(58)【調査した分野】(Int.Cl.,DB名)
極限粘度[η]が5.0dL/g以上30dL/g以下であり、その繰り返し単位が90%以上エチレンからなるポリエチレンを紡糸し、紡糸工程後に分子量100以上のパラフィン系化合物を10ppm以上含んだ状態で、更に80℃以上の温度で延伸した後に、該延伸糸を冷却速度を3℃/sec以上で冷却し、得られた該延伸糸を0.001〜7cN/dtexの張力で巻き取ったポリエチレン繊維を用い、所望により加撚し、次工程の製紐工程で、組紐を構成するポリエチレン繊維に70℃以上、160℃以下の温度に加熱する時間が30分以下で、加熱時にポリエチレン繊維にかかる張力が0.005cN/dtex以上15cN/dtex以下であることを特徴とする組紐の製造方法。
【発明を実施するための最良の形態】
【0009】
以下、本発明を詳細に説明する。該組紐に供するポリエチレン繊維の引張強度は、13cN/dtex以上であることが好ましい。より好ましくは、20cN/dtex以上がより好ましく、更に好ましくは25cN/dtex以上である。引張強度の上限は特に限定されないが、引張強度が60cN/dtexを超えるポリエチレン繊維を得ることは、技術的、工業生産的に困難である。初期弾性率は250cN/dtex以上、1500cN/dtex以下であることが好ましい。より好ましくは、350cN/dtex以上であり、更に好ましくは550cN/dtex以上であり、より好ましくは、1200cN/dtex以下、更に好ましくは1000cN/dtex以下である。初期弾性率が15001500cN/dtexを超えると、組紐の成型加工時の引き揃えが困難になり単糸切れが多発するため好ましくない。引張強度、初期弾性率の測定方法については、実施例において詳述する。
【0010】
本発明における組紐を構成するポリエチレン繊維の単糸繊度は3dtex以上であることが好ましい。より好ましくは、4dtex以上、更に好ましくは5dtex以上である。単糸繊度が3dtex未満の場合、本発明の重要な課題である組紐成型工程での単糸切れが多発し、加工性が悪くなるため好ましくない。
【0011】
本発明の組紐を構成する高強度ポリエチレン繊維は、その極限粘度が5.0〜25dL/gが好ましく、さらに好ましくは7.0〜22dL/g、より好ましくは8〜20dL/gである。極限粘度を4.9dL/g以下であると、寸法安定性に優れ、経時での力学物性変動が小さく、且つ、強度10cN/dtex以上を得ることができない。一方、極限粘度が25dL/gを超えると高強度・高弾性率のポリエチレン繊維を作成することがでるが、組紐成型加工時の単糸切れが多発するため好ましくない。極限粘度を5.0dL/g以上とすることにより、ポリエチレンの分子末端基の減少により、製品中の構造欠陥数を減少させることができる。そのため、強度や弾性率等の力学物性や耐磨耗性能を向上させることができる。
【0012】
該ポリエチレンの重量平均分子量は70万以上460万以下であることが好ましい。より好ましくは80万以上、400万以下、更に好ましくは90万以上、360万以下である。重量平均分子量が70万未満であると組紐として使用した際に、局所的な擦れに対し、繊維の毛羽の発生が生じやすいばかりでなく、組紐として後述の引張強度や弾性率を得ることが困難であるため好ましくない。また重量平均分子量が460万を超えると得られるポリエチレン繊維の初期弾性率が非常に高くなり、組紐成型時の引き揃えが難しく、単糸切れが多発するため好ましくない。重量平均分子量の測定方法として、分子量の低いポリエチレンは、一般的にGPC測定法で求められるが、本発明のポリエチレンのように重量平均分子量が高い場合は、測定時にカラムの目詰まりが発生するなど、GPC測定法では容易に求めることができない。従って「Polymer Handbook Fourth Edition」第4章(出版社(JOHN WILEY)出版年(1999年))に記載されている下式の通り極限粘度の値より重量平均分子量を求めることができる。
