【実施例】
【0092】
以下、実施例を挙げて本発明をさらに具体的に説明する。しかし、本発明は下記の実施例に限定されるものではない。以下の実施例において、A液とは、
図1(A)(B)に示す装置の第1導入部d1から導入される第1の被処理流体を指し、B液とは、同じく装置(A)(B)の第2導入部d2から導入される第2の被処理流体を指す。また、C液とは同じく装置(A)の第3導入部d3から導入される第3の被処理流体を指す。
【0093】
(実施例1)
高速回転式分散乳化装置であるクレアミックス(製品名:CLM−2.2S、エム・テクニック製)を用いて、コア用酸化物原料液、酸化物析出溶媒、並びにシェル用酸化物原料液を調製した。具体的には、表1の実施例1に示すコア用酸化物原料液の処方に基づいて、コア用酸化物原料液の各成分を、クレアミックスを用いて、調製温度40℃、ローター回転数を20000rpmにて30分間撹拌することにより均質に混合し、コア用酸化物原料液を調製した。また、表1の実施例1に示す酸化物析出溶媒の処方に基づいて、酸化物析出溶媒の各成分を、クレアミックスを用いて、調製温度45℃、ローターの回転数15000rpmにて30分間撹拌することにより均質に混合し、酸化物析出溶媒を調製した。さらに、表1の実施例1に示すシェル用酸化物原料液の処方に基づいて、シェル用酸化物原料液の各成分を、クレアミックスを用いて、調製温度20℃、ローターの回転数6000rpmにて10分間撹拌することにより均質に混合し、シェル用酸化物原料液を調製した。
なお、表1に記載の化学式や略記号で示された物質については、MeOHはメタノール(ゴードー製)、97wt%H
2SO
4は濃硫酸(キシダ化学製)、KOHは水酸化カリウム(日本曹達製)、35wt%HClは塩酸(関東化学製)、TEOSはテトラエチルオルトシリケート(和光純薬製)、60wt%HNO
3は硝酸(関東化学製)、ZnOは酸化亜鉛(関東化学製)を使用した。
【0094】
次に調製したコア用酸化物原料液、酸化物析出溶媒、並びにシェル用酸化物原料液を
図1(A)に示す流体処理装置にて混合した。具体的には、A液として酸化物析出溶媒を処理用面1,2間に導入し、処理用部10を回転数1130rpmで運転しながら、B液としてコア用酸化物原料液を処理用面1,2間に導入して、酸化物析出溶媒とコア用酸化物原料液とを薄膜流体中で混合し、処理用面1,2間において、コアとなる酸化物粒子を析出させた。次に、C液としてシェル用酸化物原料液を処理用面1,2間に導入し、薄膜流体中おいてコアとなる酸化物粒子を含む混合流体と混合した。その結果、コアとなる酸化物粒子の表面にシェル用酸化物が析出され、コアシェル型酸化物粒子を含む流体(以下、コアシェル型酸化物粒子分散液)を流体処理装置の処理用面1、2間から吐出させた。吐出させたコアシェル型酸化物粒子分散液を、ベッセルvを介してビーカーbに回収した。なお、B液を処理用面1,2間に導入してから処理用面1,2よりコアシェル型酸化物粒子分散液を吐出させるまでの時間は大半の粒子については0.5秒であり、1秒以内であった。
表2に、流体処理装置の運転条件を示す。表2に示したA液、B液並びにC液の導入温度(送液温度)と導入圧力(送液圧力)は、処理用面1、2間に通じる密封された導入路(第1導入部d1と第2導入部d2、並びに第3導入路d3)内に設けられた温度計と圧力計とを用いて測定したものであり、表2に示したA液の導入温度は、第1導入部d1内の導入圧力下における実際のA液の温度であり、同じくB液の導入温度は、第2導入部d2内の導入圧力下における実際のB液の温度であり、C液の導入温度は、第3導入部d3内の導入圧力下における実際のC液の温度である。
【0095】
pH測定には、HORIBA製の型番D−51のpHメーターを用いた。A液、B液及びC液を流体処理装置に導入する前に、そのpHを室温にて測定した。また、コア用酸化物原料液と酸化物析出溶媒との混合直後の混合流体のpH、並びにコアとなる酸化物微粒子を含む流体とシェル用酸化物原料液との混合直後のpHを測定することは困難なため、同装置から吐出させ、ビーカーbに回収したコアシェル型酸化物粒子分散液のpHを室温にて測定した。
【0096】
流体処理装置から吐出させ、ビーカーbに回収したコアシェル型酸化物粒子分散液から、乾燥粉体とウェットケーキサンプルを作製した。作製方法は、この種の処理の常法に従い行ったもので、吐出されたコアシェル型酸化物粒子分散液を回収し、コアシェル型酸化物粒子を沈降させて上澄み液を除去し、その後、純水100重量部とメタノール100重量部とを混合した混合液での洗浄と沈降とを繰り返し3回行い、その後に純水での洗浄と沈降とを繰り返し3回行うことでコアシェル型酸化物粒子を洗浄し、最終的に得られたコアシェル型酸化物粒子のウェットケーキの一部を25℃、20時間乾燥させて乾燥粉体とした。残りをウェットケーキサンプルとした。
【0097】
(TEM観察用試料作製とSTEM観察用試料作製)
実施例及び比較例で得られた洗浄処理後のコアシェル型酸化物粒子のウェットケーキサンプルの一部をプロピレングリコールに分散させ、さらにイソプロピルアルコール(IPA)で100倍に希釈した。得られた希釈液をコロジオン膜またはマイクログリッドに滴下して乾燥させて、TEM観察用試料またはSTEM観察用試料とした。
【0098】
(透過型電子顕微鏡並びにエネルギー分散型X線分析装置:TEM−EDS分析)
TEM−EDS分析によるコアシェル型酸化物粒子の観察及び定量分析には、エネルギー分散型X線分析装置、JED−2300(JEOL製)を備えた、透過型電子顕微鏡、JEM−2100(JEOL製)を用いた。観察条件としては、加速電圧を80kV、観察倍率を1万倍以上とした。表2、4に記載した粒子径(D)は一次粒子径であり、コアシェル型酸化物粒子の最外周間の距離より算出し、100個の粒子について粒子径を測定した結果の平均値を示した。表2、4に記載したコア粒子径(Dc)は一次粒子径であり、コアシェル型酸化物粒子のコアとなる酸化物粒子の最外周間の距離より算出し、100個の粒子についてコア粒子径を測定した結果の平均値を示した。また、粒子一個についてEDS分析を行い、コアとなる酸化物粒子に含まれる元素と、シェルとなる酸化物に含まれる元素とのモル比を算出した。また、シェルとなる酸化物の厚み(以下、シェル層の厚みともいう)を計測した。粒子1個について4箇所測定し、粒子10個の平均値を表2又は表4の「被覆厚み」の項目に記載した。以下、コアとなる酸化物粒子をコアともいい、シェルとなる酸化物をシェルもしくはシェル層ともいう。
