特許第6772334号(P6772334)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エアロバイロメント,インコーポレイテッドの特許一覧

特許6772334遠隔検知した標的地帯の画像を表示する双方向兵器照準システム
<>
  • 特許6772334-遠隔検知した標的地帯の画像を表示する双方向兵器照準システム 図000002
  • 特許6772334-遠隔検知した標的地帯の画像を表示する双方向兵器照準システム 図000003
  • 特許6772334-遠隔検知した標的地帯の画像を表示する双方向兵器照準システム 図000004
  • 特許6772334-遠隔検知した標的地帯の画像を表示する双方向兵器照準システム 図000005
  • 特許6772334-遠隔検知した標的地帯の画像を表示する双方向兵器照準システム 図000006
  • 特許6772334-遠隔検知した標的地帯の画像を表示する双方向兵器照準システム 図000007
  • 特許6772334-遠隔検知した標的地帯の画像を表示する双方向兵器照準システム 図000008
  • 特許6772334-遠隔検知した標的地帯の画像を表示する双方向兵器照準システム 図000009
  • 特許6772334-遠隔検知した標的地帯の画像を表示する双方向兵器照準システム 図000010
  • 特許6772334-遠隔検知した標的地帯の画像を表示する双方向兵器照準システム 図000011
  • 特許6772334-遠隔検知した標的地帯の画像を表示する双方向兵器照準システム 図000012
  • 特許6772334-遠隔検知した標的地帯の画像を表示する双方向兵器照準システム 図000013
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6772334
(24)【登録日】2020年10月2日
(45)【発行日】2020年10月21日
(54)【発明の名称】遠隔検知した標的地帯の画像を表示する双方向兵器照準システム
(51)【国際特許分類】
   F41G 3/00 20060101AFI20201012BHJP
   F41F 1/00 20060101ALI20201012BHJP
   F41G 3/14 20060101ALI20201012BHJP
【FI】
   F41G3/00
   F41F1/00
   F41G3/14
【請求項の数】28
【全頁数】21
(21)【出願番号】特願2019-86237(P2019-86237)
(22)【出願日】2019年4月26日
(62)【分割の表示】特願2016-526116(P2016-526116)の分割
【原出願日】2014年10月31日
(65)【公開番号】特開2019-163928(P2019-163928A)
(43)【公開日】2019年9月26日
【審査請求日】2019年5月22日
(31)【優先権主張番号】61/898,342
(32)【優先日】2013年10月31日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】512059877
【氏名又は名称】エアロバイロメント,インコーポレイテッド
【氏名又は名称原語表記】AEROVIRONMENT,INC.
(74)【代理人】
【識別番号】110001302
【氏名又は名称】特許業務法人北青山インターナショナル
(72)【発明者】
【氏名】マクニール,ジョン シー.
(72)【発明者】
【氏名】コックス,アール クライド
(72)【発明者】
【氏名】ウエノ,マコト
(72)【発明者】
【氏名】ロス,ジョン アンドリュー
【審査官】 諸星 圭祐
(56)【参考文献】
【文献】 米国特許出願公開第2012/0145786(US,A1)
【文献】 米国特許出願公開第2013/0021475(US,A1)
【文献】 特開2009−173263(JP,A)
【文献】 米国特許出願公開第2008/0204361(US,A1)
【文献】 米国特許出願公開第2011/0071706(US,A1)
【文献】 米国特許出願公開第2008/0290164(US,A1)
【文献】 米国特許出願公開第2007/0057840(US,A1)
【文献】 特開2010−276262(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F41G 3/00 − 3/02
F41G 3/14 − 3/16
F41G 5/14 − 5/24
F41F 1/00 − 1/10
G06F 3/0484
G06G 7/80
(57)【特許請求の範囲】
【請求項1】
発射制御コントローラと、
前記発射制御コントローラと通信し、高度データを前記発射制御コントローラに提供するよう構成された慣性測定ユニットと、
前記発射制御コントローラと通信し、アジマスデータを前記発射制御コントローラに提供することができる磁気コンパスと、
前記発射制御コントローラと通信し、位置データを前記発射制御コントローラに提供するよう構成された航法ユニットと、
前記発射制御コントローラと通信し、複数の兵器および関連する弾薬に関する弾道情報を有するデータストアと、
を具える装置であって、
前記発射制御コントローラが、記憶された弾道情報、提供された前記高度データ、提供された前記アジマスデータ、および提供された前記位置データに基づいて、選択された兵器および関連する弾薬の予測着弾点を特定し、
前記発射制御コントローラは、特定された前記予測着弾点を含む情報を遠隔センサを収容する航空機上のセンサコントローラに送信して、前記航空機の前記遠隔センサの照準を方向付け、
前記発射制御コントローラが前記遠隔センサから画像メタデータを受信し、
前記画像メタデータが、前記遠隔センサの視野(FOV)の1又はそれ以上の角部の地上位置を含むことを特徴とする装置。
【請求項2】
請求項1に記載の装置において、前記発射制御コントローラは前記遠隔センサから画像メタデータを受信し、受信した画像メタデータが、前記遠隔センサの中心視野(CFOV)の地上位置を具え、前記CFOVを特定した予測着弾点に向けることを特徴とする装置。
【請求項3】
請求項2に記載の装置において、
前記発射制御コントローラは、前記遠隔センサから受信した画像メタデータに基づいてアイコンオーバーレイを決定し、前記アイコンオーバーレイは前記CFOVの位置および前記特定した予測着弾点を含むことを特徴とする装置。
【請求項4】
請求項1に記載の装置において、
前記発射制御コントローラは、特定の兵器に関する距離のさらなる予測に基づいて前記予測着弾点を特定し、前記距離は兵器弾薬の現在地と地上に着弾する地点との間の距離であることを特徴とする装置。
【請求項5】
請求項1に記載の装置において、
さらに、前記予測着弾点を特定するためにエリアの地形の視覚表示に関する情報を前記発射制御コントローラに提供するよう構成された地図データベースを具えることを特徴とする装置。
【請求項6】
請求項5に記載の装置において、
前記発射制御コントローラが、前記地図データベースの情報にさらに基づいて前記予測着弾点を特定することを特徴とする装置。
【請求項7】
請求項5に記載の装置において、
前記選択された兵器及び前記予測着弾点が異なる高度にあることを特徴とする装置。
【請求項8】
請求項1に記載の装置において、
さらに、前記発射制御コントローラが前記予測着弾点を特定するために、前記予測着弾点の周辺領域の環境状態に関する情報を提供するよう構成された環境状態測定器を具えることを特徴とする装置。
【請求項9】
請求項8に記載の装置において、
前記発射制御コントローラが前記環境状態情報にさらに基づいて前記予測着弾点を特定することを特徴とする装置。
【請求項10】
請求項8に記載の装置において、
前記環境状態測定器によって提供される情報が、風速、空気密度及び温度のうちの1又はそれ以上を含むことを特徴とする装置。
【請求項11】
請求項8に記載の装置において、
前記環境状態測定器によって提供される情報が、前記航空機によって提供される風速であることを特徴とする装置。
【請求項12】
請求項1に記載の装置において、
前記発射制御コントローラが、さらに、電磁放射を送受信するよう構成された電磁放射送受信機と通信するように構成されることを特徴とする装置。