重量平均分子量 = 5.365×10
4×(極限粘度)
1.37
【0013】
本発明の組紐を構成する高強度ポリエチレン繊維は、その繰り返し単位が実質的にエチレンであることが好ましい。また、本願発明の効果が得られる範囲で、エチレンの単独重合体ばかりでなく、エチレンと少量の他のモノマー、例えば、α−オレフィン、アクリル酸及びその誘導体、メタクリル酸及びその誘導体、ビニルシラン及びその誘導体などとの共重合体を使用することができる。また、これらは、共重合物どうし、あるいはエチレン単独ポリマーとの共重合体、さらには他のα−オレフィン等のホモポリマーとのブレンド体であってもよい。また後述する方法で求められる繊維の極限粘度が上記範囲を満たすものであれば、例えば高密度ポリエチレンと超高分子量ポリエチレンのブレンド、低密度ポリエチレンと超高分子量ポリエチレンのブレンドを含む重量平均分子量異なるポリエチレンのブレンド体であってよく、低密度ポリエチレンと高密度ポリエチレンと超高分子量ポリエチレンのブレンド体でもよい。また2種類以上の重量平均分子量の異なる超高分子量ポリエチレンのブレンドでもよい。また後述する方法で求められる繊維の極限粘度が上記範囲を満たすものであれば分子量分布の異なるポリエチレンのブレンド体であってもよい。
【0014】
しかしながら、エチレン以外の含有量が増えすぎると、却って延伸の阻害要因となる。そのため、高強度繊維を得るという観点から、ポリエチレン中に存在する分岐数は、主鎖炭素原子1000個あたり3個以下であることが好ましい。より好ましくは2個以下、さらに好ましくは1.5個以下である。またこのときの分岐の長さはブチル分岐よりも短い方が好ましい。尚、測定方法は実施例にて詳述する。
【0015】
本発明の組紐を構成する高強度ポリエチレン繊維の製造方法については、特に制限は無いが、次に示す溶液成形法が好ましい。溶液成形法はいくつか公知のものが知られおり特に制限は無いが、ポリエチレンの溶媒となるデカリン・テトラリン等の揮発性の有機溶媒やパラフィン等の非揮発性の溶媒にポリエチレンを溶解して繊維状に成形する溶液紡糸法を用いることが好ましい。
【0016】
ポリエチレンを溶解する際の濃度は0.5wt%以上、40wt%以下が好ましく、より好ましくは2.0wt%以上、30wt%以下、さらに好ましくは4.0wt%以上、20wt%以下である。ポリエチレンの濃度が0.5wt%未満の場合、生産効率が非常に悪いため好ましくない。一方、ポリエチレンの濃度が40wt%を超えると、分子量が非常に大きいことに起因し、溶液紡糸法では後述するノズルから吐出することが困難になり好ましくない。
【0017】
本発明の組紐を構成する高機能ポリエチレン繊維は上述したポリエチレン溶液を、押出機等を用いて融点よりも10℃以上、好ましくは20℃以上、更に好ましくは30℃以上で均一溶解後に押出しし、定量供給装置を用いて紡糸ノズル(紡糸口金)に供給する。
【0018】
本発明における重要な構成の一つは、紡糸工程の前もしくは、紡糸工程中、もしくは、紡糸工程後に低融点ポリオレフィンを10ppm以上繊維中に含有させることである。該低融点ポリオレフィンの融点は70℃以上、100℃以下であることが好ましく、更にこのましくは75℃以上、95℃以下である。含有させた低融点ポリオレフィンは紡糸工程後に抽出剤を用いて所定の含有量になるように抽出して調整してもよい。
【0019】