【0099】
(走査透過型電子顕微鏡並びにエネルギー分散型X線分析装置:STEM−EDS分析)
STEM−EDS分析による、コアシェル型酸化物粒子中に含まれる元素のマッピング及び定量には、エネルギー分散型X線分析装置、Centurio(JEOL製)を備えた、原子分解能分析電子顕微鏡、JEM−ARM200F(JEOL製)を用いた。観察条件としては、加速電圧を80kV、観察倍率を5万倍以上とし、直径0.2nmのビーム径を用いて分析した。
【0100】
(X線回折測定)
X線回折(XRD)測定には、粉末X線回折測定装置 EMPYREAN(スペクトリス株式会社PANalytical事業部製)を使用した。測定条件は、測定範囲:10〜100[°2Theta] Cu対陰極、管電圧45kV、管電流40mA、走査速度0.3°/minとした。各実施例及び比較例で得られコアシェル型酸化物粒子の乾燥粉体を用いてXRD測定を行った。
【0101】
【表1】
【0102】
【表2】
【0103】
表2に記載したモル比(シェル/コア)は、一個のコアシェル型酸化物粒子についてTEM−EDS分析にて算出された元素のモル比を当該元素の酸化物に換算した値である。例えば表2の実施例1におけるモル比(シェル/コア、SiO
2/ZnO)は、一個のコアシェル型酸化物粒子についてTEM−EDS分析にて算出されたSi/Znのモル比を、SiO
2/ZnOに換算した値であり、10個の粒子についてモル比(SiO
2/ZnO)を算出した結果の平均値を、計算値と共に示した。計算値は、コア用酸化物原料液中のZnの濃度と導入流量、並びにシェル用酸化物原料液中のSiの濃度と導入流量より算出した。
【0104】
実施例1で得られたコアシェル型酸化物粒子のTEM写真を
図3に示す。コアが1個の酸化亜鉛粒子であり、シェルがケイ素酸化物であって、コアの表面全体をシェルで均一に被覆した、ケイ素酸化物被覆酸化亜鉛粒子が観察され、コアとなる酸化亜鉛粒子の表面全体に厚み1.8nm程度のケイ素酸化物の被覆層(シェル層)が観察された。同じく実施例1で得られたケイ素酸化物被覆
酸化亜鉛粒子について、STEMを用いたマッピング結果について
図4に示す。
図4において、(a)は暗視野像(HA
ADF像)であり、(b)は酸素(O)、(c)は亜鉛(Zn)、(d)はケイ素(Si)のそれぞれマッピングである。HA
ADF像にて観察された粒子に対して、酸素(O)並びにケイ素(Si)については粒子の全体にそれぞれの元素が分布している様子が観察され、亜鉛(Zn)についてはHA
ADF像で観察された粒子よりも半径で約1.8nm程度小さく観察された。D/Dcは122.1%であった。
【0105】
図5に実施例1で得られたケイ素酸化物被覆酸化亜鉛粒子のXRD測定結果を示す。同測定結果では、酸化亜鉛(ZnO)に由来するピークが観察され、その他にピークは観察されなかった。また、
図6には、実施例1で得られたケイ素酸化物被覆酸化亜鉛粒子のIR(赤外吸収スペクトル)測定結果を、二酸化ケイ素(SiO
2)並びに酸化亜鉛(ZnO)のIR測定結果と共に示す。
図6に見られるように、実施例1で得られたケイ素酸化物被覆酸化亜鉛粒子については900cm
−1付近にブロードなピークが見られた。これは酸化亜鉛(ZnO)には見られないピークであるが、SiO
2に見られる1000cm
−1付近のピークよりも低波数側に観測されている。よって、実施例1で得られたケイ素酸化物被覆酸化亜鉛粒子のケイ素酸化物は、SiO
2またはSiO
2−xのような一部酸素が欠損した状態である可能性が考えられた。
なお、IR測定には、フーリエ変換赤外分光光度計、FT/IR−4100(日本分光製)を用いた。測定条件は、ATR法を用い、分解能4.0cm
−1、積算回数1024回である。
【0106】
(実施例2〜6、比較例1〜4:
図1(A)の装置を使用)
実施例1と同様に、
図1(A)の装置を用いて、表1に記載されているコア用酸化物原料液、酸化物析出溶媒、並びにシェル用酸化物原料液の各処方、並びに表2に記載されている運転条件(導入流量、導入温度、導入圧力)にて実施し、コアシェル型酸化物粒子を処理用面1、2間で析出させた。流体処理装置から吐出させ、ベッセルvを介してビーカーbに回収したコアシェル型酸化物粒子分散液から、乾燥粉体とウェットケーキサンプルを作製した。実施例1と同様の手順でTEM観察、XRD測定等を行ったところ、表2に記載の通りの結果を得た。なお、表2に記載されていない条件については実施例1と同様であり、B液を処理用面1,2間に導入してから処理用面1,2よりコアシェル型酸化物粒子分散液を吐出させるまでの時間は大半の粒子については0.5秒なので、1秒以内であった。
図7に比較例2〜4で得られた粒子のXRD測定結果を示す。実施例1〜6にあっては、各処方並びに流体処理装置の運転条件を変更することで、粒子径、コア粒子径並びにシェルとなる酸化物の厚み(被覆の厚み)を変更可能であることが分かった。また、比較例1のように、実施例2と同じ物質を使用した場合であっても、A液の流量よりも、B液の流量が多い場合には、ケイ素酸化物で被覆されていない酸化亜鉛粒子が多く見られ、均一な被覆処理が不可能であった。そのため、粒子径(D)については計測していない。比較例2〜4にあっては、コアとなる酸化物粒子のみと、シェルとなるはずだった成分からなる粒子のみとから成る場合、及びそのような粒子を含む場合が観察された。また比較例2〜4のように吐出液のpHが12以下となった場合には、
図7に見られるように、コアとなる酸化物粒子として酸化亜鉛以外の物質も作製されるため好ましくない。しかし本願は吐出液のpHに限定されるものでは無く、A、B、C液の処方、並びに流体処理装置の運転条件を変更することで、粒子径、コア粒子径及びシェルとなる酸化物の厚み(被覆の厚み)を制御可能である。
【0107】
(比較例5)
実施例2と同じ処方にて、高速回転式分散乳化装置であるクレアミックス(製品名:CLM−2.2S、エム・テクニック製)を用いて、コア用酸化物原料液、酸化物析出溶媒、並びにシェル用酸化物原料液を調製した。
【0108】
次に調製したコア用酸化物原料液と、酸化物析出溶媒とを
図1(B)に示す流体処理装置にて混合した。具体的には、A液として酸化物析出溶媒(MeOH 93.70/97wt%H
2SO