【請求項13】
請求項12に記載の装置において、
前記電磁放射送受信機が、無線周波数(RF)受信機とRF送信機であることを特徴とする装置。
【請求項14】
請求項12に記載の装置において、
前記電磁放射送受信機が、さらに、前記遠隔センサから映像コンテンツ及び画像メタデータを受信するよう構成され、
前記遠隔センサが、前記遠隔センサを収容する航空機上のセンサコントローラの通信装置を介して前記画像メタデータを送信することを特徴とする装置。
【請求項15】
請求項14に記載の装置において、
前記電磁放射送受信機が、さらに、前記航空機の前記センサコントローラに情報を送信するよう構成されることを特徴とする装置。
【請求項16】
請求項14に記載の装置において、
前記航空機が無人航空機(UAV)であることを特徴とする装置。
【請求項17】
請求項1に記載の装置において、
前記遠隔センサが前記航空機に搭載されており、前記航空機が無人航空機(UAV)であることを特徴とする装置。
【請求項18】
請求項1に記載の装置において、
さらに、兵器位置、アジマス、高度、および弾薬の種類に基づいて前記予測着弾点を特定するよう構成される弾道範囲測定器を具えることを特徴とする装置。
【請求項19】
請求項1に記載の装置において、
前記データストアが、ルックアップテーブル、1又はそれ以上のアルゴリズム、ルックアップテーブルと1又はそれ以上のアルゴリズムの組み合わせのうちの少なくとも1つを含むデータベースであることを特徴とする装置。
【請求項20】
請求項1に記載の装置において、
前記発射制御コントローラが、触覚反応要素、電気機械放射反応要素及び電磁放射反応要素のうちの少なくとも1つを含むユーザインタフェースと通信することを特徴とする装置。
【請求項21】
請求項20に記載の装置において、
前記ユーザインタフェースが、前記ユーザインタフェースを介して一組の指令を受信して、前記発射制御コントローラに受信した前記一組の指令を送信するよう構成されることを特徴とする装置。
【請求項22】
請求項1に記載の装置において、
さらに、ユーザインタフェースに生じる所定の活動を識別して記録選択するよう構成されたユーザインタフェース、及び、遠隔通信装置と通信する通信インタフェースのうちの少なくとも一方を有する指令作成要素を具えており、
前記遠隔通信装置が、センサコントローラを介して遠隔センサを方向付けるよう構成されており、
使用者が前記ユーザインタフェースで前記遠隔センサに対して予想した兵器照準位置に照準を定めることを要求することを特徴とする装置。
【請求項23】
請求項22に記載の装置において、
前記指令作成要素は、前記遠隔センサを収容する前記航空機と通信して指令を前記航空機に送信し、前記遠隔センサの視認範囲に兵器照準位置を維持し続けることを特徴とする装置。
【請求項24】
請求項1に記載の装置において、
前記発射制御コントローラが、さらに、前記予測着弾点周囲の誤差領域を特定することを特徴とする装置。
【請求項25】
請求項24に記載の装置において、
特定された前記誤差領域がディスプレイ上に表示されることを特徴とする装置。
【請求項26】
請求項1に記載の装置において、
前記発射制御コントローラが、さらに、前記航空機上の前記遠隔センサを方向付けて、前記予測着弾点の画像を取り込むことを特徴とする装置。
【請求項27】
請求項1に記載の装置において、
前記発射制御コントローラが、前記選択された兵器に脱着可能に取り付けられることを特徴とする装置。
【請求項28】
請求項1に記載の装置において、
前記航法ユニットがGPSであり、前記位置データが、前記選択された兵器の経度、前記選択された兵器の緯度、及び前記選択された兵器の高度のうちの少なくとも1つであることを特徴とする装置。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は2013年10月31日出願の米国仮特許出願第61/898,342号の優先権および利益を主張するものであり、その内容は全ての目的のために本書に参照により援用されている。
【0002】
複数の実施形態は概して、兵器システムおよび無人航空システム(UAS)に係るシステム、方法、および装置に関するものであり、より具体的には、双方向で兵器の照準を定めるために遠隔検知した標的地帯の画像を表示することに関するものである。
【背景技術】
【0003】
兵器の照準合わせは兵器を発射する火器オペレータによって通常実行される。間接的に兵器を発射するための兵器照準システムおよび発射制御システムは、オペレータに直接的な標的の光景を提供することはない。
【発明の概要】
【0004】
装置が開示されており、当該装置は、発射制御コントローラと、発射制御コントローラと通信し、高度データを発射制御コントローラに提供するよう構成された慣性測定ユニットと、発射制御コントローラと通信し、アジマスデータを発射制御コントローラに提供することができる磁気コンパスと、発射制御コントローラと通信し、位置データを発射制御コントローラに提供するよう構成された航法ユニットと、発射制御コントローラと通信し、複数の兵器および関連する弾薬に関する弾道情報を有するデータストアとを具えており、これにより、発射制御コントローラは、記憶された弾道情報、提供された高度データ、提供されたアジマスデータ、および提供された位置データに基づいて、選択された兵器および関連する弾薬の予測着弾点を特定する。一実施形態では、発射制御コントローラは画像メタデータを遠隔センサから受信することができ、この画像メタデータは遠隔センサの中心視野(CFOV)の地上位置を含むことができ、CFOVを特定した予測着弾点に向けることができる。発射制御コントローラは、遠隔センサから受信した画像メタデータに基づいてアイコンオーバーレイを決定することができ、このアイコンオーバーレイはCFOVの位置および特定した予測着弾点を含みうる。発射制御コントローラは、特定の兵器に関する距離の更なる予測に基づいて予測着弾点を特定することもでき、この距離は兵器弾薬の現在地と地上に着弾する地点との間の距離とすることができる。複数の実施形態はさらに、予測着弾点を特定するためにエリアの地形の視覚表示に関する情報を発射制御コントローラに提供するよう構成された地図データベースを具え、この発射制御コントローラは地図データベースの情報に更に基づいて予測着弾点を特定することもできる。
【0005】
他の実施形態では、この装置はさらに、発射制御コントローラが予測着弾点を特定するために、予測着弾点の周辺領域の環境状態に関する情報を提供するよう構成された環境状態測定器を有する。このような実施形態では、発射制御コントローラは環境状態情報に更に基づいて予測着弾点を特定することができ、これにより、発射制御コントローラはさらに電磁放射を送受信するよう構成された電磁放射送受信機と通信するように構成される。電磁放射送受信機は、無線周波数(RF)受信機とRF送信機とすることもできる。代替的な実施形態では、電磁放射送受信機はさらに、映像コンテンツと画像メタデータを遠隔センサから受信するように構成することができ、遠隔センサは画像メタデータを遠隔センサを収容する航空機上のセンサコントローラの通信装置を介して送信することができる。遠隔センサは航空機に搭載することができ、電磁放射送受信機はさらに情報を航空機のセンサコントローラに送信するよう構成することができる。発射制御コントローラは、特定した予測着弾点を含む情報を航空機のセンサコントローラに送信して、航空機に搭載された遠隔センサの照準を方向付けることができる。
【0006】
他の実施形態では、弾道範囲測定器が、兵器位置、アジマス、高度、および弾薬の種類に基づいて予測着弾点を特定するように構成されうる。さらに、データストアは、ルックアップテーブル、1以上のアルゴリズム、ルックアップテーブルと1以上のアルゴリズムの組み合わせのうち少なくとも1つを含むデータベースとすることができる。この位置特定要素はさらに、地上ベースの位置特定要素;衛星ベースの位置算出要素;および地上ベースと衛星ベースの位置特定要素の組み合わせの少なくとも1つを含みうる。発射制御コントローラは、触覚反応要素;電気機械放射反応要素;電磁放射反応要素の少なくとも1つを含むユーザインタフェースと通信し、当該ユーザインタフェースは一組の指令をユーザインタフェースを介して受信して、受信した一組の指令を発射制御コントローラに送信するよう構成することができる。