その後、0.2〜3.5mm、好ましくは直径0.5〜2.5mmの直径を有するノズルオリフィスより0.1g/min以上の吐出量で吐出する。次に該吐出成形体を5〜60℃まで冷却した後に800m/min以下で引き取る。さらに紡糸の段階において紡糸口金温度をポリエチレンの融点から10℃以上、用いた溶媒の沸点以下にする事が好ましい。ポリエチレンの融点近傍の温度領域では、ポリマーの粘度が高すぎ、素早い速度で引き取ることが出来ない。また、用いる溶媒の沸点以上の温度では、紡糸口金を出た直後に溶媒が沸騰するため、紡糸口金直下で糸切れが頻繁に発生するので好ましくない。冷却方法としては空気や窒素等の不活性ガスによる乾式クエンチ法でもよいし、混和性の液体、もしくは水等の不混和性の液体を用いた冷却方法であってもよい。
【0020】
該吐出ゲル糸を冷却工程において該吐出ゲル糸が細化完了するまでに、1.1倍以上、100倍以下の倍率で変形させる。好ましくは2.0倍以上、80倍以下、更に好ましくは5.0倍以上、50倍以下である。このとき変形に要する時間を3分間以内とすることが重要である。好ましくは2分間以内、更に好ましくは1分間以内である。変形に要する時間が3分間を超えると、吐出ゲル糸内部のポリエチレン分子鎖の緩和が発生し、高強度・高弾性率の組紐を得ることができないばかりでなく、本発明の組紐の特徴的な特性である寸法安定性と高い引張強度や弾性率を両立させることができない。そのため、かかる用途で要望される経時変化の少ない物性保持率を得ることができないため好ましくない。このとき該吐出ゲル糸の変形過程で該吐出ゲル糸中の溶媒の一部を除去してもよい。
【0021】
冷却して得られた未延伸糸を加熱し、溶媒を除去しながら数倍に延伸、場合によっては多段延伸を行なう。溶媒の除去手段としては、揮発性溶媒の場合には上述の加熱方法を用いてもよいが、不揮発性溶媒を用いた場合は、抽出剤等を用いて抽出する方法が挙げられる。抽出剤としては例えば、クロロホルム、ベンゼン、トリクロロトリフルオロエタン(TCTFE)、ヘキサン、ヘプタン、ノナン、デカン、エタノール、高級アルコール等を用いることができる。このとき、該低融点ポリオレフィンの含有量が1ppm未満にならないようにすることが重要である。また延伸工程における熱媒体は、空気、窒素等の不活性ガス、水蒸気、液体媒体等を用いてもよいし、加熱ローラーを用いて延伸してもよい。このとき、未延伸糸の脱溶媒工程と延伸工程を同時に行なう必要はなく、未延伸糸を乾燥した後に1段以上の延伸をしてもよい。勿論、脱溶媒しながら延伸してもよい。このとき本発明の組紐を製造するために重要な構成の一つは、製紐工程前の繊維中の該低融点ポリオレフィンの残留量である。残留量は1ppm以上、1%以下であることが好ましい。好ましくは10ppm以上、0.5%以下、更に好ましくは50ppm以上、0.1%以下である。該低融点ポリオレフィンの残留量が1%を超えると、得られる組紐の強度が低く、また室温付近での寸法安定性が低くなるため好ましくない。また1ppm未満の場合、製紐工程での成型加工性が悪く、単糸切れが多発するため好ましくない。
【0022】
本発明の組紐における重要な製造方法として、構成するポリエチレン繊維の延伸方法が要素の一つである。延伸時の変形速度は好ましくは、0.001
−1以上0.8s
−1以下が好ましい。さらに好ましくは、0.01s
−1以上0.1s
−1以下である。変形速度は、繊維の延伸倍率、延伸速度及びの延伸区間の長さより計算可能である。つまり変形速度(s
−1)=(1―1/延伸倍率)延伸速度/延伸区間の長さである。変形速度があまりにも速いと十分な延伸倍率到達する前に繊維の破断が生じてしまい好ましくない。また、繊維の変形速度があまりにも遅いと、延伸中に分子鎖緩和してしまい延伸により繊維は細くなるものの高い物性の繊維が得られず、結果として組紐にしたときの引張強度や弾性率が低くなり好ましくない。
