルホン)が挙げられるが、これらに限定されない。
【0041】
好適なビニルアセテートのコポリマーには、ポリ(エチレン−コ−ビニルアセテート)、及びアセテート基の少なくとも一部が加水分解されていて、ポリ(エチレン−コ−ビニルアルコール)などの種々のポリ(ビニルアルコール)を与えるコポリマーが挙げられるが、これらに限定されない。
【0042】
[吸音構造体1の製造方法]
吸音構造体1は、例えば図3に示されるようなプリーツ加工装置100を用いて製造することができる。このプリーツ加工装置100は、帯状の不織布ウェブWからシート部材3を連続的に製造するためのものである。プリーツ加工装置100は、一例としてレシプロ式であり、不織布ウェブWの厚み方向に往復可能な一対のブレード101と、当該不織布ウェブWを上下に挟むように配置されたヒータ102と、プリーツ加工された不織布ウェブWの形状を整えるバックプレッシャー103と、を備えている。プリーツ加工装置100には、不織布ウェブWを搬送する搬送ローラ(不図示)がロールRとプリーツ加工装置100の間に配置されていてもよい。
【0043】
まず、不織布ウェブWが巻き回されることにより形成されたロールRから、プリーツ加工装置100に不織布ウェブWを供給する。そして、供給された不織布ウェブWに厚み方向の両側から一対のブレード101を押し当てて、交互に繰り返されるような折り目を不織布ウェブWに付ける(プリーツ加工)。プリーツ加工された不織布ウェブWは、ヒータ102によって不織布ウェブWの上下から加熱された後に、バックプレッシャー103によって形状を整えられる。一対のブレード101を不織布ウェブWに押し当てることに代えて、互いに噛み合う一対のギヤを用いて不織布ウェブWに厚み方向の両側から不織布ウェブWを挟むようにして、不織布ウェブWの長手方向に沿って交互に繰り返すような山部及び谷部を不織布ウェブWに付けてもよい。
【0044】
[他の形態に係る吸音構造体の構成]
吸音構造体1のシート部材3の形状は種々の変形が可能であり、場所により突部10の形状や、突出高さA、およびの接着部15の長さ等を種々に変更可能である。以下に図4図7を参照して、具体的な他の形態に係る吸音構造体について説明する。
【0045】
図4の(a)に示されるように、吸音構造体1Aは、鋭角な折り目(谷線)が形成されている谷部12に代えて、幅広の谷部12Aがシート部材3Aに形成されている点で、吸音構造体1と異なっている。この吸音構造体1Aでは、谷部12Aが基材2の表面2aに沿って所定長さの広がりを有するため、接着部15Aの接合長さが接着部15よりも長くなっている。よって、吸音構造体1Aによれば、シート部材3Aを基材2に対して一層強く固定することができ、複数の突部10がなす三次元的な形状をより確実に維持できる。
【0046】
図4の(b)に示されるように、吸音構造体1Bは、上述の谷部12と谷部12Aとの両方を備える。そして、谷部12と谷部12Aとが基材2の長手方向に沿って交互に繰り返されるように形成されている点で、吸音構造体1や吸音構造体1Aと異なっている。この吸音構造体1Bによれば、シート部材3の量及び接着部15に用いられる樹脂等の量の増加を抑えつつ、シート部材3Bを基材2に対して固定する強度を高めることができる。
【0047】
図5の(a)に示されるように、吸音構造体1Cは、突出高さの異なる複数の突部10Aと複数の突部10Bと、を備える点で、吸音構造体1と異なっている。具体的には、突出高さA1で基材2の表面2aから突き出た複数の突部10Aと、突出高さA2で基材2の表面2aから突き出た複数の突部10Bとは、基材2の長手方向に沿って交互に繰り返されるようにシート部材3Cに形成されている。また、図5の(b)に示されるように、吸音構造体1Dは、突部10A及び突部10Bが2個一組となり、各組が基材2の長手方向に沿って交互に繰り返されるようにシート部材3Dに形成されている点で、吸音構造体1Cと異なっている。これらの吸音構造体1C,1Dでは、突部10A及び突部10Bの突出高さが互いに異なっているため、音波が突部10Aに当たることに起因する音のエネルギーの減衰と、音波が突部10Bに当たることに起因する音のエネルギーの減衰と、が複合的となる。その結果、吸音構造体1が気柱共鳴音を低減する特性を変更することが可能となる。