4 6.30)(重量比)を処理用面1,2間に28℃、460ml/minで導入し、処理用部10を回転数1130rpmで運転しながら、B液としてコア用酸化物原料液(ZnO 3.0/KOH 46.6/純水 50.4)(重量比)を、22℃、40ml/minにて処理用面1,2間に導入して薄膜流体中で混合し、処理用面1,2間において、コアとなる酸化物粒子(酸化亜鉛粒子)を析出させた。コアとなる酸化亜鉛粒子を含む吐出液(以下、酸化亜鉛粒子分散液)を流体処理装置の処理用面1、2間から吐出させた(工程1)。吐出させた酸化亜鉛粒子分散液を、ベッセルvを介してビーカーbに回収した。吐出液のpHは13.91(測定温度28.1℃)であった。回収した酸化亜鉛粒子分散液中の酸化亜鉛粒子は既に凝集していた。なお、運転条件に関してはシェル用酸化物原料液を除いて実施例2に揃えている。
【0109】
次に、回収した酸化亜鉛粒子分散液とシェル用酸化物原料液(MeOH 94.61/35wt%HCl 5.11/TEOS 0.28)(重量比)とを高速回転式分散機であるクレアミックス(製品名:CLM−2.2S、エム・テクニック製)を使用して混合した。具体的にはビーカー内の酸化亜鉛粒子分散液を含む分散液500重量部を、温度25℃下で、クレアミックスを用いてローター回転数10000rpmにて撹拌しながら、シェル用酸化物原料液、125重量部をビーカーbに投入し、30分間撹拌することにより酸化亜鉛粒子を含む分散液とシェル用酸化物原料液とを均質に混合し、酸化亜鉛粒子の表面にケイ素酸化物を析出させ、酸化亜鉛粒子の表面をケイ素酸化物で被覆する処理を行った(工程2)。混合後の流体のpHは13.79(測定温度28.1℃)であった。比較例5において、工程1から工程2に移行するまでに要した時間、即ち上記ビーカーb内の酸化亜鉛粒子を含む分散液500重量部を撹拌しながら、シェル用酸化物原料液、125重量部をビーカーbに投入し始めるまでの時間は2分であった。ビーカーb内の分散液から、乾燥粉体とウェットケーキサンプルを作製した。比較例5の方法で作製したコアシェル型酸化物粒子については、TEM観察の結果、実施例1〜6で得られたような、1個の酸化亜鉛粒子の表面全体を均一にケイ素酸化物で被覆した酸化亜鉛粒子は観察されず、酸化亜鉛粒子の複数個をケイ素酸化物のシェルで覆った粒子も多く観察され、その粒子のD/Dcは334%であった。
図8に比較例5で得られたコアシェル型酸化物粒子のTEM写真を示す。
図8に見られるように、コアとなる酸化亜鉛の一次粒子の凝集体をシェルとなるケイ素酸化物で被覆されている様子が見られる。
【0110】
(実施例7)
比較例5と同じ条件にて、
図1(B)の流体処理装置を用いてA液(酸化物析出溶媒)及びB液(コア用酸化物原料液)を処理用面1,2間に形成される薄膜流体中で混合し、処理用面1,2間にて酸化亜鉛粒子を析出させて、酸化亜鉛粒子を含む吐出液(以下、酸化亜鉛粒子分散液)を流体処理装置の処理用面1、2間から吐出させた。次に、第3流体としてシェル用酸化物原料液をベッセルvに設けた図示しない投入口から25℃、125ml/minで導入し、処理用面1,2間より吐出させた吐出直後の酸化亜鉛分散液とシェル用酸化物原料液とをベッセルvの内部で混合し、ビーカーbに回収した。ビーカーbに回収した分散液のpHは13.92(測定温度28.4℃)であった。ビーカーbに回収した分散液から、乾燥粉体とウェットケーキサンプルを作製した。なお、B液を処理用面1,2間に導入してから処理用面1,2より酸化亜鉛粒子分散液を吐出させ、吐出させた酸化亜鉛分散液とシェル用酸化物原料液との混合流体がビーカーbに回収されるまでの時間は大半の粒子については0.8秒であり、1秒以内であった。実施例7の方法で作製したコアシェル型酸化物粒子については、TEM観察の結果、実施例1〜6で得られたような、1個の酸化亜鉛粒子の表面全体を均一にケイ素酸化物で被覆した酸化亜鉛粒子、すなわちケイ素酸化物被覆酸化亜鉛粒子が観察され、粒子径(D)は26.5nm、シェルとなる酸化物の厚み(被覆厚み)は2.3nmで、ケイ素酸化物被覆酸化亜鉛粒子のD/Dcは121.0%であった。
【0111】
(比較例6)
実施例2と同じ処方にて、高速回転式分散乳化装置であるクレアミックス(製品名:CLM−2.2S、エム・テクニック製)を用いて、コア用酸化物原料液、酸化物析出溶媒、並びにシェル用酸化物原料液を調製した。次に調製したコア用酸化物原料液と、酸化物析出溶媒とをビーカー内にてマグネティックスターラーを用いて撹拌して混合した。マグネティックスターラーの撹拌速度は、600rpmである。具体的には、酸化物析出溶媒(MeOH 93.70/97wt%H
2SO
4 6.30)(重量比)4600mlを28℃で撹拌しながら、コア用酸化物原料液(ZnO 3.0/KOH 46.6/純水 50.4)(重量比)400mlを、22℃にて10minかけて投入し、酸化亜鉛粒子を析出させ、酸化亜鉛粒子分散液を得た。酸化亜鉛粒子分散液のpHは13.89(測定温度28.1℃)であった。得られた酸化亜鉛粒子分散液中の酸化亜鉛粒子は既に凝集していた。
【0112】
次に、
図1(B)の流体処理装置を用いて、得られた酸化亜鉛粒子分散液を、A液として33℃、500ml/minで導入し、処理用部10を回転数1130rpmで運転しながら、B液としてシェル用酸化物原料液(MeOH 94.61/35wt%HCl 5.11/TEOS 0.28)(重量比)を25℃、125ml/minで処理用面1,2間に導入し、薄膜流体中おいて酸化亜鉛粒子分散液とシェル用酸化物原料液とを混合した。酸化亜鉛粒子の表面にシェル用酸化物が析出された、コアシェル型酸化物粒子を含む吐出液(以下コアシェル型酸化物粒子分散液)を流体処理装置の処理用面1、2間から吐出させた。吐出させたコアシェル型酸化物粒子分散液を、ベッセルvを介してビーカーbに回収した。吐出液のpHは13.80(測定温度28.3℃)であった。なお、得られた酸化亜鉛粒子分散液を流体処理装置にセットしてから処理用面1,2より分散液を吐出させるまでの時間は大半の粒子については5分程度であり、比較例6の処理時間は計10分であった。ビーカーbに回収した分散液から、乾燥粉体とウェットケーキサンプルを作製した。比較例6の方法で作製したコアシェル型酸化物粒子については、TEM観察の結果、実施例1〜6で得られたような、1個の酸化亜鉛粒子の表面全体を均一にケイ素酸化物で被覆した酸化亜鉛粒子は観察されず、酸化亜鉛ナノ粒子の複数個をケイ素酸化物のシェルで覆った粒子も多く観察され、その粒子のD/Dcは396%であった。
【0113】
(比較例7)