【0023】
該未延伸糸の延伸倍率は、延伸工程が1段でも多段の場合でも合計の延伸倍率で10倍以上60倍以下、好ましくは12倍以上55倍以下、さらに好ましくは15倍以上50倍以下が推奨される。更に該延伸工程では、好ましくは1回以上の回数でポリエチレン繊維が融点以下の温度となる条件で延伸する。このとき複数回延伸する場合は、後段に進むほど、延伸時の温度が高いほうが好ましい。また延伸の最後段の延伸温度は、ポリエチレン繊維の温度が80℃以上、160℃以下、好ましくは90℃以上、158℃以下である。延伸時にポリエチレン繊維がこの温度となるよう、加熱装置の条件を設定すればよい。このとき糸温度は赤外線カメラ(FLIR systems社製SC640)を用いて測定することができる。
【0024】
本発明の目的として、室温付近での寸法安定性に優れた組紐を提供することにあるが、これを達成するための本発明の重要な要素の一つとして、80℃以上に熱せられた該延伸糸を、50℃までに冷却する速度を3℃/sec以上、500℃/s以下とすることが好ましい。好ましくは10℃/sec以上、400℃/s以下、さらに好ましくは20℃/sec以上、300℃/s以下である。延伸時の温度から50℃までを所定の範囲の時間で冷却することにより、延伸時の残留歪みを維持することが出来る。50℃は、ポリエチレン繊維の結晶分散温度より十分低い温度であり、この温度以下とすることで、後述の組紐加工における熱処理時に重要となる繊維同士の締まりを発現させることが可能となる。該延伸糸の冷却速度が3℃/sec未満の場合繊維の分子鎖が緩和するため、後の製紐工程で繊維間の引き締まりが足りず、寸法安定性が悪い組紐となり好ましくない。一方、該延伸後の延伸糸の冷却速度が500℃/sを超えると冷却後の該延伸糸の残留歪みが大きく成り過ぎることによる、製紐工程後の組紐が硬くなる結果となる。このため、釣り糸のような屈曲性を求められる用途で用いることができず好ましくない。冷却方法としては、例えば50℃以下の水浴バスが挙げられる。また他の冷却手段として、例えば表面温度が50℃以下のローラーに接触させることによる冷却方法でもよい。このとき、複数のローラーを用いて後段になるほどローラーの表面温度を低くして該繊維を冷却してもよい。例えば温度の異なる3本のローラーで冷却する場合、延伸直後のローラー表面温度が80℃、2本目のローラー表面温度が60℃、3本目のローラー表面温度を30℃の順にして該繊維を冷却する手段を用いてもよい。その他の手段として空気や不活性ガスによる冷却風を用いてもよく、上述の冷却速度を満たす条件であれば得に制限は無い。
【0025】
本発明の重要な要素の一つとして冷却後された糸を好ましくは0.001cN/dtex以上、7.0cN/dtex以下、更に好ましくは0.05cN/dtex以上、3cN/dtex以下の張力で巻き取ることが挙げられる。この範囲で巻き取ることで、ポリエチレン繊維中の残留歪みを維持した状態で巻き取ることが可能となる。巻き取り張力が0.001N/dtex未満の場合、残留歪みが小さくなり好ましくない。また巻取り張力を7.0cN/dtex以上にすると繊維の単糸切れが発生しやすくなるため好ましくない。巻取り時の該繊維温度は60℃以下であることが好ましい。より好ましくは50以下、更に好ましくは45℃以下である。巻取り時の温度が60℃を超えると、上述の冷却工程で固定した残留歪みが緩和するため好ましくない。
【0026】