【0048】
図6の(a)に示されるように、吸音構造体1Eは、鋭角な折り目(尾根線)ではなく、湾曲面が形成された突部10Cを備える点で、吸音構造体1と異なっている。突部10Cは、基材2の長手方向に沿って複数設けられている。また、図6の(b)に示されるように、吸音構造体1Fは、鋭角な折り目(尾根線)ではなく、湾曲面が形成された突部10Dを備える点で、吸音構造体1と異なっている。突部10Dは、基材2の長手方向に沿って複数設けられている。また、吸音構造体1Fは、谷部12Aが基材2の表面2aに沿って所定長さの広がりを有するため、接着部15Aの接合長さが接着部15よりも長くなっている。よって、吸音構造体1Aによれば、シート部材3Aを基材2に対して一層強く固定することができ、複数の突部10Dがなす三次元的な形状をより確実に維持できる。
【0049】
図7の(a)に示されるように、吸音構造体1Gは、断面矩形(ハット)状の突部10Eを備える点で、吸音構造体1と異なっている。突部10Eは、基材2の長手方向に沿って交互に繰り返されるようにシート部材3Gに形成されている。この吸音構造体1Gでは、谷部12Bが基材2の表面2aに沿って所定長さで延びるため、接着部15Aの接合長さが接着部15よりも長くなっている。突部10Eは、例えば上述したプリーツ加工装置100において一対のブレード101を不織布ウェブWに押し当てることに代えて、互いに噛み合う一対のギヤを用いて不織布ウェブWの厚み方向の両側から不織布ウェブWを挟むことで形成されることができる。
【0050】
図7の(b)に示されるように、吸音構造体1Hは、突部10Eと、突部10Fと、が基材2の長手方向に沿って交互に繰り返されるようにシート部材3Gに形成されている点で吸音構造体1Gと異なっている。突部10Fは、突部10B及び谷部12Bに断面ハット形の折り目が形成されており、突出高さA1で基材2の表面2aから突き出ている。この吸音構造体1Hでは、突部10E及び突部10Fの突出高さが互いに異なっているため、音波が突部10Eに当たることに起因する音のエネルギーの減衰と、音波が突部10Fに当たることに起因する音のエネルギーの減衰と、が複合的となる。その結果、吸音構造体1が気柱共鳴音を低減する特性を変更することが可能となる。
【0051】
[空気入りタイヤ30の構成]
図8を参照しつつ、本実施形態に係る空気入りタイヤ30の構成を説明する。図8の(a)において、矢印Uは、空気入りタイヤ30の周方向(以下、単に「周方向U」ともいう)を示している。
【0052】
空気入りタイヤ30は、特に限定されるものではないが、本実施形態では、チューブレスタイプの乗用車用ラジアルタイヤである。空気入りタイヤ30は、車室内での静粛性が強く求められる乗用車に用いられる形態であってもよく、トラック、オートバイ、航空機、自転車、リヤカーなど種々の用途のタイヤであってもよい。また、空気入りタイヤ30は、バイアスタイヤであってもよい。
【0053】
空気入りタイヤ30は、略円環状をなしており、空気入りタイヤ30が路面と接する部分であるトレッド部31と、その両端部からタイヤ径方向内方に延びる一対のサイドウォール部32と、サイドウォール部32の内方端に設けられた一対のビード部33とを有している。
【0054】
空気入りタイヤ30は、内面34が囲む内部空間STを有している。内面34は、内部空間STに面した空気入りタイヤ30の内側の表面であり、トレッド部31及びサイドウォール部32の裏面に相当する。内部空間STは、ホイールのリム(不図示)にビード部33を装着することで気密状態となる。空気入りタイヤ30は、気密状態となった内部空間STに空気等を充填して用いられる。
【0055】
空気入りタイヤ30は、ラジアル構造のカーカスと、トレッド部31の内部に設けられたベルト層と、で補強されている。カーカスは、公知の構成を有していてもよい。カーカスは、例えば有機繊維コードを用いた1以上の枚数カーカスプライで構成されている。ベルト層は、公知の構成を有していてもよい。ベルト層は、1以上の枚数のベルトプライにより構成されている。ベルト層では、スチールコードが周方向Uに対して所定の角度で傾けて配列され、スチールコードが互いに交差する向きに重ね合わされている。