【0007】
他の実施形態では、この装置はさらに、ユーザインタフェースに生じる所定の活動を識別して記録選択するよう構成されたユーザインタフェースと、遠隔通信装置と通信する通信インタフェースの少なくとも一方を有する指令作成要素を具えることができ、遠隔通信装置は、使用者がユーザインタフェースで遠隔センサに対して予想した兵器照準位置に照準を定めることを要求するように、遠隔センサをセンサコントローラを介して方向付けるよう構成される。指令作成要素は、遠隔センサを収容する航空機と通信して指令を航空機に送信し、兵器照準位置を遠隔センサの視認範囲に維持し続けるようにすることができる。
【0008】
遠隔照準システムがさらに開示されており、当該システムは、兵器と、兵器のディスプレイと、無線周波数(RF)受信機と、兵器から離れるセンサであって、兵器ディスプレイに予測着弾点の画像メタデータを提供するよう構成されたセンサと、照準装置であって、当該装置自体が、複数の兵器および関連する弾薬に関する弾道情報を有するデータストアと発射制御コントローラを有する照準装置と、を具えており、発射制御コントローラは、弾道情報、慣性測定ユニットから受信した高度データ、磁気コンパスから受信したアジマスデータ、および位置算出要素から受信した位置データに基づいて予測着弾点を特定し、発射制御コントローラは、慣性測定ユニット、磁気コンパス、および位置特定要素と通信する。遠隔センサは、無人航空機に搭載することができる。この照準システムは、兵器の位置や向きを特定し、弾道ルックアップテーブルを用いて兵器の予測着弾点をさらに特定することができる。遠隔センサは兵器の予測着弾点を受信し、センサの照準を兵器の予測着弾点に定めることができる。このシステムはさらに、第2の兵器、第2の兵器の第2のディスプレイ、および第2の照準装置を具えることもでき、これにより、遠隔センサによって提供される兵器ディスプレイ上の予測着弾点は、第2の兵器ディスプレイ上の予測画像位置と同じとなる。一実施形態では、第2の兵器は遠隔センサの制御を有さない。また、第2の兵器は第2の兵器の予測着弾点情報を遠隔センサに送信しなくともよい。特定した兵器の予測着弾点は、特定した第2の兵器の予測着弾点と異なる場合がある。センサは、ビデオ画像を遠隔照準システムに提供して兵器ディスプレイ上に表示するよう構成された光学カメラとすることができる。
【図面の簡単な説明】
【0009】
複数の実施形態は例示として図示されたものであり、これらの実施形態を添付図面の形態に限定するものではない。
図1図1は、兵器照準システム環境の一実施形態である。
図2図2は、計算装置を搭載した手持ち型または搭載型の火器またはグレネードランチャーと、遠隔センサを有する無人航空機(UAV)を具えるシステムの一実施形態である。
図3図3は、最初は標的および兵器の予測着弾点から離れて位置している、遠隔センサを有するUAVの上面図を示している。
図4図4は、兵器照準システムの実施形態のフローチャートである。
図5図5は、例示的な兵器照準システムを示す機能ブロック図である。
図6図6は、予測着弾地点(GP)周囲の標的地帯を示し、中心視野を中心としたディスプレイまたは照準器付き兵器を有する兵器照準システムの一実施形態を示している。
図7図7は、UAV上の遠隔カメラを制御するよう構成された兵器照準システムの実施形態を示している。
図8図8は、受動制御センサ/UAV制御を有する兵器照準システムの一実施形態の例示的なディスプレイのセットを示している。
図9図9は、遠隔センサからの画像が兵器使用者の視点に対して回転した、あるいは回転していない実施形態を示している。
図10図10は、1つの遠隔センサから画像を受信している複数の兵器を有しうる兵器照準システムの実施形態を示している。
図11図11は、兵器が使用者によって操作されると兵器の予測着弾GPが様々な領域を通過するシナリオを図示している。
図12図12は、計算装置の実施形態の例示的なトップレベル機能ブロック図を示している。
【発明を実施するための形態】
【0010】
本書には兵器照準システムが開示されており、当該システムは火器データ計算機または弾道計算機と、発射制御コントローラと、通信装置と、任意で目標検出システムまたはレーダーを有することができ、これらは全て、兵器照準システムが特定した標的をより迅速かつ正確に攻撃するのに役立つように設計されている。例示的な兵器照準システムの実施形態では、双方向に兵器の照準を定めるために遠隔検知した標的地帯の画像を表示して、兵器の弾薬を標的地帯に向けて精確に狙いを定めることができる。一実施形態は、無人航空機(UAV)のような無人航空システム(UAS)を含みうる。UAVは固定翼機であってもよく、UAVが相対的な静止位置でホバリングできるようにするためにシャシーに接続された1以上のプロペラを有していてもよい。さらに、UAVはセンサを有することができ、このセンサは兵器照準システムに対して遠隔にあり、このセンサは画像取込装置とすることができる。センサは、識別した標的周辺地帯の視認範囲を有するように狙いを定めることができる。UAV上のセンサは、異なる発生源、例えば、UAVのパイロットあるいは地上オペレータから受信した命令によって動かすことができる。このセンサをさらに、地上オペレータから受信した方向に基づいて継続的に、特定の標的に焦点を合わせるように命令することができる。
【0011】
兵器照準システムの一実施形態では、システムを使用して、兵器の使用者に、兵器の標的地帯、例えば、特定あるいは計算した兵器の着弾するかもしれない場所の周辺地帯を、兵器から遠隔にあるセンサから見るように表示することができる。これにより、使用者は、リアルタイム(または、ほぼリアルタイム)で標的地帯内での兵器の効果を見て、兵器に対して照準調整をすることが可能となる。兵器の照準合わせを補助するために、ディスプレイは、ディスプレイ上の標的地帯の範囲内に、例えば、レチクル、十字線、または誤差概算楕円/領域といった表示を用いて特定あるいは予測した着弾地を示すことができる。遠隔センサを使用することにより、標的が丘などの障害物の後側に位置している場合など、使用者から標的まで直接的な見通しがなくとも標的と交戦させることができる。遠隔センサは、様々なプラットフォームによって担持されうる様々な既知のセンサとすることができる。幾つかの実施形態では、このセンサは、兵器から離れて配置され、標的の周辺地帯の視認範囲内にある航空機に搭載されたカメラとすることができる。このような航空機は、小型無人航空システム(SUAS)といったUAVとすることができる。
【0012】
図1は、兵器110と、ディスプレイ120と、照準装置130と、通信装置140と、遠隔センサ150と、遠隔通信装置160と、センサコントローラ170とを有する兵器照準システム環境100を図示している。さらに、標的A、予想兵器効果位置あるいは予測照準位置B、視認標的地帯C、および実際の兵器効果Dを示している。この兵器照準システム環境100はさらに、丘などの一連の障害物、兵器を回転させるための兵器台、および遠隔センサ150と、遠隔通信装置160と、センサコントローラ170とを搭載できる航空機180を含みうる。
【0013】
兵器110は、グレネードランチャー、迫撃砲、大砲、戦車砲、シップ砲、甲板砲、あるいは砲弾を発射して兵器効果位置に衝突するその他の兵器といった種々の兵器とすることができる。幾つかの実施形態では、兵器110は移動することができ、砲や当該兵器に関連する弾薬と共に容易に移動できるようにする。照準装置130は磁力計、ジャイロスコープ、加速度計、磁気コンパスを含む慣性計測装置(IMU)、および航法システムを有することができ、航法システムは全地球測位システム(GPS)であってもよく、兵器110の位置や向きを特定する。ユーザが兵器110を操作または配置すると、照準装置130は兵器の位置をモニタし、それにより、兵器が向いている方向(これはコンパス向首方向となりうる)、および、兵器の向き、例えば、地表に対して平行な局所水平面に対する兵器の角度を特定する。さらに、照準装置は、兵器やその砲弾の特徴に基づいて、弾道計算機、ルックアップテーブル等といった標的特定手段132を使用し、特定した兵器効果地点を提供することができる。兵器効果地点は予想した砲弾衝突地点であってもよく、これが予想した兵器効果位置となりうる。標的特定手段132は高度情報を有するデータベースあるいは地図を参照して、より精確な兵器効果位置あるいは予測標的位置Bの特定ができるようにしてもよい。標的位置情報はその位置の経度、緯度、および高度を含んでもよく、さらに標的位置周辺またはその付近の天候状況といった誤差値をさらに含んでもよい。