本発明の組紐は、3つ打ち以上、即ち3本以上の繊維で構成されていることが好ましい。2本以下では組紐形状にならず、またガイド等との接触面積が大きくなり、結果として耐磨耗性能の低下や組紐を動かすときの滑らかさが損なわれる。また本発明の組紐は、組紐を構成している繊維の1本以上が本願発明の物性を有する高強度ポリエチレン繊維であることが必要である。構成する繊維として該高強度ポリエチレン繊維を用いることにより、高強度・高弾性率を維持して、且つ、寸法安定性、経時に伴う力学物性の変動を小さくすることが可能となる。構成繊維の1本以上が該高強度ポリエチレン繊維であれば、他素材の繊維、例えばポリエステル繊維、ポリアミド繊維、液晶ポリエステル繊維、ポリプロピレン繊維、アクリル繊維、アラミド繊維、金属繊維、無機繊維、天然繊維、再生繊維との複合でもよい。また1本の高強度ポリエチレン繊維以外の繊維はマルチフィラメントであってもモノフィラメントであってもよく、更には短繊維との複合であってもよく、また該ポリエチレン繊維自体がテープやリボン状の成形体をスプリットして作成したスプリットヤーンを用いても良い。各々の繊維の単糸形状は円形でも異形でもよく、更には中空、扁平形状等から選択することができる。また各々の繊維の一部もしくは全部が着色、または融着されていてもよく、所望により酸化防止剤、耐熱安定剤、難燃剤、界面活性剤、蛍光増白剤、表面改質剤、抗菌剤、防錆剤、磨耗調整剤、帯電防止剤、耐光安定剤、紫外線吸収剤、可塑剤等の添加剤を付与していてもよい。
【0027】
また、組紐の引張強度は、より好ましくは、8cN/dtex以上がより好ましく、更に好ましくは20cN/dtex以上である。引張強度の上限は特に限定されないが、引張強度が50cN/dtexを超える組紐を得ることは、技術的、工業生産的に困難である。初期弾性率は150cN/dtex以上、1800cN/dtex以下であることが好ましい。より好ましくは、250cN/dtex以上、1400cN/dtex以下であり、更に好ましくは350cN/dtex以上、1300cN/dtex以下である。かかる引張強度および初期弾性率を有していれば、製品として使用される際に外力に対して物性や形状変化が生じ難くなる。
【0028】
本発明による組紐の1%伸張時の応力は、好ましくは0.5cN/dtex以上、20cN/dtex以下である。より好ましくは、0.8cN/dtex以上、12cN/dtex以下であり、さらに好ましくは1.0cN/dtex以上、10cN/dtex以下である。1%伸張時の応力が0.5cN/dtex未満の場合、例えば、釣糸として用いた場合、魚のアタリが手元に伝わらず好ましくない。一方、1%伸張時の応力が15cN/dtexを超えると、例えば、釣糸として用いた場合、わずかな外乱に対しても応力として手元に伝わる為、魚のあたりとノイズとの見分けをすることが困難になり好ましくない。
【0029】
本発明における組紐から解いた繊維の引張強度は、15cN/dtex以上、より好ましくは、20cN/dtex以上、更に好ましくは22cN/dtex以上である。引張強度の上限は特に限定されないが、引張強度が50cN/dtexを超える組紐を得ることは、技術的、工業生産的に困難である。
【0030】
本発明の組紐の組紐方法として、組角度が6〜35°、好ましくは15〜30°、さらに好ましくは18〜25°である。組角度が6°未満であると、組紐の形態が不安定となり、断面も偏平になり易くなる。また、組紐のコシも低く、製品性能を著しく損なうものとなる。また、組角度が35°を越えると、形態は安定するものの、一方で原糸の引張強力に対するコードの引張強力の保持率が低下するため好ましくないが、本発明において組角度は6〜35°の範囲に限定されるものではない。
【0031】