【0056】
空気入りタイヤ30のトレッド部31の幅(トレッド幅)は、特に限定されるものではないが、60mm〜315mmの幅であってもよい。トレッド幅とは、空気入りタイヤ30の中心軸を含む断面視において空気入りタイヤ30が路面と接する部分の幅である。トレッド幅は、実際に計測したトレッド部31の幅に限定されず、規格上の呼称による幅寸法であってもよい。本実施形態では、トレッド幅は、一例として195mmである。
【0057】
空気入りタイヤ30の内径は、特に限定されるものではないが、3インチ〜22.5インチ(76.2mm〜571.5mm)であってもよい。空気入りタイヤ30の内径とは、空気入りタイヤ30を装着可能なリムの外径(リム径)に相当する直径である。空気入りタイヤ30の内径は、実際に計測した空気入りタイヤ30の内径に限定されず、規格上の呼称によるリム径であってもよい。本実施形態では、リム径は、一例として16インチ(406.4mm)である。
【0058】
空気入りタイヤ30の偏平率は、特に限定されるものではないが、25%〜82%の偏平率であってもよい。偏平率とは、空気入りタイヤ30の中心軸を含む断面視におけるトレッド部31の断面幅に対するサイドウォール部32の断面高さの比率を表す数値である。
【0059】
空気入りタイヤ30には、内面34に吸音構造体1が配置されている。本実施形態では、内面34におけるトレッド部31の裏面に相当する箇所に吸音構造体1が配置されている。他の形態では、内面34におけるサイドウォール部32の裏面に相当する箇所に吸音構造体1が配置されていてもよい。吸音構造体1は、例えば図1に示されるように平面的に製造された後、空気入りタイヤ30の内面34に沿うように周方向Uに円弧状に湾曲させられ、基材2の裏面に設けられた接着層により内面34に固定される。つまり、吸音構造体1の基材2は、その長手方向が周方向Uに沿うように内面34に配置されている。吸音構造体1を内面34に固定する手段は、両面粘着テープ、接着剤等を用いる接着、熱溶着、面ファスナー、クランプ等を用いる物理的な固定方法など、特に限定されない。
【0060】
空気入りタイヤ30の内面34では、周方向Uに連続するように吸音構造体1が配置されていてもよい。空気入りタイヤ30の内面34では、周方向Uに間欠的に複数の吸音構造体1が配置されていてもよい。空気入りタイヤ30の内面34では、周方向Uに間欠的に複数の吸音構造体1が配置されていてもよい。周方向Uに配置された吸音構造体1がタイヤ軸方向に複数の列をなすように並列して配置されてもよい。
【0061】
以上に、変形例も含め、本実施形態の種々の吸音構造体について説明したが、いずれも以下のような作用効果を有する。吸音構造体1を代表して説明する。
【0062】
吸音構造体1及び空気入りタイヤ30では、不織布製の複数の突部10が基材2の表面2aから突き出ている。複数の突部10のそれぞれでは、内方に空洞部20が設けられている。吸音構造体1が空気入りタイヤ30の内部に配置されて用いられる場合、空気入りタイヤ30の内部において音波が突部10に当たると、音波の一部は突部10の不織布を通り抜け、そのエネルギーが減衰される。また、空洞部20では、音波の一部は基材2又は突部10の不織布によって反射され、音波の干渉が促進されて、音波のエネルギーが一層減衰される。したがって、空気入りタイヤ30の内部において特定の周波数で音が共鳴することが抑制される。その結果、空気入りタイヤ30における特定の周波数の気柱共鳴音を効果的に低減することが可能となる。
【0063】
また、吸音構造体1では、基材2は、長尺状であり、突部10は、基材2の長手方向に直交する方向である交差方向に沿って延在している。複数の突部10は、基材2の長手方向に沿って並設されている。空洞部20は、複数の突部10それぞれの内方において、交差方向に沿って延在している。これにより、空気入りタイヤ30の内面34に吸音構造体1を配置する際、基材2が周方向Uに沿うようにし易くなると共に、空気入りタイヤ30の内部空間STにおける音波が好適に突部10に当たるように配置することができる。