ケイ素酸化物によって表面を被覆された酸化亜鉛粒子との比較のために、ケイ素酸化物によって表面を被覆されていない酸化亜鉛粒子を作製した。
実施例2のコア用酸化物原料液と酸化物析出溶媒と同じ処方にて、高速回転式分散乳化装置であるクレアミックス(製品名:CLM−2.2S、エム・テクニック製)を用いて、コア用酸化物原料液と酸化物析出溶媒を調製した。
次に調製したコア用酸化物原料液と酸化物析出溶媒とを
図1(B)に示す流体処理装置を用い、以下の条件で酸化亜鉛粒子を作製した。具体的にはA液として酸化物析出溶媒(MeOH 93.70/97wt%H
2SO
4 6.30)(重量比)を処理用面1,2間に22℃、460ml/minで導入し、処理用部10を回転数1130rpmで運転しながら、B液として酸化亜鉛原料液(ZnO 3.0/KOH 46.6/純水 50.4)(重量比)を処理用面1,2間に28℃、40ml/minで導入し、薄膜流体中で酸化物析出溶媒とコア用酸化物原料液とを混合し、処理用面1,2間にて酸化亜鉛粒子を析出させた。酸化亜鉛粒子を含む吐出液(酸化亜鉛粒子分散液)が処理用面1,2間より吐出された。粒子の洗浄方法、分析・評価方法等は実施例1と同じである。実施例1のコア粒子径と同様の方法で測定した粒子径は10.1nmであり、XRD測定結果より、酸化亜鉛のピークのみが検出された。吐出液のpHは13.92(測定温度28.2℃)であった。得られた酸化亜鉛粒子分散液中の酸化亜鉛粒子は既に凝集していた。
【0114】
実施例2の条件で得られたケイ素酸化物被覆酸化亜鉛粒子をプロピレングリコールに0.00185mol/Lの濃度で分散させた分散液と、比較例7の条件で得られた酸化亜鉛粒子をプロピレングリコールに0.00185mol/Lの濃度で分散させた分散液とをそれぞれ用意し、両者の紫外可視吸光分光測定結果を、
図9(透過率)、
図10(吸光度)に示す。
図9、
図10に見られるように、実施例2で得られた、ケイ素酸化物で表面全体を均一に被覆した酸化亜鉛粒子を分散させた分散液の方が、比較例
7で得られた酸化亜鉛粒子を分散させた分散液と比べて、吸収領域である200〜350nmの波長の光を強く吸収し、透過領域である370〜800nmの波長の光を透過し易いことがわかった。ケイ素酸化物で1個の酸化亜鉛粒子の表面全体を均一に被覆することによって、溶媒との親和性が向上し、粒子の分散性が改善されたものと考えられる。
【0115】
(光触媒能評価)
実施例1〜7、及び比較例1〜7で得られた粒子について光触媒能を評価した。具体的には各実施例または比較例にて得られた粒子をメチレンブルー色素を溶解させたプロピレングリコールに分散させ、365nmの紫外光を2時間照射し、照射前後の紫外可視吸光スペクトルを測定した。365nmの紫外光の照射には、トランスイルミネーター(VILBER LOURMAT製:TFX20CL)を用いた。メチレン
ブルー色素の吸収ピークに由来する波長660nm付近の光に対する吸光度の減衰率(式1)により、光触媒能を評価した。プロピレングリコール中のメチレンブルーの濃度は、紫外光照射前の測定において、波長660nmの吸光度が1付近となるように設定し、粒子の分散濃度は5×10
−5mol/Lとした。
図11に実施例1の条件で得られた粒子について紫外光照射前後の吸収スペクトル測定結果を示し、
図12に比較例7の条件で得られた粒子について紫外光照射前後の吸収スペクトル測定結果を示す。実施例1で得られたケイ素酸化物被覆酸化亜鉛粒子については、365nmの紫外光を2時間照射する前後で、波長660nmの光に対する吸光度の変化は略見られなかったが(照射前の最大吸光度に対する、照射後の最大吸光度が0.90〜1.00)、比較例7で作製した粒子の場合には吸光度が減衰しており、照射前の最大吸光度に対する、照射後の最大吸光度が0.90未満にまで下がっていた。比較例1〜6の条件で作製した粒子についても比較例7と同様の傾向を示した。実施例1〜7の条件で作製した粒子については、ケイ素酸化物で1個の酸化亜鉛粒子の表面全体を均一に被覆することによって、酸化亜鉛粒子の光触媒能を抑制出来ているが、比較例1〜6の条件で作製した粒子については、酸化亜鉛粒子の表面をケイ素酸化物で被覆出来ていないものや、ケイ素酸化物で複数個の酸化亜鉛粒子の表面を被覆するものも含むために、酸化亜鉛の光触媒能を抑制出来ていないことがわかった。
【0116】
(実施例8)
高速回転式分散乳化装置であるクレアミックス(製品名:CLM−2.2S、エム・テクニック製)を用いて、コア用酸化物原料液、酸化物析出溶媒、並びにシェル用酸化物原料液を調製した。具体的には表3の実施例8に示すコア用酸化物原料液の処方に基づいて、コア用酸化物原料液の各成分を、クレアミックスを用いて、調製温度40℃、ローター回転数を20000rpmにて30分間撹拌することにより均質に混合し、コア用酸化物原料液を調製した。また、表3の実施例8に示す酸化物析出溶媒の処方に基づいて、酸化物析出溶媒の各成分を、クレアミックスを用いて、調製温度45℃、ローターの回転数15000rpmにて30分間撹拌することにより均質に混合し、酸化物析出溶媒を調製した。さらに、表3の実施例8に示すシェル用酸化物原料液の処方に基づいて、シェル用酸化物原料液の各成分を、クレアミックスを用いて、調製温度20℃、ローターの回転数6000rpmにて10分間撹拌することにより均質に混合し、シェル用酸化物原料液を調製した。
なお、表3に記載の化学式や略記号で示された物質については、97wt%H
2SO
4は濃硫酸(キシダ化学製)、NaOHは水酸化ナトリウム(関東化学製)、TEOSはテトラエチルオルトシリケート(和光純薬製)、Fe(NO
3)
3・9H
2Oは硝酸鉄九水和物(関東化学製)を使用した。粒子の洗浄方法及び分析・評価方法については、実施例1と同じである。
【0117】
次に調製したコア用酸化物原料液、酸化物析出溶媒、並びにシェル用酸化物原料液を
図1(A)に示す流体処理装置にて混合した。具体的には、A液としてコア用酸化物原料液を処理用面1,2間に導入し、処理用部10を回転数1130rpmで運転しながら、B液として酸化物析出溶媒を処理用面1,2間に導入して、コア用酸化物原料と酸化物析出溶媒とを薄膜流体中で混合し、処理用面1,2間において、コアとなる酸化物粒子を析出させた。次に、C液としてシェル用酸化物原料液を処理用面1,2間に導入し、薄膜流体中おいてコアとなる酸化物粒子を含む混合流体と混合した。コアとなる酸化物粒子の表面にシェル用酸化物が析出され、コアシェル型酸化物粒子を含む吐出液(以下、コアシェル型酸化物粒子分散液)を流体処理装置の処理用面1、2間から吐出させた。吐出させたコアシェル型酸化物粒子分散液を、ベッセルvを介してビーカーbに回収した。なお、B液を処理用面1,2間に導入してから処理用面1,2よりコアシェル型酸化物粒子分散液を吐出させるまでの時間は大半の粒子については0.4秒であり、1秒以内であった。