本発明の組紐は該繊維を3本以上で製紐するが、本発明においては特に限定されないが、3以上、16本以下の繊維使いが好ましく使用される。構成する繊維は上述のポリエチレン繊維が1本以上含まれており、該組紐の力学物性が上述の範囲を満たしておれば、他素材の長繊維、短繊維、モノフィラメントと構成されていてもよい。他素材としては、例えば、ポリアミド繊維、ポリエステル繊維、液晶ポリエステル繊維、アクリル繊維、PBO繊維等の有機繊維のみならず、金属繊維、無機繊維を用いてもよい。
【0032】
更に、本発明の重要な構成の一つは、上述した製紐工程後の後処理方法に挙げられる。具体的には上述の組紐工程を通過した該組紐を熱処理工程する時の温度、時間、張力および巻取り工程時の温度、張力である。
【0033】
熱処理は、70℃以上で0.1秒以上、30分以下施すことが望ましく、好ましくは90℃、更に好ましくは100℃である。該処理温度の上限は160℃以下である。熱処理の温度が70℃未満の場合、張力の掛かった状態で工程を通過する際に、単糸切れが多くなり好ましくない。また熱処理温度が160℃を超えると、組紐の破断(溶断)が生じやすくなるばかりでなく、所望の組紐の力学物性を得ることができず好ましくない。処理時間は、好ましくは0.5秒以上、25分以下、更に好ましくは1.0秒以上、20分以下である。処理時間が0.1秒未満の場合、繊維の残留歪みに伴う締め付けが不十分となり好ましくない。また熱処理時間が30分を超えると、組紐の破断が生じやすくなるばかりでなく、所望の組紐の力学物性を得ることができず好ましくない。
【0034】
本発明における重要な要素である組紐加工後の加熱時に組紐にかかる張力が0.005cN/dtex以上、15cN/dtex以下であることが好ましい。より好ましくは0.01cN/dtex以上、12cN/dtex以下、更に好ましくは0.05cN/dtex以上、8cN/dtex以下である。該熱処理工程において該処理温度、該処理時間、該処理張力の3要素の上記範囲内にすることが本発明による組紐を得る重要点である。例えば、処理中の張力が上記範囲よりも大きい場合は、該工程通過中の組紐が破断するもしくは、得られる組紐の力学物性が低くなり、または寸法安定性の低下、または経時に伴う力学物性の変動が大きくなり好ましくない。
【0035】
熱処理時の加熱方法は特に拘らない。公知な手法である、例えば樹脂を水中に分散もしくは溶解させた温浴、オイルバス、ホットローラー、輻射パネル、スチームジェット、ホットピンなどが推奨されるが、これらに限定されるものでは無い。組紐加工後もしくは組紐加工中に、所望により加撚、樹脂の付与、もしくは、着色してもよい。また該熱処理工程中に、1.05倍以上、15倍以下に再延伸してもよい。再延伸の倍率が1.05倍未満の場合、熱処理工程で組紐が弛み好ましくない。また再延伸の倍率が15倍を超えると組紐を構成している繊維の破断が発生するため好ましくない。
【0036】
本発明における重要な構成の一つは組紐からほどいた後のポリエチレン繊維を、70℃、5cN/dtexの荷重下で2時間経過した後の伸び量が5.0%以上である。好ましくは6.0%以上、更に好ましくは8.0%以上である。この条件での伸び量が5.0%未満の繊維を用いた場合、組紐成型時の単糸切れが多くなるため好ましくない。
【0037】
また、本発明における重要な構成の一つは、組紐が室温付近での寸法安定性が高いことである。すなわち、組紐からほどいた後のポリエチレン繊維の室温付近での寸法安定性が優れている必要である。具体的には40℃の環境下で240時間経過しても、収縮率が0.40%以下であり、好ましくは0.35%以下、さらに好ましくは0.3%以下である。この値であれば、倉庫内や車内等で長期間保管された場合においても、寸法安定性を維持し、組紐としての強度、弾性率を維持することが可能となる。