【0064】
また、吸音構造体1では、複数の突部は、蛇腹状をなしている。これにより、空気入りタイヤ30の内面34に吸音構造体1を配置する際、周方向Uに湾曲させたとしても吸音構造体1に生じる曲げ応力を抑制することができる。
【0065】
また、吸音構造体1では、突部の基材の表面2aからの突出高さは、1mm以上且つ50mm以下であり、突部の基材の表面2aに沿う幅寸法は、3mm以上且つ100mm以下であることが好ましい。
【0066】
[変形例]
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、突部10は、基材2の長手方向に直交する方向に沿って延在していたが、必ずしも長手方向に直交する方向でなくてもよい。突部10は、基材2の長手方向に交差する方向に沿って延在していればよい。
【0067】
また、突部10の表面にさらに、他の膜状不織布(以下、「不織布膜」という(不図示))を積層してもよい。不織布膜は、吸音構造体1の通気抵抗を調整し、その吸音特性を変更する機能を有する薄膜状の部材である。不織布膜は、例えば、メルトブローン繊維を用いることが出来る。さらに加熱や圧力により圧縮する事で通気抵抗をコントロールすることが出来る。また、バインダー繊維をメルトブローン繊維に分散させて、バインダー繊維を溶融させることで、メルトブローン繊維同士がバインダー繊維により接着固定されて通気抵抗を調整することも可能である。
【0068】
メルトブローン繊維としては、メルトブローン法により極細繊維に紡糸加工できるもので、バインダー繊維より融点が高いものであれば限定されない。例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレン1,4−シクロヘキサンジメタノール(PCT)、ポリ乳酸(PLA)及び/又はポリプロピレン(PP)、ポリアクリロニトリル、ポリアセテート、ポリアミド系樹脂等の熱可塑性高分子から選択することができる。このうちコスト面や加工のしやすさ等から、PETやPPが使用できる。さらに、軽量化の観点からは、より比重が軽いPPが使用できる。
【0069】
バインダー繊維としては、少なくともその表面における融点がメルトブローン繊維の融点より低い繊維を使用してもよい。例えば、メルトブローン繊維の融点より10℃以上低い融点を有するバインダー繊維を使用してもよい。また、メルトブローン繊維の融点より20℃以上低い融点を有するバインダー繊維を使用してもよい。バインダー繊維としては、例えば、低融点ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリエチレン(PE)等が使用できる。例えばメルトブローン繊維として融点が220℃近傍のポリブチレンテレフタレート(PBT)を使用する場合、バインダー繊維としては、表面の融点が110℃の低融点ポリエチレンテレフタレート(PET)等を使用してもよい。
【0070】
バインダー繊維は、繊維状であればよく、その断面径や長さは特に限定されるものではないが、分散性を上げるためには、短繊維が使用できる。例えば、紡糸された繊維を裁断することで製造される繊維長約10mm〜100mmのステープルファイバを使用できる。
【0071】
有効繊維径(EFD、μm)は、以下の式から求めることができる。
EFD=86.65×{[A1.5+1254.37×A4.5]×L}/ΔP}0.5
ここで、ΔPは圧力損失(Pa)
A=BW/(R・L)
BW:サンプル質量(g)
R :サンプル密度(g/cc)
L :サンプル厚み(mm)
【0072】
不織布膜は、以下のようにして製造することができる。まず、メルトブローン繊維を単位面積あたりの重量が50〜250g/mであるウェブを形成する。また、メルトブローン繊維の一部をバインダー繊維に置換混合し、ウェブを形成する。この工程では、通常のメルトブローンプロセスが使用可能であり、バインダー繊維を混合する場合は、吹き出されたメルトブローン繊維を含む気流に直接合流するようにバインダー繊維を吹きつけて、メルトブローン繊維の間に実質的に均一にバインダー繊維が分散されたウェブを形成する。なお、バインダー繊維は、例えばリッケンロール等の回転体で開繊され、高圧のエアーによって吹き付けられる。バインダー繊維の分散性を上げるには、比較的短い繊維が使用できる。また、単位面積あたりの重量は、高圧エアー気流に噴き込む各繊維量で調整できる。