表4に、流体処理装置の運転条件を示す。表4に示したA液、B液並びにC液の導入温度(送液温度)と導入圧力(送液圧力)は、処理用面1、2間に通じる密封された導入路(第1導入部d1と第2導入部d2、並びに第3導入路d3)内に設けられた温度計と圧力計とを用いて測定したものであり、表4に示したA液の導入温度は、第1導入部d1内の導入圧力下における実際のA液の温度であり、同じくB液の導入温度は、第2導入部d2内の導入圧力下における実際のB液の温度であり、C液の導入温度は、第3導入部d3内の導入圧力下における実際のC液の温度である。
【0118】
【表3】
【0119】
【表4】
【0120】
表4に記載したモル比(シェル/コア)は、一個のコアシェル型酸化物粒子についてTEM−EDS分析にて算出された元素のモル比を当該元素の酸化物に換算した値である。例えば表4の実施例8におけるモル比(シェル/コア、SiO
2/Fe
2O
3)は、一個のコアシェル型酸化物粒子についてTEM−EDS分析にて算出されたSi/Feのモル比を、SiO
2/Fe
2O
3に換算した値であり、10個の粒子についてモル比(SiO
2/Fe
2O
3)を算出した結果の平均値を、計算値と共に示した。計算値は、コア用酸化物原料液中のFeの濃度と導入流量、並びにシェル用酸化物原料液中のSiの濃度と導入流量より算出した。
【0121】
実施例8で得られたコアシェル型酸化物粒子のTEM写真を
図13に示す。コアが1個の酸化鉄粒子であり、シェルがケイ素酸化物であって、コアの表面全体をシェルで均一に被覆した、ケイ素酸化物被覆酸化鉄粒子が観察され、コアとなる酸化鉄粒子の表面全体に厚み1.37nm程度のケイ素酸化物の被覆層(シェル)が観察された。同じく実施例8で得られたケイ素酸化物被覆酸化鉄粒子について、STEMを用いたマッピング結果について
図14に示す。
図14において、(a)は暗視野像(HA
ADF像)であり、(b)は酸素(O)、(c)は鉄(Fe)、(d)はケイ素(Si)のそれぞれマッピングである。HA
ADF像にて観察された粒子に対して、酸素(O)並びにケイ素(Si)については粒子の全体にそれぞれの元素が分布している様子が観察され、鉄(Fe)についてはHA
ADF像で観察された粒子よりも半径で約1.37nm程度小さく観察された。D/Dcは150.2%であった。
【0122】
図15に見られる実施例8で得られたケイ素酸化物被覆酸化鉄粒子のXRD測定結果より、酸化鉄(Fe
2O
3)に由来するピークが観察され、その他にピークは観察されなかった。
【0123】
(実施例9、比較例8,9)
実施例8と同様に、
図1(A)の装置を用いて、表3に記載されているコア用酸化物原料液、酸化物析出溶媒、並びにシェル用酸化物原料液の各処方、並びに表4に記載されている運転条件(導入流量、導入温度、導入圧力)にて実施し、コアシェル型酸化物粒子を処理用面1、2間で析出させた。流体処理装置から吐出させ、ベッセルvを介してビーカーbに回収したコアシェル型酸化物粒子分散液から、乾燥粉体とウェットケーキサンプルを作製した。実施例8と同様の手順でTEM観察、XRD測定等を行ったところ、表4に記載の通りの結果を得た。なお、表4に記載されていない条件については実施例8と同様であり、B液を処理用面1,2間に導入してから処理用面1,2よりコアシェル型酸化物粒子分散液を吐出させるまでの時間は大半の粒子については0.3秒であり、1秒以内であった。実施例8,9にあっては、各処方並びに流体処理装置の運転条件を変更することで、粒子径、コア粒子径並びにシェルとなる酸化物の厚み(被覆の厚み)を変更可能であることが分かった。本願は吐出液のpHに限定されるものでは無く、A、B、C液の処方、並びに流体処理装置の運転条件を変更することで、粒子径、コア粒子径及びシェルとなる酸化物の厚み(被覆の厚み)を制御可能である。また、比較例8,9のように、A液の流量よりも、B液の流量が多い場合には、ケイ素酸化物で被覆されていない酸化鉄粒子が多く見られ、均一な被覆処理が不可能であった。そのため粒子径(D)については計測していない。
【0124】
(比較例10)
実施例9と同じ処方にて、高速回転式分散乳化装置であるクレアミックス(製品名:CLM−2.2S、エム・テクニック製)を用いて、コア用酸化物原料液、酸化物析出溶媒、並びにシェル用酸化物原料液を調製した。
【0125】
次に調製したコア用酸化物原料液と酸化物析出溶媒とを
図1(B)に示す流体処理装置にて混合した。具体的には、A液としてコア用酸化物原料液(純水 98.00/Fe(NO
3)
3・9H
2O 2.00)(重量比)を処理用面1,2間に142℃、400ml/minで導入し、処理用部10を回転数1130rpmで運転しながら、B液として酸化物析出溶媒(NaOH 9.00/純水 91.00)(重量比)を、86℃、50ml/minにて処理用面1,2間に導入して薄膜流体中で両者を混合し、処理用面1,2間において、コアとなる酸化物粒子(酸化鉄粒子)を析出させた。コアとなる酸化鉄粒子を含む吐出液(以下酸化鉄粒子分散液)を流体処理装置の処理用面1、2間から吐出させた。吐出させた酸化鉄粒子分散液を、ベッセルvを介してビーカーbに回収した。吐出液のpHは12.51(測定温度32.9℃)であった。回収した酸化鉄粒子分散液中の酸化鉄粒子は既に凝集していた。
【0126】
次に、回収した酸化鉄粒子分散液をとシェル用酸化物原料液(MeOH 93.70/35wt%HCl 5.11/TEOS 1.19)(重量比)とを高速回転式分散機であるクレアミックス(製品名:CLM−2.2S、エム・テクニック製)を使用して混合した。具体的にはビーカーb内の酸化鉄粒子分散液を含む分散液450重量部を、温度98℃下で、クレアミックスを用いてローター回転数10000rpmにて撹拌しながら、シェル用酸化物原料液、100重量部をビーカーbに投入し、30分間撹拌することにより酸化鉄粒子を含む分散液とシェル用酸化物原料液とを均質に混合し、酸化鉄粒子の表面にケイ素酸化物を析出させ、酸化鉄粒子の表面をケイ素酸化物で被覆する処理を行った(工程2)。混合後の流体のpHは11.98(測定温度32.