【0038】
本発明において得られるポリエチレン繊維の特性の測定及び評価は下記のように行った。
【0039】
(1)極限粘度
135℃のデカリンにてウベローデ型毛細粘度管により、種々の希薄溶液の比粘度を測定し、その粘度の濃度に対するプロットの最小2乗近似で得られる直線の原点への外挿点より極限粘度を決定した。測定に際し、サンプルを約5mm長の長さにサンプルを分割または切断し、ポリマーに対して1質量%の酸化防止剤(商標名「ヨシノックスBHT」吉富製薬製)を添加し、135℃で24時間攪拌溶解して測定溶液を調整した。
【0040】
(2)繊度
位置の異なる5箇所でサンプルを各々1mにカットし、その重量を測定しその平均値を用いて繊度を求めた。
【0041】
(3)強度、伸度、弾性率、1%伸張時応力
JIS L1013 8.5.1に準拠して測定した。強度、弾性率は、株式会社オリエンテック製の「テンシロン万能材料試験機」を用い、試料長200mm(チャック間長さ)、伸長速度100%/分の条件で歪−応力曲線を雰囲気温度20℃、相対湿度65%条件下で測定し、破断点での応力と伸びから強度(cN/dtex)、伸度(%)、曲線の原点付近の最大勾配を与える接線から弾性率(cN/dtex)を計算して求めた。このとき測定時にサンプルに印加する初荷重を繊度の1/10とした。なお、各値は10回の測定値の平均値を使用した。この測定は、組紐、組紐から解いた糸両方に使用出来る。
【0042】
(4)収縮率測定
JIS L1013 8.18.2 乾熱収縮率(b)法に準拠して測定した。測定繊維サンプルおよび組紐サンプルを70cmにカットし、両端より各々10cmの位置に、即ちサンプル長さ50cmがわかるように印をつけた。次に繊維サンプルおよび組紐サンプルに余計な荷重が印加されないように吊り下げた状態で熱風循環型の加熱炉に80℃の温度で240時間加熱した。その後、加熱炉より繊維サンプルを取り出し、室温まで十分に徐冷した後に最初に繊維サンプルおよび組紐サンプルに印をつけた位置の長さを計測した。また収縮率は以下の式より求めることができる。
収縮率(%)=100×(加熱前の繊維サンプルおよび組紐サンプルの長さ−加熱後の繊維サンプルおよび組紐サンプルの長さ)/(加熱前の繊維サンプルおよび組紐サンプルの長さ)
尚、各値は2回の測定値の平均値を使用した。
【0043】
(5)70℃、5cN/dtex荷重下、2時間後の伸び量
ヒーター上でのマルチフィラメントの長さ変化がわかる位置に、破断荷重の10%の荷重を与え、50cm間隔の印をつけた組紐から解いた糸1mを、70℃に加熱した長さ60cmの金属製ヒーターに接触させ、片方の糸端を固定し、その後、もう一方の糸端に上記所定の荷重を負荷させた。荷重を負荷したときの初期伸びの影響を除き、経時の歪み量のみを測定するために、荷重負荷後、測定温度と同じ温度である50℃もしくは70℃で5分間経過したのちの長さを0時間におけるマルチフィラメントの長さとする。その後、2時間後におけるマルチフィラメントの長さを測定し、以下の式を用いて2時間後の歪み量を求めた。
2時間後の歪み量(%)=100×(2時間後の長さ(cm)−5分経過後の長さ(cm))/50cm
【0044】
(6)低融点ポリオレフィンの残留量
繊維サンプル中の残留溶剤濃度の測定には、ガスクロマトグラフィー(島津製作所製)を用いた。試料の繊維10mgをガスクロマトグラフィー注入口のガラスインサートにセットした。注入口を溶剤の沸点以上に加熱し、加熱により揮発した溶剤を窒素パージでカラムに導入した。カラム温度を40℃に設定し、溶剤を5分間トラップさせた。次に、カラム温度を80℃まで昇温させた後に測定を開始した。得られたピークより、残留溶剤濃度を求めた。