【0014】
複数の実施形態では、照準装置130は例えば、大韓民国ソウル、サムソンタウンのサムソングループ(ニュージャージー州リッジフィールドパーク、米国Samsung Electronics経由)から市販されているNexus7、カリフォルニア州クパチーノのアップル社から市販されているiPad、あるいは台湾台北市のASUSTeK Computer社(カリフォルニア州ASUS Fremont経由)から市販されているNexus7といった、慣性測定ユニットを有するタブレットコンピュータとすることができる。
【0015】
標的地点Bに関する標的位置情報は、次に通信装置140を介してセンサコントローラ170に接続された遠隔通信装置160に送信することができ、ここでセンサコントローラ170は遠隔センサ150を方向付けることができる。一実施形態では、通信装置140は標的情報を遠隔通信装置160を介してUAV地上制御局に送信することができ、次いでUAV地上制御局は標的情報を遠隔通信装置160に返信し、遠隔通信装置160はそれをセンサコントローラ170に送ることができる。遠隔センサ150は次に、予想した兵器照準位置Bを視認するように狙いを定めることができ、この予想した兵器照準位置Bは当該位置周辺の隣接地帯を含みうる。この位置周辺の隣接地帯は、視認標的地帯Cとして図1に図示されている。遠隔センサ150の狙いを定めるための制御はセンサコントローラ170によって決定することができ、ここで、センサコントローラ170はプロセッサとアドレス指定可能なメモリを有し、遠隔センサ150の位置、遠隔センサ150の向き、すなわちそのコンパス方向、および水平面に対する角度を利用して、センサが地上のどこに狙いを定めているかを特定することができ、その狙いは画像中心、画像境界、あるいは画像中心と画像境界の両方とすることができる。一実施形態では、遠隔センサ150の位置はUAVの機上GPSセンサから任意に取得することができる。他の実施形態では、センサの向き、例えば、コンパス方向や水平面に対する角度は、UAVの向きおよび水平面に対する角度と、UAVに対するセンサの向きおよび角度によって特定することができる。幾つかの実施形態では、センサコントローラ170は、センサが予想した兵器照準位置Bおよび/または視認標的地帯Cに狙いを定めるようにすることができる。任意で、センサコントローラ170による遠隔センサ150の照準合わせは、センサの拡大を含みうる。
【0016】
複数の実施形態では、通信装置140は、例えば、カリフォルニア州モンロビアのAeroVironment社から市販されているような地上制御局(GCS)(http://www.avinc.com/uas/small_uas/gcs/)に接続することができ、例えば、カリフォルニア州モンロビアのAeroVironment社から市販されているデジタルデータリンク(DDL)送受信機の双方向デジタルワイヤレスデータリンク(http://www.avinc.com/uas/ddl/)を含みうる。
【0017】
幾つかの実施形態では、遠隔通信装置160および遠隔センサ150は、有人航空機あるいは無人航空機(UAV)180にかかわらず、標的地帯Cの視認距離内を飛行する衛星あるいは航空機といった飛行マシンに搭載することができる。UAV180は、固定翼機、ヘリコプター、クワッドローター、小型飛行船、係留気球等の様々な既知の航空機とすることができる。UAV180は、GPSモジュール等の位置特定装置182、およびIMUおよび/またはコンパス等の向きまたは方向特定装置184を有しうる。GPS182およびIMU184はデータを制御システム186に提供してUAVの位置および向きを特定し、次に予想した兵器標的地点Bと共に使用して、遠隔センサ150を方向付けて位置Bを視認することができる。幾つかの実施形態では、センサコントローラ170は、制御システム186から受信したデータおよび兵器照準システムから受信した予想兵器標的地点に基づいて、遠隔センサ150を動かす、すなわち傾けたり、首振りをしたり、拡大させることができる。
【0018】
一実施形態では、IMU184あるいは制御システム186のいずれかは、UAV180の姿勢、すなわち、ピッチ、ロール、ヨー、位置、およびヘディングを特定することができる。一旦特定をすると、IMU184(またはシステム186)はデジタル地形高度データ(DTED)(UAV機上のデータベースなどのデータストアに保存されている)の入力を利用して、特定の地球基準のグリッド位置(位置Bなど)が機体などのUAV上の基準に対してどこに位置してるかを特定することができる。この実施形態では、この情報がセンサコントローラ170によって使用され、UAVの機体に対して所望の標的位置に狙いを定めるように遠隔センサ150を位置付けることができる。
【0019】
標的位置Bにカメラを向けることに加えて、UAVのオペレータ(VO)が許可した場合には、UAVは標的位置Bを中心とした軌道に乗るように試みることもできる。VOは、火器上のディスプレイによって特定された位置に基づいて、UAVが安全に飛行できる安全エアボリュームを特定することが理想的である。幾つかの実施形態では、このシステムは、実際の位置がUAV軌道の中心とするのに所望の標的位置にない場合には、火器オペレータがUAVにとって飛行するのが望ましい「ステアフロム」位置を特定することが可能である。さらに、安全エアボリュームは、選択された地理的領域を規定する地理データと、任意で選択された地理的領域に関連する動作モードを受信することに基づいて特定することができ、ここで、受信した動作モードは安全エアボリューム外となりうるエアボリューム上空をUAVが飛行するのを制限することができる。すなわち、VOは、選択された地理的領域と受信した動作モードに基づいてUAVの飛行を制御することができる。したがって、一実施形態では、兵器のオペレータは、UAVの動作と飛行経路を完全に制御することが可能となる。さらに、地上オペレータあるいはUAVのパイロットは、UAVの画像データに基づいて標的を向くように兵器に指令を出し、兵器を方向付けることができる。
【0020】
兵器システムからUAVあるいはセンサへの指令は、例えば、カーソルオンターゲット(CoT)、STANAG4586(NATOの無人制御システム標準インタフェース−無人航空機の相互運用)、あるいは無人システム用統合アーキテクチャ(JAUS)を含む任意の指令言語を介して送信することができる。
【0021】
遠隔センサ150の視野は、所与の時間で取り込まれる観察可能な地帯の範囲として規定することができる。したがって、センサ150の中心視野(CFOV)は、表示した兵器標的位置Bを指すことができる。ユーザは手動で標的地点Bの画像を拡大または縮小撮影して、周囲の標的地帯と標的を含む予想した兵器着弾地に関する最適表示を得ることができる。遠隔センサ150は画像データを取り込み、センサコントローラ170は遠隔通信装置160を介して関連するメタデータと共に取り込んだデータを送信することができる。幾つかの実施形態におけるメタデータは、遠隔センサ150によって取り込まれた画像に関連し、かつ付随する他のデータを含みうる。一実施形態では、画像に付随するメタデータは実際のCFOVを示すことができ、例えば、表示位置および送信される画像の各角部の実際のグリッド位置へと未だに回転している状態とすることができる。これにより、ディスプレイは、予想兵器標的地点Bが画像上のどこにあるかを示し、その場所に十字線などのレチクルを描くことができる。
【0022】