【0073】
次に、得られたウェブをそのまま不織布膜として用いる事が可能である。また、少なくともバインダー繊維が溶融する温度で加熱するとともに、混合ウェブを厚み方向上下から加圧し、圧縮することで、通気抵抗値を調整したものを不織布膜として用いることも可能である。加熱方法は限定されず、ランプを用いる方法やヒータを用いる方法等種々の方法が使用可能である。また、加圧方法もプレス機、あるいは加圧ローラー等のいずれの方法を使用することもできる。予め所定温度に加熱したウェブを加圧してもよい。加熱温度は、バインダー繊維が溶融するが、メルトブローン繊維は溶融しない温度条件で行う。なお、バインダー繊維の溶融は、全体が溶融する必要はなく、繊維構造を接着固定できるものなら部分溶融でかまわない。芯鞘構造のバインダーを使用する場合は、鞘部のみが溶融する条件で使用してもよい。こうして、不織布膜が得られる。不織布膜のソリディティは、たとえば3%以上且つ20%以下である。
【実施例】
【0074】
以下、実施例を挙げて本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。
【0075】
[基材の準備]
基材は、ポリエステルスパンボンド繊維で構成した。基材の厚さは、約0.15mmとした。基材の単位面積当たりの重量は、60g/mとした。基材の裏面には、タイヤとの接着のための両面粘着テープを積層した。また、基材の表面には、シート部材との接着のため、ポリアミド加熱溶融接着フィルムを積層した。
【0076】
[突部を構成するシート部材の準備]
表1に示されるような諸元を有する不織布ウェブを準備した。これらの不織布ウェブに、厚み方向の両側から一対のブレードを押し当てて、交互に繰り返されるような折り目を付けるプリーツ加工を施した。このプリーツ加工は、株式会社東洋工機製TK−11を用いて、表2に示されるような突出高さ及びピッチとなるように実施した。その後、治具を用いて、一つの突部において当該突部を挟むそれぞれの谷部におけるシート部材の勾配角度が略等しくなるようにした。突部の幅、つまり、突部の延在方向の長さは、約80mmとした。ソリディティは1.8%であった。
【0077】
[不織布膜の準備]
不織布膜は、メルトブローン繊維中にバインダー繊維を分散させて作製した。メルトブローン繊維は、有効繊維径が約6μmのポリプロピレンの材料を用いて、目付量が37.5g/mとなる様に紡糸した。バインダー繊維は、心鞘構造の鞘部の溶融温度が110℃、及び心部の溶融温度が260℃の「ユニチカ#4080」の6.6デシテックスのものを、繊維長さを約32mmとして用いた。バインダー繊維を目付量12.5g/mでメルトブローンファイバー繊維に合流及び混合させて、厚み1.5mmの不織布膜とした。ソリディティは3.5%であった。
【0078】
【表1】
【0079】
[実施例1]
突出高さが約17.3mm、ピッチが約20mmとなるように不織布K−1をプリーツ加工したシート部材を用いて突部を形成した。このシート部材と、基材と、を基材の接着層により接合し、実施例1の吸音構造体を得た。この吸音構造体を、基材の長手方向の長さ1700mmで切り出し、空気入りタイヤの内面(トレッド部の裏面)に、基材の長手方向が空気入りタイヤの周方向に沿うように1枚配置した。空気入りタイヤの内面への吸音構造体の固定は、両面テープを用いた。空気入りタイヤとしては、気柱共鳴音が200〜300Hzの範囲で最大音圧を生じるように、内部空間の周長が約1500mmとなる空気入りタイヤとして、トレッド幅195mm、リム径16インチ(約406.4mm)、偏平率55%の空気入りタイヤ(Dunlop社製LeMans4)を準備した。
【0080】
[実施例2]