9℃)であった。比較例10において、工程1から工程2に移行するまでに要した時間、即ち上記ビーカーb内の酸化鉄粒子を含む分散液450重量部を撹拌しながら、シェル用酸化物原料液、100重量部をビーカーbに投入し始めるまでの時間は5分であった。ビーカーb内の分散液から、乾燥粉体とウェットケーキサンプルを作製した。比較例10の方法で作製したコアシェル型酸化物粒子については、TEM観察の結果、実施例8〜9で得られたような、1個の酸化鉄粒子の表面全体を均一にケイ素酸化物で被覆した酸化鉄粒子は観察されず、酸化鉄粒子の複数個をケイ素酸化物のシェルで覆った粒子も多く観察され、その粒子のD/Dcは412%であった。
【0127】
(実施例10)
比較例10と同じ条件にて、
図1(B)の流体処理装置を用いてA液(コア用酸化物原料液)及びB液(酸化物析出溶媒)を処理用面1,2間に形成される薄膜流体中で混合し、処理用面1,2間にて酸化鉄粒子を析出させて、酸化鉄粒子を含む分散液(以下、酸化鉄粒子分散液)を流体処理装置の処理用面1,2間から吐出させた。次に、第3流体としてシェル用酸化物原料液をベッセルvに設けた図示しない投入口から89℃、100ml/minで導入し、処理用面間より吐出させた吐出直後の酸化鉄分散液とシェル用酸化物原料液とをベッセルvの内部で混合し、ビーカーbに回収した。ビーカーbの分散液のpHは13.89(測定温度29.6℃)であった。ビーカーbに回収した分散液から、乾燥粉体とウェットケーキサンプルを作製した。なお、B液を処理用面1,2間に導入してから処理用面1,2より酸化鉄粒子分散液を吐出させ、吐出させた酸化鉄粒子分散液とシェル用酸化物原料液との混合流体がビーカーbに回収されるまでの時間は大半の粒子については0.8秒であり、1秒以内であった。実施例10の方法で作製したコアシェル型酸化物粒子については、TEM観察の結果、実施例8〜9で得られたような、1個の酸化鉄粒子の表面全体を均一にケイ素酸化物で被覆したコアシェル型酸化物粒子、すなわち、ケイ素酸化物被覆酸化鉄粒子が観察され、粒子径(D)が9.90nm、シェルとなる酸化物の厚み(被覆厚み)が1.17nmで、ケイ素酸化物被覆酸化鉄粒子のD/Dcは131.0%であった。
【0128】
(比較例11)
実施例9と同じ処方にて、高速回転式分散乳化装置であるクレアミックス(製品名:CLM−2.2S、エム・テクニック製)を用いて、コア用酸化物原料液、酸化物析出溶媒、並びにシェル用酸化物原料液を調製した。次に調製したコア用酸化物原料液と、酸化物析出溶媒とを加圧容器内にて撹拌機を用いて撹拌し混合した。撹拌機の撹拌速度は、600rpmである。具体的には、第1被処理流体としてコア用酸化物原料液(純水 98.00/Fe(NO
3)
3・9H
2O 2.00)(重量比)4000mlを、142℃で撹拌しながら、第2被処理流体として酸化物析出溶媒(NaOH 9.00/純水 91.00)(重量比)500mlを、86℃にて10分かけて投入し、酸化鉄粒子を析出させ、酸化鉄粒子分散液を得た。混合後のpHは12.64(測定温度33.2℃)であった。得られた酸化鉄粒子分散液中の酸化鉄粒子は既に凝集していた。
【0129】
次に、
図1(B)の流体処理装置を用いて、得られた酸化鉄粒子分散液を、A液として142℃、450ml/minで処理用面1,2間に導入し、処理用部10を回転数1130rpmで運転しながら、B液としてシェル用酸化物原料液(純水 93.70/97wt%H
2SO
4 5.11/TEOS 1.19)(重量比)を89℃、100ml/minで処理用面1,2間に導入し、薄膜流体中おいて酸化鉄粒子分散液とシェル用酸化物原料液とを混合した。酸化鉄粒子の表面にシェル用酸化物が析出され、コアシェル型酸化物粒子を含む吐出液(以下コアシェル型酸化物粒子分散液)を流体処理装置の処理用面1、2間から吐出させた。吐出させたコアシェル型酸化物粒子分散液を、ベッセルvを介してビーカーbに回収した。吐出液のpHは11.88(測定温度32.4℃)であった。なお、回収した酸化鉄粒子分散液を流体処理装置にセットしてから処理用面1,2より分散液を吐出させるまでの時間は大半の粒子については10分であり、比較例11の処理時間は計20分であった。ビーカーbに回収した分散液から、乾燥粉体とウェットケーキサンプルを作製した。比較例11の方法で作製したコアシェル型酸化物粒子については、TEM観察の結果、実施例8〜9で得られたような、1個の酸化鉄粒子の表面全体を均一にケイ素酸化物で被覆した酸化鉄粒子は観察されず、酸化鉄粒子の複数個をケイ素酸化物のシェルで覆った粒子も多く観察され、その粒子のD/Dcは433%であった。
【0130】
(比較例12)
ケイ素酸化物によって表面を被覆された酸化鉄粒子との比較のために、ケイ素酸化物によって表面を被覆されていない酸化鉄粒子を作製した。
実施例8,9のコア用酸化物原料液と酸化物析出溶媒と同じ処方にて、高速回転式分散乳化装置であるクレアミックス(製品名:CLM−2.2S、エム・テクニック製)を用いて、コア用酸化物原料液と酸化物析出溶媒を調製した。
次に調製したコア用酸化物原料液と酸化物析出溶媒とを
図1(B)に示す流体処理装置を用い、以下の条件で酸化鉄粒子を作製した。具体的にはA液としてコア用酸化物原料液(純水 98.00/Fe(NO
3)
3・9H
2O 2.00)(重量比)を処理用面1,2間に142℃、400ml/minで導入し、処理用部10を回転数1130rpmで運転しながら、B液として酸化物析出溶媒(NaOH 9.00/純水 91.00)(重量比)を処理用面1,2間に86℃、50ml/minで導入し、薄膜流体中で酸化物析出溶媒とコア用酸化物原料液とを混合し、酸化鉄粒子を処理用面1,2間にて析出させた。酸化鉄粒子を含む吐出液(酸化鉄粒子分散液)が処理用面1,2間より吐出された。粒子の洗浄方法、分析・評価方法等は実施例8と同じである。実施例8のコア粒子径と同様の方法で測定した粒子径は6.40nmであり、XRD測定結果より、酸化鉄のピークのみが検出された。吐出液のpHは13.89(測定温度29.6℃)であった。得られた酸化鉄粒子分散液中の酸化鉄粒子は既に凝集していた。
【0131】
(実施例11)
実施例11として、特開2009−112892号公報に記載の装置並びにA液(コア用酸化物原料液)、B液(酸化物析出溶媒)、C液(シェル用酸化物原料液)の混合・反応方法を用いた以外は、実施例8と同じ条件とすることでケイ素酸化物被覆酸化鉄粒子を作製した。ここで、特開2009−112892号公報の装置とは、同公報の
図4に記載の装置であって、攪拌槽の内径が均一であるものを用い、撹拌槽の内径が420mm、攪拌具の外端と攪拌槽の内周面との間隙が1mm、攪拌羽根の回転数は実施例8で用いた