幾つかの実施形態では、遠隔センサ150は、UAVに対して首振り動作をしたり、傾くことができるように、ジンバルに搭載された光学カメラとすることができる。他の実施形態では、センサ150はUAVの固定位置に搭載された光学カメラとすることができ、UAVはカメラが標的地帯Cを視認した状態に維持するように配置される。遠隔センサには、光学またはデジタル拡大機能を装備させることができる。一実施形態では、UAV上に赤外線または光学波長を含む複数のカメラがあってもよく、オペレータは任意で切り替えることができる。複数の実施形態によると、遠隔センサ150によって生成された画像は、遠隔通信装置160によって通信装置140を介してディスプレイ120に送信することができる。一実施形態では、CFOVおよびグリッド位置のような表示の各角部、例えば各地点の地上経度、緯度、高度を含む情報を提供する画像メタデータなどのデータは、遠隔センサ150から画像と共に送信することができる。ディスプレイ120は、兵器の使用者に、図1に示すような予想した兵器標的地点Bを含む視認標的地帯Cを表示することができ、このディスプレイはCFOVとして照準レチクルとすることができる。幾つかの実施形態では、兵器110が移動していたり、遠隔センサ150が回転している、例えば、傾いている、および/または偏揺れして、新たな位置Bを捕捉し、CFOVを新たな位置に再度位置決めするような場合に、予想標的地点BをCFOVとは別個に示すことができる。このように、使用者が兵器110を操作する、例えば、兵器を回転させる、および/または角度を変えると、使用者は、兵器110の予想標的地点Bがどこにあるかを、遠隔センサ150で視認するようにディスプレイ120上で見ることができる。これにより、兵器使用者は、標的が障害物の後側に位置している状態にあるように、兵器から照準位置Bまでの直接的な見通しがなくとも照準位置、すなわち、標的と兵器の着弾を見ることが可能となる。
【0023】
一実施形態では、使用者を補助するために、表示された画像をディスプレイに対して回転させてコンパス方向と整合するようにすることができ、これにより、兵器は、例えば、北が常にディスプレイの上側となるように、規定した固定方向に向けられる。画像は、UAVあるいは遠隔センサの他の取付台の位置に関わらず、兵器使用者の向きと一致するように回転させることができる。複数の実施形態では、ディスプレイ上の画像の向きは、照準装置、例えば発射制御計算機によって計算されるような砲身あるいは迫撃砲管の砲孔発射方位によって制御される。幾つかの実施形態では、ディスプレイ120はさらに、視認標的地帯C範囲内の兵器の位置を示すこともできる。
【0024】
複数の実施形態では、遠隔通信装置160、遠隔センサ150、およびセンサコントローラ170は、例えば、カリフォルニア州モンロビアのAeroVironment社から市販されている、人を収容可能な小型垂直離着陸航空機(VTOL MAV)システムであるシュライクVTOL(http://www.avinc.com/uas/small_uas/shrike/)に全て組み込むことができる。
【0025】
さらに、照準システムの幾つかの実施形態は、照準誤差修正を有することができる。一実施形態では、航空機の風予想が弾薬の着弾予想と共に使用されるライブ映像として提供され、より正確な誤差修正をもたらす。兵器の弾薬の実際の着弾地上地点が予想着弾地上地点(GP)からずれている場合、兵器の位置を変更することなく、使用者はディスプレイ上で実際の着弾GPを強調させることができ、照準システムは修正値を特定して予想着弾GPの特定にそれを適用し、この新たな予想GPを遠隔センサに提供して、兵器ディスプレイ上に表示させることができる。このような一実施形態が図1に図示されており、ディスプレイ120では、実際の着弾地点Dが予想着弾GP Bからオフセットしている。この実施形態では、使用者は地点Dを強調して、照準システムにその地点を実際の着弾地点として入力して照準誤差修正を提供する。したがって、標的着弾地点は、第1の弾薬の着弾を追跡し、次いで標的上に兵器を調整することによって修正することができる。誤差修正または較正をする他の実施形態では、このシステムは、着弾前後の着弾地点を表す受信画像への画像処理を用いて、着弾地点を検出することができる。この実施形態は、使用した弾薬に関して計算した飛行時間の特定に基づいて着弾が発生したという宣言をいつすることができるかを特定することができる。このシステムは次いで、弾薬に関して予想した着弾エリアと、発射された最終的な実際の弾薬に基づいて位置を調整することができる。
【0026】
図2は、タブレットコンピュータ220のような、ビデオディスプレイ222、慣性測定ユニット(IMU)230、および弾道範囲モジュール232を有する手持ち型あるいは搭載型の銃器またはグレネードランチャー210と、通信モジュール240と、画像センサ252などの遠隔センサを有するUAV250とを含む実施形態を示している。UAV250はさらに、GPSなどの航法ユニット254と、センサ252がUAV250に対して首振り動作をしたり傾くことができるようにジンバル256に搭載されたセンサとを有しうる。IMU230は、加速度計、ジャイロ、エンコーダ、あるいは磁力計の組み合わせを用いて、兵器210のアジマスや高度を特定することができる。IMU230は、タブレットコンピュータ220のハードウェアモジュール、姿勢を測定する自立装置、あるいは兵器搭載装置における一連の位置センサを有しうる。例えば、幾つかの実施形態では、IMUは、タブレットコンピュータ220のセンサを読み込むことによって装置の速度、向き、および重力を測定し、それらを通知する電子装置を使用することができる。
【0027】
弾道範囲モジュール232は、兵器の位置(すなわち、緯度、経度、高度)、アジマス、高度、および弾薬の種類を鑑みて、推定または予測着弾点を算出する。一実施形態では、この予測着弾点は、風予想の算出を含む弾道範囲モジュールによってさらに改善することができる。弾道範囲モジュール232は、タブレットコンピュータ内のモジュール、あるいは別個のプロセッサとメモリを有する独立したコンピュータとすることができる。この算出は、兵器の範囲実験に基づいて構成されたルックアップテーブルによってなされる。弾道範囲モジュールの出力は、予測着弾点B(すなわち、緯度、経度、高度)を含む一連のメッセージとすることができる。弾道範囲モジュール232は、タブレット220にアプリケーションプログラムとしてダウンロードできる非一時的なコンピュータ利用可能な指令の形態とすることができる。
【0028】
通信モジュール240は、推定または予測着弾点をUAV250にRFリンクなどの無線通信リンクを介して送信することができる。通信モジュール240は、計算装置、例えば、振動、落下、限界温度、および他の乱暴な取り扱いに耐えるように設計された計算装置とすることができる。通信モジュール240は、UAVの地上制御局、またはカリフォルニア州モンロビアのAeroVironment社から市販されているポケットDDL RFモジュールに接続する、または通信することができる。一実施形態では、着弾地点メッセージは、「カーソルオンターゲット」のフォーマット、地理空間グリッド、あるいは他の緯度と経度の書式とすることができる。
【0029】
UAV250は、RFメッセージを受信し、兵器から離れている画像センサ252が予測着弾点Bに照準を定めるようにすることができる。一実施形態では、画像センサ252は、映像をUAVのRFリンクに介して通信モジュール240に送信する。一実施形態では、映像やメタデータを、モーション画像基準審議会(MISB)フォーマットで送信することができる。通信モジュールは次に、この映像ストリームをタブレットコンピュータ220に返信することができる。ビデオプロセッサ234を有するタブレットコンピュータ220は映像を回転させて、砲手の基準フレームに位置合わせさせると共に、砲手に映像内の予測着弾点Bを表示するレチクルのオーバーレイを加える。砲手が見る画像の上部が、砲210が指しているコンパス方向、あるいは代替的に砲のアジマスから特定されるコンパス方向、あるいは標的地点と砲位置の間のコンパス方向と一致するように、ビデオ画像を回転させることができる。
【0030】
幾つかの実施形態では、兵器210の使用者に提供されるタブレットコンピュータ220のビデオディスプレイ222上に表示されるビデオ画像は、予測着弾点Bと、算出した誤差楕円Cを含みうる。さらに、ビデオ画像222にはUAVの中心視野(CFOV)Dが示される。