突出高さが約25.9mm、ピッチが約30mmとなるように不織布K−1をプリーツ加工したシート部材を用いて突部を形成した。このシート部材と、基材と、を基材の接着層により接合し、実施例2の吸音構造体を得た。この吸音構造体を、実施例1と同様にして、空気入りタイヤの内面に配置した。
【0081】
[実施例3]
突出高さが約17.3mm、ピッチが約20mmとなるように不織布K−2をプリーツ加工したシート部材を用いて突部を形成した。このシート部材と、基材と、を基材の接着層により接合し、実施例3の吸音構造体を得た。この吸音構造体を、実施例1と同様にして、空気入りタイヤの内面に配置した。
【0082】
[実施例4]
突出高さが約25.9mm、ピッチが約30mmとなるように不織布K−2をプリーツ加工したシート部材を用いて突部を形成した。このシート部材と、基材と、を基材の接着層により接合し、実施例4の吸音構造体を得た。この吸音構造体を、実施例1と同様にして、空気入りタイヤの内面に配置した。
【0083】
[実施例5]
突出高さが約17.3mm、ピッチが約20mmとなるように不織布H−2をプリーツ加工したシート部材を用いて突部を形成した。このシート部材と、基材と、を基材の接着層により接合し、実施例5の吸音構造体を得た。この吸音構造体を、実施例1と同様にして、空気入りタイヤの内面に配置した。
【0084】
[実施例6]
突出高さが約25.9mm、ピッチが約30mmとなるように不織布K−1をプリーツ加工したシート部材に、不織布膜を2層積層したものを用いて突部を形成した。不織布膜は、シート部材の空洞部とは反対側に積層した。このシート部材と、基材と、を基材の接着層により接合し、実施例6の吸音構造体を得た。この吸音構造体を、実施例1と同様にして、空気入りタイヤの内面に配置した。
【0085】
[比較例1]
プリーツ加工していないシート状の不織布K−1を、実施例1のものと同じ空気入りタイヤの内面に、基材の長手方向が空気入りタイヤの周方向に沿うように配置した。
【0086】
[比較例2]
プリーツ加工していないシート状の不織布K−2を、実施例1のものと同じ空気入りタイヤの内面に、基材の長手方向が空気入りタイヤの周方向に沿うように配置した。
【0087】
[気柱共鳴音の音圧の計測]
アクリルフォームテープを用いて、天然ゴム製の厚さ2mmの板部材を空気入りタイヤの一対のビード部に貼り付けることにより、空気入りタイヤの内部空間を閉じた。空気入りタイヤの周方向反対側の位置における板部材に、一対の孔を空け、それぞれの孔を介して内部空間にノイズ音源及びマイクロフォンを挿入し、それぞれの孔の隙間を粘土で埋めた上で、気柱共鳴音の音圧を計測した。ノイズ音源としては、ブリュエル・ケアー社製オムニソースラウドスピーカー(タイプ4295)を用いた。ノイズ音としては、無指向性のホワイトノイズを低周波から高周波まで同じ音圧レベル(−40dBA)で入力した。マイクロフォンとしては、ブリュエル・ケアー社製1/2インチ音圧音場マイクロフォン(タイプ4189−A021)を用いた。計測した音は、ブリュエル・ケアー社製FFT及びCPB分析器Pulse LabShopを用いて分析し、200〜300Hzの範囲においてピークを有する気柱共鳴音の最大音圧を求めた。計測結果を表2に示す。
【0088】
【表2】
【0089】
表2に示されるように、実施例1〜6の吸音構造体を配置した空気入りタイヤでは、比較例1,2の吸音構造体を配置した空気入りタイヤよりも、200〜300Hzの範囲においてピークを有する気柱共鳴音の最大音圧が小さくなった。また、実施例3,4の吸音構造体を配置した空気入りタイヤでは、実施例1,2の吸音構造体を配置した空気入りタイヤよりも、200〜300Hzの範囲においてピークを有する気柱共鳴音の最大音圧が一層小さくなった。以上のことから、実施例1〜6の吸音構造体によれば、空気入りタイヤにおける特定の周波数(200〜300Hzの範囲)の気柱共鳴音を低減できることが確認された。
【符号の説明】
【0090】
1,1A,1B,1C、1D,1E,1F,1G,1H…吸音構造体、2…基材、2a…表面、10,10A,10B,10C,10D,10E,10F…突部、20…空洞部、30…空気入りタイヤ、34…内面、T…延在方向(交差方向)、U…周方向。
図1
図2
図3
図4
図5
図6
図7
図8