図1(A)に示す流体処理装置の処理用部の回転数と同じ(1130rpm)とした。また、撹拌槽にA液を導入し、攪拌槽の内周面に圧着されたA液からなる薄膜中にB液を加えて混合し反応させ、攪拌槽の内周面に圧着されたA液とB液の混合液からなる薄膜中にC液を加えて混合し反応させた。TEM観察の結果、コアが1個の酸化鉄粒子であり、シェルがケイ素酸化物であって、コアの表面の一部をシェルで被覆した、ケイ素酸化物被覆酸化鉄粒子が観察され、コアとなる酸化鉄粒子の表面に厚み1.0〜2.0nm程度のケイ素酸化物の被覆層(シェル)が観察された。同じく実施例11で得られたケイ素酸化物被覆酸化鉄粒子について、実施例8と同様にSTEMを用いたマッピングを行った結果、HA
ADF像にて観察された粒子に対して、酸素(O)については粒子の全体にそれぞれの元素が分布している様子が観察され、鉄(Fe)についてはHA
ADF像で観察された粒子よりも半径で約1.0〜2.0nm程度小さく観察され、ケイ素(Si)については主として被覆層にのみ分布している様子が観察された。粒子径(D)が16.9nm、シェルとなる酸化物の厚み(被覆厚み)が1.0〜2.0nmで、ケイ素酸化物被覆酸化鉄粒子のD/Dcは111.8〜123.7%であった。実施例11で得られたケイ素酸化物被覆酸化鉄粒子のXRD測定結果より、酸化鉄(Fe
2O
3)に由来するピークが観察され、その他にピークは観察されなかった。
【0132】
実施例8の条件で得られたケイ素酸化物被覆酸化鉄粒子と比較例12で得られた酸化鉄粒子について、透過スペクトルは、プロピレングリコールにケイ素酸化物被覆酸化鉄をFe
2O
3として0.05重量%の濃度で分散させた分散液を用意し、吸収スペクトルについては、プロピレングリコールにケイ素酸化物被覆酸化鉄をFe
2O
3として0.007重量%(0.0005mol/L)の濃度で分散させた分散液を測定試料として用意し、それぞれのスペクトルを測定した。両者の紫外可視吸光分光測定結果を、
図16(透過率)、
図17(吸光度)に示す。
図16、
図17に見られるように、実施例8で得られた、ケイ素酸化物で表面全体を均一に被覆した酸化鉄粒子を分散させた分散液の方が、比較例12で得られた酸化鉄粒子を分散させた分散液に比べて、吸収領域である200〜400nmの波長の光を強く吸収し、透過領域である450〜800nmの波長の光を透過し易いことがわかった。ケイ素酸化物で1個の酸化鉄粒子の表面全体を被覆することによって、溶媒との親和性が向上し、粒子の分散性が改善されたものと考えられる。また、実施例11の条件で作製したケイ素酸化物被覆酸化鉄粒子についても、実施例8で得られた粒子の特性までは得られなかったが、吸収領域である200〜400nmの波長の光を強く吸収し、透過領域である450〜800nmの波長の光を透過し易いことがわかった。
【0133】
(光触媒能評価)
実施例8〜10、及び比較例8〜12で得られた粒子について光触媒能を評価した。具体的には各実施例または比較例にて得られた粒子をコンゴレッド色素を溶解させたプロピレングリコールに分散させ、白色光を2時間照射し、照射前後の紫外可視吸光スペクトルを測定した。白色光の照射には、メタルハライドランプ(ウシオライティング製:ULRD−250ST/9H2)を備えた、250Wメタルハライド光源装置(ウシオライティング製:UF3250NAC)を用いた。コンゴレッド色素の吸収ピークに由来する波長505nmの光に対する吸光度の減衰率(式1)により、光触媒能を評価した。プロピレングリコール中の
コンゴレッド色素の濃度は、波長505nmの吸光度が1付近となるように設定し、粒子の分散濃度は5×10
−5mol/Lとした。
図18に実施例8の条件で得られた粒子について白色光照射前後の吸収スペクトル測定結果を示し、
図19に比較例12の条件で得られた粒子について白色光照射前後の吸収スペクトル測定結果を示す。実施例8で得られたケイ素酸化物被覆酸化鉄粒子については、白色光を2時間照射する前後で、波長505nmの光に対する吸光度の変化は略見られなかったが(照射前を1として、照射後は0.98〜1.00)、比較例12で作製した粒子の場合には吸光度が減衰しており、照射前を1として、照射後は0.90未満にまで下がっていた。比較例8〜11の条件で作製した粒子についても比較例12と同様の傾向を示した。実施例8〜10の条件で作製した粒子については、ケイ素酸化物で1個の酸化鉄粒子の表面全体を均一に被覆することによって、酸化鉄粒子の光触媒能を抑制出来ているが、比較例8〜11の条件で作製した粒子については、酸化鉄粒子の表面をケイ素酸化物で被覆出来ていないものや、ケイ素酸化物で複数個の酸化鉄粒子の表面を被覆するものも含むために、酸化鉄の光触媒能を抑制出来ていないことがわかった。
【0134】
次に、上述の実施例8と実施例11で得られたケイ素酸化物被覆酸化鉄粒子及びケイ素酸化物被覆酸化鉄粒子を分散媒に分散させた分散体について更に実験を行った。
【0135】
(透過スペクトル並びに吸収スペクトル)
透過スペクトル並びに吸収スペクトルは、可視紫外吸光分光光度計(製品名:UV−2450、島津製作所製)を使用した。測定範囲は200〜800nmとし、サンプリングレートを0.2nm、測定速度を低速として測定した。透過スペクトルは、プロピレングリコールにケイ素酸化物被覆酸化鉄をFe
2O
3として0.05重量%の濃度で分散させた分散液を測定試料として用いた。吸収スペクトルについては、プロピレングリコールにケイ素酸化物被覆酸化鉄をFe
2O
3として0.007重量%(0.0005mol/L)の濃度で分散させた分散液を測定試料として用いて、吸収スペクトルを測定後、測定結果から得られた吸光度と分散液の酸化鉄濃度(Fe
2O
3として)より、モル吸光係数を算出し、横軸に測定波長、縦軸にモル吸光係数を記載したグラフとした。測定には、厚み1cmの液体用セルを用いた。
【0136】
(ヘーズ値測定)
ヘーズ値測定には、ヘーズ値メーター(型式 HZ−V3、スガ試験機製)を用いた。光学条件としてJIS K 7136、JIS K 7361に対応した、ダブルビーム方式で、光源としてD65光を使用した。測定は厚み1mmの液体用セルに 紫外可視吸収・透過スペクトル測定に用いた分散液と同じ分散液について測定した。
【0137】
(反射スペクトル)
反射スペクトルは、紫外可視近赤外分光光度計(製品名:SolidSpec−3700、島津製作所製)を使用した。測定範囲は400〜750nmとし、サンプリングレートを2.0nm、測定速度を中速として測定した。また粉末を測定する際のバックグラウンド測定には、標準白板(製品名:Spectralon(商標)、Labsphere製)を使用し、分散液を測定する際のバックグラウンドには硫酸バリウムを使用した。測定試料としては、後述するように、ケイ素酸化物被覆酸化鉄の粉末、及び水にケイ素酸化物被覆酸化鉄をFe
2O
3として0.31重量%の濃度で分散させた分散液を用いた。
【0138】
(比較例13)
比較例13として、和光純薬製酸化鉄(III)(α−Fe
2O
3)を実施例8と同様に、プロピレングリコールまたは水に分散させ、実施例8と同様の方法でTEM観察、ヘーズ値、紫外可視透過吸収スペクトル、反射スペクトル、XRDを測定した。