【0031】
一実施形態では、センサまたはカメラのジンバルを予測着弾点に向かって自動的に方向づけることに加えて、UAVはさらに予測着弾点に向かって飛行する、あるいはその周辺にUAVを位置付けることができる。予測着弾点に向かう飛行は、UAVが最初(予測着弾点の座標を受信したとき)に、予測着弾点が視認する、あるいはUAVのセンサによる十分な解像度を用いて視認するには距離が離れすぎている位置にある場合に起こりうる。さらに、予測着弾点を利用して、UAVは当該UAVに対する保持パターンあるいは保持位置を自動的に確立することができ、このような保持パターン/位置により、UAVのセンサが観察範囲内かつ障害物の範囲外にあるようにすることができる。このような保持パターンは、UAVを固定サイドビューカメラまたはセンサが予測着弾点を視認した状態に維持することができるように配置するようなパターンとすることができる。
【0032】
図3は遠隔センサ312を有するUAV310の上面図を示しており、当該UAV310は最初に標的304および兵器302の予測着弾点Bから離れて位置しており、そのため、予測着弾点Bと標的地帯(おそらくは、標的304を含む)の画像がセンサ312によって生成されるが、画像線320に示すように、センサは使用者にとって十分有用な兵器302の照準を提供するのに十分な解像度を欠いている。そのため、UAV310はその航路を変更して、より予測着弾点Bに近づくようにセンサを移動させることができる。この航路変更は、UAVが追随するように設定された場合には自動であってもよく、兵器302によって制御されてもよく、あるいは航路変更は兵器の使用者から要求あるいは命令された時にUAVオペレータによってなされてもよい。一実施形態では、UAVの制御をUAVオペレータによって維持することにより、空域制限、UAVの航続時間、UAVの安全性、任務の割り当てなどといった要因を考慮したり、それらの要因に対応したりすることが可能となる。
【0033】
図3に示すように、UAVは右ターンを実行し、予測着弾点Bに向かって前進する。兵器照準システムの幾つかの実施形態では、UAVは、航路線340に示すように、予測着弾点Bから距離dだけ離れている特定の位置Cまで飛行することができる。この移動により、センサ312は予測着弾点Bを適切に観察すると共に、兵器302の照準を標的304に定めることが可能となる。距離dは変化させることができ、例えば、拡大、解像度、安定性等のセンサ312の機能、解像度等の兵器302の表示スクリーンの機能、画像を利用する使用者の能力、さらにはUAVを標的にどれだけ接近して配置すべきかといった要因を含む様々な要因に左右されうる。この実施形態では、位置Cに到達したUAVは次いで、UAV自体を保持パターンまたは観察位置350に配置させて、予測着弾点Bを視認し続けることができる。図示のように、保持パターン350は予測着弾点B周囲の円形であり、他のパターンもこれらの実施形態に応じて使用される。UAV310’が保持パターン350にある状態では、UAVは継続的にセンサ312’を再配置して、予測着弾点Bの視界322を維持することができる。すなわち、UAVが標的の周囲を飛行している間、センサは予測着弾点位置を見ている、あるいは当該位置を追跡する。この実施形態では、保持パターンの期間中、UAVはビデオ画像を兵器302に返信することができる。兵器302の使用者が兵器の照準を再配置すると、UAVは再度センサ312’の照準を定める、および/またはUAV310’自体を再配置して、新たな予想兵器照準位置をセンサの視界に維持することができる。一実施形態では、遠隔センサは任意に、予想照準位置が標的と一致するように、兵器を誘導している間に標的を視認していることができる。
【0034】
図4は、兵器照準システム400の実施形態のフローチャートである。本図に示す方法は:例えば、兵器を使用者によって定位置に配置すること(ステップ410);照準装置が予想兵器効果位置を特定すること(ステップ420);通信装置が予想兵器効果位置を遠隔通信装置に送信すること(ステップ430);遠隔センサコントローラが効果位置を遠隔通信装置から受信して、遠隔センサを効果位置へと方向付けること(ステップ440);センサが効果位置の画像を兵器ディスプレイスクリーンに遠隔通信装置および兵器通信装置を介して送信すること(ステップ450);使用者が予想兵器効果位置および標的地帯(標的を含みうる)を視認すること(ステップ460)、を含む。効果位置は、誤差を伴う、あるいは伴うことなく、着弾地点を算出、予測、あるいは見積もることができる。ステップ460の後、このプロセスはステップ410からやり直すことができる。このようにして、使用者は、兵器の照準を定めて、既に受信した効果位置の画像に基づいて標的上あるいは標的に対する発射を調整することができる。一実施形態では、ステップ450は、画像が兵器の方向と合うように画像を回転させて、使用者の照準合わせを補助することを含みうる。
【0035】
図5は兵器照準システム500の機能ブロック図を示しており、当該システムは、ディスプレイ520と、照準装置530と、UAV遠隔ビデオ端子540と、RF受信機542とを具えている。ディスプレイ520および照準装置530は、火器または他の兵器(図示せず)に脱着可能に取り付け、あるいは装着され、またはそれらと共に動作しうる。ディスプレイ520は、兵器の使用者が照準合わせや発射の方向付けを容易にできるように見やすいものとすることができる。照準装置530は、プロセッサとアドレス指定可能なメモリを有する発射制御コントローラ532、IMU534、磁気コンパス535、GPS536、および火器および弾薬データベース537(すなわち、データストア)上の弾道データを有しうる。IMU534は兵器の高度位置または水平面からの角度を発生させて、この情報を発射制御コントローラ532に提供する。磁気コンパス535は、兵器が狙いを定めるコンパス向首方向といった兵器のアジマスをコントローラ532に提供する。GPS536のような位置特定要素は兵器の位置を発射制御コントローラ532に提供し、この位置は一般に緯度、経度、および標高(または高度)を含む。データベース537は、兵器およびその弾薬(砲弾)の双方に関する弾道情報を発射制御コントローラ532に提供する。データベース537は、ルックアップテーブル、1以上のアルゴリズム、またはその両方とすることができるが、通常はルックアップテーブルが提供される。発射制御コントローラ532は、IMU534、コンパス535、GPS536、およびデータベース537と通信することができる。
【0036】
さらに、発射制御コントローラ532は、構成要素、すなわちIMU534、コンパス535、およびGPS536からの兵器の位置および向きの情報を利用して、データベース537からの兵器および弾薬の弾道データと共に処理し、推定あるいは予想地上着弾点(図示せず)を特定することができる。幾つかの実施形態では、コントローラ532は、IMU534からの兵器の高度を利用して、規定の種類の兵器や弾薬と共に、データベース537のルックアップテーブルを介して処理し、弾薬が地上との衝突地点まで移動することになる兵器からの予想範囲または距離を特定することができる。兵器や弾薬の種類は、兵器の使用者が兵器を動作させる前に設定することができ、幾つかの実施形態では、弾薬の選択を兵器の使用時に変更することができる。一旦距離が特定されると、発射制御コントローラ532は、GPS536からの兵器位置と、コンパス535からの兵器のアジマスを利用して、予測着弾点を特定することができる。さらに、コンピュータ532は、RF受信機542あるいはUAV遠隔ビデオ端末(RVT)540から受信した、UAVからの画像メタデータを利用することができ、このメタデータは例えば、光学カメラ(図示せず)などの遠隔センサのCFOVの地上位置を含むことができ、システム500に返信したビデオ画像の一部または全ての角部の地上位置を含むこともできる。発射制御コントローラ532は次いでこのメタデータと予測着弾点を利用して、ディスプレイ520上に示されるアイコンオーバーレイ533を作り出すことができる。このオーバーレイ533は、CFOVと予測着弾点Bの位置を含むことができる。
【0037】
発射制御コントローラ532の幾つかの実施形態は、接続されている上記構成要素によってもたらされた誤差入力を利用して、ディスプレイ520上に予測着弾点周囲の誤差領域(楕円等)を特定して表示することができる。一実施形態では、発射制御コントローラ532は、予想着弾GP545をRF送信機542および関連するアンテナを介してUAVに送信して、UAV上の遠隔センサを向くべき場所へと方向付けて画像を取り込むこともできる。一実施形態では、発射制御コントローラ532は要求を中継物に送信することができ、この要求は、発射制御コントローラ532のオペレータが視認することを所望する標的地点や、UAV上のセンサからの画像を受信するための要求を含む。
【0038】
さらに、幾つかの実施形態では、発射制御コントローラ532はさらに、地図データベース538からの入力も含み、予測着弾GPを特定することができる。予測着弾GPの精度は、兵器と予測着弾GPとが異なる標高、あるいは地表からの高さに位置している場合などの状況では、地図データベースを利用することで向上させることができる。他の実施形態は、入力として受信して発射制御コントローラ532で使用することができる環境状態データ539を含みうる。環境状態データ539は、風速、空気密度、温度等を含みうる。少なくとも1つの実施形態では、発射制御コントローラ532は、IMUやUAVから受信した風予測などの環境状態によって提供されるような、兵器状態の推定に基づいて、弾薬軌道を算出することができる。
【0039】
図6は兵器照準システム600の一実施形態を図示しており、当該システムは、例えば、迫撃砲、大砲、あるいはグレネードランチャーといった兵器610を有すると共に、ディスプレイあるいは照準器620を有しており、予想着弾GP Bの周囲の標的地帯Cを表示し、ジンバルカメラ650を有するUAV680によって視認されたときのCFOV Dを中心としている。UAV680は、カメラ650を送信機/受信器660によって兵器610から受信した予想着弾GP Bに方向付けるジンバルカメラのコントローラ670を有している。一実施形態では、UAVは、電気光学(EO)画像および赤外線(IR)フルモーションビデオ(EO/IR)画像にCFOVを提供することができる。すなわち、送信機/受信器660は、センサまたはカメラ650からディスプレイ620へと映像を送信することができる。兵器照準システムの複数の実施形態においては、兵器と遠隔センサの間の相互作用に関して2つのオプション、すなわちセンサの能動制御または受動制御がある場合がある。能動制御の実施形態では、火器または兵器位置がセンサあるいはカメラを制御することができ、カメラは着弾場所にCFOVを据えるように回転し、さらに当該カメラは実際の拡大機能についての制御をもたらす。受動制御の実施形態では、UAVのオペレータがセンサまたはカメラを制御することができ、そのため、着弾場所はカメラの視野範囲内にあるときにのみ現れることができる。この受動制御の実施形態では、カメラの拡大機能を利用することはできないが、カメラから受信した圧縮データ(または他のビデオ処理)を拡大効果を得るために利用することができる。
【0040】
能動制御を伴う実施形態では、兵器のオペレータはセンサの制御を管理している。照準システムは予測着弾地点(GP)の座標を遠隔センサコントローラに送信する(カーソルオンターゲット(CoT)メッセージを含む様々なメッセージフォーマットの何れかによってなされうる)。遠隔センサコントローラは、カメラのCFOVに関する指令として予測着弾GPを利用する。遠隔センサコントローラは次に、カメラの中心をこの予測着弾GPとする。兵器の位置決めするときと、センサが回転してその視界の中心を予測着弾点とするときの間に時間のずれが存在する場合には、発射制御コントローラなどの照準装置は、CFOVが実際に予想着弾GPと整合するまで表示画像上に十字線などのレチクルをグレー表示し、CFOVに向かって移動するにつれて、予想着弾GPを画像上に表示させる。幾つかの実施形態では、兵器の砲身の向きはUAVの中心視野の動きに変化をもたらすことができ、その結果、兵器のオペレータは着弾照準ディスプレイ620上に現れる複数の標的を素早く探し出して、識別することが可能となる。
【0041】
図7は兵器照準システムの実施形態を図示しており、当該照準システムはUAV上の遠隔カメラを制御するように構成されている。ディスプレイ710は、表示中央におけるCFOV Eの左上に予測着弾GP Bを示している。ディスプレイ710では、カメラは予測着弾点GPに向かって回転している過程にある。ディスプレイ720では、予測着弾GP Bが画像の表示中央におけるCFOV Eと一直線になっている。ディスプレイ730は、予測着弾GP Bがカメラの視界の外、すなわち図示した画像の左上にある状態を示している。この場合、センサまたはカメラの何れかはGP Bを視認するように未だ回転していないか、回転することができない。これは、センサのジンバル取付台の傾き、および/または回転の限界といった要因によることがある。一実施形態では、ディスプレイ730は矢印Fあるいは他の記号を図示し、この矢印は予測着弾GP Bの位置に向かう方向を表示することもできる。こうして、使用者は、彼らが兵器の照準を合わせている場所の少なくとも概略表示を得ることが可能となる。
【0042】
受動制御を伴う実施形態では、兵器の使用者は遠隔センサからの画像表示を有することができるが、遠隔センサ、UAVあるいは遠隔センサを保持する他の手段の制御を有さない。兵器の使用者は遠隔センサから、画像上に投影された、どこに予測着弾GPが位置しているかを示すオーバーレイを含む画像を見ることができる。予測着弾GPがカメラの視界外にある場合、画像の縁部にある矢印は、(ディスプレイ730に示すように)この画像に対して算出した着弾点がどの方向であるかを示している。このような実施形態では、使用者は兵器を動かして視界範囲内に予測着弾地点を配置させることができる、および/またはUAVオペレータに対して予測着弾GPが視界内となるように遠隔センサおよび/またはUAVの向きを変えることを要求することができる。この実施形態では、受動制御モードでシステムを操作する兵器の使用者は画像の拡大制御を有し、予測着弾GPの配置と操作を容易にすることが可能となる。受動制御の実施形態は、例えば、同一の遠隔カメラからの同一ディスプレイ画像を用いる2以上の兵器システムがあり、別個の兵器それぞれの照準を定めるように方向付ける場合に利用することができると理解されたい。予測着弾点の算出は、兵器において、画像の座標(CFOV、角部)が与えられた照準システムあるいは発射制御計算機を用いて行われるため、照準システムはいかなる情報も遠隔センサに送信する必要なく、使用者のディスプレイ画像を生成することができる。すなわち、受動モードでは、遠隔センサがGPに向かって方向付けられないため、遠隔カメラに予測着弾GPを送信する必要はない。
【0043】
図8は、受動制御センサ/UAV制御を有する兵器照準システムの一実施形態のディスプレイを図示している。ディスプレイ810は、カメラの視界の外、すなわち、図示した画像の左上にある予測着弾GP Bを示している。この場合、カメラはGP Bを視認するように未だ回転していないか、センサのジンバル取付台の傾き、および/または回転の限界といった要因によって回転することができないかの何れかである。一実施形態では、ディスプレイ810は、予測着弾GP Bの位置に向かう方向を示す矢印Eあるいは他の記号を示している。こうして、使用者は、彼らが兵器の照準を合わせている場所の少なくとも概略表示を得ることが可能となる。ディスプレイ820は、CFOVの左下に予測着弾GP Bを示している。遠隔センサの制御が受動的であるため、GP Bは、兵器を操作することによってディスプレイ820の画像内を移動することがきるが、センサはCFOVを移動させてGP Bと整列するように方向付けることはできない。ディスプレイ830および840は、ユーザがカメラの倍率変更、すなわち拡大や縮小それぞれの制御を有する実施形態を示している。
【0044】