図24に比較例13の酸化鉄粒子のTEM写真を示す。平均一次粒子径は119.6nmであった。なお、比較例13のTEM観察用試料の作製にあっては、上記の市販の酸化鉄(III)(α−Fe
2O
3)を洗浄せずに用いた。
【0139】
ケイ素酸化物によって表面を被覆された酸化鉄粒子との比較のために、ケイ素酸化物によって表面を被覆されていない酸化鉄粒子として比較例12を用いた。
【0140】
XRD測定の結果、実施例8、実施例11、比較例12、比較例13共にα−Fe
2O
3(ヘマタイト)のピークが明らかに検出された。また、実施例8及び実施例11においては、上述の通り、粒子の表面に被覆されたケイ素酸化物についてはピークが検出されず、非晶質であると考えられる。
【0141】
実施例8で得られたケイ素酸化物被覆酸化鉄粒子をプロピレングリコールに分散させた分散液と、比較例12、13の酸化鉄粒子をプロピレングリコールに分散させた分散液の、透過スペクトル測定結果を、
図20に示す。実施例8で得られたケイ素酸化物被覆酸化鉄粒子分散体は、波長200〜400nmの紫外光を略透過することはなく、波長420nmの透過率が1.64%であった。また、比較例12で得られたケイ素酸化物被覆酸化鉄粒子分散体についても、波長200〜400nmの紫外光を略透過することはなく、波長420nmの透過率が1.73%であった。実施例8並びに比較例12で得られたケイ素酸化物被覆酸化鉄粒子分散体は、波長620〜800nmの透過率が80%を超えていることがわかった。即ち、波長200〜420nmの光を吸収し、それ以外の光、特に620〜800nmの光を透過していることがわかった。それに対して、比較例13の酸化鉄粒子分散体の透過率は測定全域において、概ね10%の透過率であり、吸収領域と透過領域について、明確な差が見られなかった。また、実施例11で得られたケイ素酸化物被覆酸化鉄粒子分散体は、波長200〜400nmの紫外光を略透過することはなく、波長420nmの透過率が1.89%であった。波長620〜800nmの透過率については、実施例8で得られた粒子の特性には若干およばなかったが、80%を超えていることがわかった。
【0142】
実施例8で得られたケイ素酸化物被覆酸化鉄粒子をプロピレングリコールに分散させた分散液と、比較例12、13の酸化鉄粒子をプロピレングリコールに分散させた分散液の吸収スペクトル測定結果から得られた吸光度と測定液の酸化鉄濃度(Fe
2O
3として)より、モル吸光係数を算出し、横軸に測定波長、縦軸にモル吸光係数を記載したグラフを
図21に示す。また
図21に見られるように、実施例8で得られた酸化鉄粒子のモル吸光係数は、波長400nmの光線に対して1193 L/(mol・cm)であり波長220nmの光に対して5479L/(mol・cm)であった。また比較例12で得られた酸化鉄粒子のモル吸光係数は、波長400nmの光線に対して952 L/(mol・cm)であり波長220nmの光に対して4488L/(mol・cm)であった。それに対して比較例13の酸化鉄粒子のモル吸光係数は、測定範囲の全域において、50〜150L/(mol・cm)であった。実施例11で得られた酸化鉄粒子のモル吸光係数は、波長400nmの光線に対して595 L/(mol・cm)であり波長220nmの光に対して3112L/(mol・cm)であった。
【0143】
図22に、実施例8で得られたケイ素酸化物被覆酸化鉄粒子粉末と比較例12、13の酸化鉄粒子粉末の反射スペクトルを示した。
図22に見られるように、実施例8で得られたケイ素酸化物被覆酸化鉄粒子については、波長400〜620nmの領域において、光線の反射率が18%未満であったのに対して、比較例12、13
の酸化鉄粒子については、18%を超えた。
図23に、実施例8で得られたケイ素酸化物被覆酸化鉄粒子を水にFe
2O
3として0.31重量%の濃度で分散させた分散液の波長400〜750nmの反射スペクトルを示した。
図23に見られるように、
実施例8で得られたケイ素酸化物被覆酸化鉄粒子については、波長400〜620nmの領域において、光線の反射率が18%未満であったのに対して、比較例1
2並びに比較例
13の酸化鉄については、18%を超えた。また実施例11で得られたケイ素酸化物被覆酸化鉄粒子についても、波長400〜620nmの領域において、光線の反射率が18%未満であった。
【0144】
上記実施例8で得られたケイ素酸化物被覆酸化鉄粒子をプロピレングリコールにFe
2O
3として0.05重量%の濃度で分散させた分散液のヘーズ値は0.00%であり、また、水にFe
2O
3として0.31重量%の濃度で分散させた分散液のヘーズ値は0.0
8%であり、どちらも非常に透明性の高い分散液であった。さらに、上記実施例8で得られたケイ素酸化物被覆酸化鉄粒子を水にFe
2O
3として2.0重量%の濃度で分散させた分散液のヘーズ値は0.89%であり、非常に透明性の高い分散液であった。また、それに対して比較例13の酸化鉄粒子をプロピレングリコールに0.02重量%の濃度で分散させた分散液のヘーズ値は21.9%であり、また、水に0.31重量%の濃度で分散させた分散液のヘーズ値は15.9%、水に2.0重量%の濃度で分散させた分散液のヘーズ値は23.4%であり明らかな濁りが見られた。また比較例12で得られた酸化鉄粒子を、水に2.0重量%の濃度で分散させた分散液のヘーズ値は2.56%であり、濁りが見られた。上記実施例11で得られたケイ素酸化物被覆酸化鉄粒子をプロピレングリコールにFe
2O
3として0.05重量%の濃度で分散させた分散液のヘーズ値は0.91%であり、また、水にFe
2O
3として0.31重量%の濃度で分散させた分散液のヘーズ値は1.46%であり、実施例8で得られたケイ素被覆酸化鉄粒子程ではないが、透明性の高い分散液であった。さらに、上記実施例11で得られたケイ素酸化物被覆酸化鉄粒子を水にFe
2O
3として2.0重量%の濃度で分散させた分散液のヘーズ値は1.64%であり、実施例8で得られたケイ素被覆酸化鉄粒子程ではないが、透明性の高い分散液であった。
【0145】
以上より、実施例8並びに実施例11で得られたケイ素酸化物被覆酸化鉄粒子又はその組成物の透過・吸収スペクトル、反射スペクトル、一次粒子径、並びにヘーズ値は、特に赤色塗料に用いた際に、塗料本来の発色、色特性並びに製品の意匠性を損なわず、好適に用いることが可能であるが、比較例13の酸化鉄粒子は、紫外可視領域における透過領域と吸収領域に明確な差が見られず、赤色の領域に強い反射特性を持つため、赤色塗料本来の発色、色特性並びに製品の意匠性を損なうものである。また比較例12の表面をケイ素酸化物で被覆されていない酸化鉄粒子については、波長400〜620nmの領域において、光線の反射率が18%を超えており、赤色以外の光を反射しており、実施例8で得られたケイ素酸化物被覆酸化鉄粒子に比べて該酸化鉄粒子粉末の見た目に黄身がかっているものであった。そのため、赤色塗料本来の発色、色特性並びに製品の意匠性を損なうものである。