図9は、遠隔センサからの画像が兵器の使用者の視点、すなわち兵器の向きへと回転している、あるいは回転していない実施形態を示している。ディスプレイ910は、兵器の向きへと回転させた画像を図示しており、予測着弾GP B、CFOV E、および兵器の位置Gを示している。ディスプレイ920は、兵器の向きへと回転していない画像を図示しており、予測着弾GP B、CFOV E、および兵器の位置Gを示している。受動モードの一実施形態では、ディスプレイは、兵器の標的の向きへと、すなわち、兵器が向けられていない標的へとさらに回転させることができる。この場合、兵器の位置Gは未だにディスプレイの底部にあるが、予測着弾GP BはCFOVにはない。
【0045】
幾つかの実施形態では、このシステムは、複数の兵器および/または複数の遠隔センサの何れか、またはその両方を有しうる。複数の兵器の実施形態は、1つの遠隔センサからの同一の画像を表示し、各兵器システムが自身の予測着弾GPを表示する2以上の兵器を有する。このようにして、幾つかの兵器は、同一または異なる標的に照準を定めるのに連携して協働することができる。これらの実施形態では、兵器の1つについては遠隔センサ/UAVの能動制御であり、その他については受動モードとすることができる。さらに、各兵器それぞれの照準装置はUAVにその予測着弾GPを提供し、遠隔センサが次いで、全ての兵器の全ての照準装置にメタデータにおけるそれぞれの兵器の予測着弾GPを提供することができる。このように、照準装置それぞれについてメタデータがある場合には、メタデータを各兵器のディスプレイのオーバーレイに含めることができる。このメタデータは、兵器および/または兵器の位置についての識別子を含みうる。
【0046】
図10は兵器照準システムの一実施形態を示しており、当該システムは、1つの遠隔センサから画像を受信する複数の兵器を含むことができる。UAV1002は、画像境界1006と画像角部1008を有する標的地帯を視認するジンバルカメラ1004を有することができる。画像中心はCFOVである。兵器1010は、CFOVを有するディスプレイ1012上に示すような予測着弾GP1014を有している。兵器1020は、CFOVを有するディスプレイ1022上に示すような予測着弾GP1024を有しうる。兵器1030は、ディスプレイ1032に示すような、CFOVにおける予測着弾GP1034を有しうる。CFOVは、兵器1030が遠隔センサ/UAVの能動制御モードにある実施形態では、GP1034に位置合わせすることができる。兵器1040は、CFOVを有するディスプレイ1042上に示すような予測着弾GP1044を有する。各兵器の予測着弾GPを他の兵器と、UAVを介して、あるいは直接的に共有する実施形態では、各兵器は他の兵器の予測着弾GPを表示することができる。一実施形態では、UAV1002のオペレータは、ジンバルカメラ1004から受信した画像を利用して、例えば、兵器1010、1020、1030、1040のセットのうち、どの兵器がそれぞれの予測着弾GP1044を考慮して標的と関連させるのに最適な位置にいる可能性があるかを特定することができる。
【0047】
幾つかの実施形態では、最も効果的な兵器を、1つの遠隔センサから受信した画像、および任意で、弾薬に関連付けられた弾道テーブルに基づいて利用することができる。したがって、異なる兵器が標的や予測着弾GPが常に絶え間なく変化する場合の標的に対して使用されうる場合に、動的な環境を作り出すことができる。この制御は火器オペレータ、UAVオペレータ、および/または制御司令官の間で動的に交代させることができ、各オペレータは兵器照準システムの異なる局面を担当することができる。すなわち、UAVまたは兵器の制御または指令は、あるオペレータから次のオペレータへと動的に変更することができる。さらに、このシステムは、UAV上のセンサから受信した画像や指令制御に基づいて、異なる兵器を自動で命令し、複数の兵器を同期させることが可能である。
【0048】
幾つかの実施形態では、1つの兵器が複数の遠隔センサを利用することができ、兵器ディスプレイは、予測着弾GPを示している、GPがオフスクリーンにある状態、あるいは複数の入力画像上でGPがある状態の何れかの遠隔センサからの画像を示すように自動的に切り替わり、予測着弾GPに最も近い画像を表示する。この実施形態は、予測着弾GPの最適な表示を利用する。代替的に、予測着弾GPを表示する2以上の遠隔センサがある場合には、兵器の使用者は、表示される画像を切り換えることができる、あるいは、そのディスプレイに入力された各画像、例えば隣り合った表示を映し出すことができる。
【0049】
図11は、兵器1102が使用者によって操作されるシナリオを示しており、兵器の予測着弾GPは、別個の遠隔センサによって観察されるような異なる領域を通過する。兵器ディスプレイは、兵器の予測GPが画像内に位置している遠隔センサの画像へと自動的に切り換えることができる。兵器の予測着弾GP1110がUAV1の遠隔カメラの視認領域1112内にある場合は、ディスプレイはUAV1からのビデオ画像Aを表示することができる。次に、図示のように兵器が右へと操作され、兵器の予測着弾GP1120がUAV2の遠隔カメラの視認領域1122内にある場合には、ディスプレイはUAV2からのビデオ画像Bを表示する。最後に、図示のように兵器が右へとさらに操作され、兵器の予測着弾GP1130がUAV3の遠隔カメラの視認領域1132内にある場合は、ディスプレイはUAV3からのビデオ画像Cを表示する。
【0050】
図12は、計算装置1200の実施形態の例示的なトップレベル機能ブロック図を図示している。この例示的な動作環境は、中央処理装置(CPU)のようなプロセッサ1224と、ルックアップテーブル、例えば配列のようなアドレス指定可能なメモリ1227と、例えば任意のユニバーサルシリアルバスポートおよび関連する処理、および/またはイーサネットポートおよび関連する処理のような外付けの装置インタフェース1226と、ウェブブラウザのような出力装置インタフェース1223と、アプリケーション処理カーネル1222と、例えば、ステータスライトのアレイ、および1以上のトグルスイッチ、および/またはディスプレイ、および/またはキーボード、ジョイスティック、トラックボール、または他の位置入力機器および/または、ポインタマウスシステム、および/またはタッチスクリーンのような任意のユーザインタフェース1229と、を有する計算装置1220、すなわちコンピュータとして図示されている。任意で、アドレス指定可能なメモリは、例えば、フラッシュメモリ、SSD、EPROM、および/またはディスクドライブ、および/または他の記憶媒体とすることができる。これらの要素は、データバス1228を介して互いに通信することができる。任意のウェブブラウザとアプリケーションをサポートするような動作システム1225では、プロセッサ1224は、高度データを発射制御コントローラに提供するよう構成された慣性測定ユニット;アジマスデータを発射制御コントローラに提供することができる磁気コンパス;位置データを発射制御コントローラに提供するよう構成された全地球測位システム(GPS)機器;および複数の兵器および関連する弾薬に関する弾道情報を有するデータストアと通信する発射制御コントローラのステップを実行するように構成することができ、発射制御コントローラは選択された兵器と関連する弾薬の予測着弾点を、記録されている弾道情報、提供された高度データ、提供されたアジマスデータ、および提供された位置データに基づいて算出する。一実施形態では、経路のクリアランスチェックを発射制御コントローラによって行うことができ、発射した場合に兵器の経路上に障害物が存在する、あるいは存在することになることをシステムが検出した場合には弾薬を発射しない機能を提供する。
【0051】
上記実施形態の特定の特徴および態様について様々な組み合わせ、および/または半組み合わせをすることができると共に、これらは本発明の範囲内に収まることを意図している。したがって、開示された実施形態の様々な特徴および態様は、開示された発明の異なるモードを形成するために互いに組み合わせる、あるいは置換することができると理解されたい。さらに、本発明の範囲は例示として本書に開示されており、特に開示された上記実施形態に限定すべきものではないことを意図している。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12