(58)【調査した分野】(Int.Cl.,DB名)
上記立体形状表示手段は、上記第1の偏差に応じて異なる色を上記第1の点群に割り当てて上記第1の偏差の分布を表示することを特徴とする請求項1〜4のいずれかに記載の三次元測定装置。
上記立体形状表示手段は、上記第2の偏差に応じて異なる色を上記第2の点群に割り当てて上記第2の偏差の分布を表示することを特徴とする請求項5に記載の三次元測定装置。
上記立体形状表示手段は、上記偏差に応じて異なる色を上記測定点に割り当てて上記偏差の分布を表示することを特徴とする請求項7〜9のいずれかに記載の三次元測定装置。
【発明の概要】
【発明が解決しようとする課題】
【0004】
上述した様な従来の三次元測定装置では、点群から抽出される幾何要素のうち、単一の幾何要素に対する偏差分布しか表示することができなかった。このため、立体形状上の複数の幾何要素について、うねり具合を比較することが困難であった。また、平面に対する偏差分布しか表示することができなかった。
【0005】
図15は、従来の三次元測定装置の動作を示した図である。図中の(a)には、画面表示された測定対象物Wの立体形状が示されている。この測定対象物Wは、階段状の段差を有しており、下段の上面S
1と上段の上面S
2との2つの面について、うねり具合を調べる場合が考えられる。この場合、まず、表示中の立体形状上で点群を選択して幾何要素が抽出される。
【0006】
図中の(b)には、下段の上面S
1を基準面として求められた偏差分布が示されている。上面S
1に対応する1つの幾何要素を基準面に指定し、この基準面に対する測定点の偏差が求められる。この様にして求められた偏差分布は、立体形状上に重畳して表示することができる。例えば、各測定点に対し、偏差に応じて異なる色が割り当てられる。図中の(c)には、上段の上面S
2を基準面として求められた偏差分布が示されている。上面S
2に対応する幾何要素を基準面に指定すれば、この基準面に対する偏差分布が立体形状上に重畳して表示される。
【0007】
この様に従来の三次元測定装置では、1つの幾何要素しか偏差を求めるための基準面として指定することができなかった。また、
図15の(b)に示すように、上面S
1よりも高い部位D
1は、色割り当ての上限偏差を上回り、単一の表示色(赤色)が割り当てられ、また、上面S
1よりも低い部位D
2は、色割り当ての下限偏差を下回り、単一の表示色(青色)が割り当てられている。この様な偏差分布の表示では、上面S
1以外の部位がべた塗りになることから、測定対象物Wの立体形状が確認できなくなってしまう。
【0008】
本発明は、上記の事情に鑑みてなされたものであり、複数の幾何要素に対する偏差の分布を立体形状上に重畳して表示することができる三次元測定装置を提供することを目的とする。特に、立体形状上の複数の幾何要素について、うねり具合を比較することができる三次元測定装置を提供することを目的とする。また、円筒、円錐又は球に対する偏差の分布を立体形状上に重畳して表示することができる三次元測定装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明の第1の態様による三次元測定装置は、三次元空間における複数の測定点の位置情報を測定し、測定対象物の立体形状を表す点群を生成する形状測定手段と、上記点群に基づいて、測定対象物の立体形状を表示する立体形状表示手段と、上記立体形状表示手段により表示された上記立体形状に対する位置の指定を受け付け、当該位置の指定に基づいて、幾何要素を抽出するための点群を選択する点群選択手段と、上記点群選択手段により選択された第1の点群にフィッティングする第1の幾何要素を特定し、上記点群選択手段により選択された第2の点群にフィッティングする第2の幾何要素を特定する幾何要素抽出手段と、上記第1の点群について、上記第1の幾何要素に対する第1の偏差を求め、上記第2の点群について、上記第2の幾何要素に対する第2の偏差を求める偏差算出手段とを備える。上記立体形状表示手段は、上記第1の幾何要素に対する上記第1の偏差の分布及び上記第2の幾何要素に対する上記第2の偏差の分布を上記立体形状上に重畳して表示する。
【0010】
この様な構成によれば、第1の幾何要素に対する第1の偏差の分布と第2の幾何要素に対する第2の偏差の分布とが立体形状上に重畳して表示されるため、立体形状上の複数の幾何要素について、うねり具合を比較することができる。
【0011】
本発明の第2の態様による三次元測定装置は、上記構成に加え、上記第1の幾何要素を内包する偏差表示対象領域を指定する偏差表示対象領域指定手段を備え、上記立体形状表示手段が、上記偏差表示対象領域内の上記第1の点群について、上記第1の幾何要素に対する上記第1の偏差の分布を表示するように構成される。
【0012】
この様な構成によれば、第1の偏差の表示対象が第1の幾何要素を内包する偏差表示対象領域内に制限されるため、第1の偏差を求めるための幾何要素とは異なる部位の立体形状が偏差分布の表示によって確認できなくなるのを防止することができる。
【0013】
本発明の第3の態様による三次元測定装置は、上記構成に加え、上記第2の幾何要素を内包する偏差表示対象領域を指定する偏差表示対象領域指定手段を備え、上記立体形状表示手段が、上記偏差表示対象領域内の上記第2の点群について、上記第2の幾何要素に対する上記第2の偏差の分布を表示するように構成される。
【0014】
この様な構成によれば、第2の偏差の表示対象が第2の幾何要素を内包する偏差表示対象領域内に制限されるため、第2の偏差を求めるための幾何要素とは異なる部位の立体形状が偏差分布の表示によって確認できなくなるのを防止することができる。
【0015】
本発明の第4の態様による三次元測定装置は、上記構成に加え、抽出対象の幾何要素について、基本形状の種別の指定を受け付ける形状種別指定手段をさらに備え、上記基本形状が円筒、円錐又は球であり、上記偏差算出手段が、円筒の側面、円錐の側面又は球の表面に対する法線方向の偏差を求めるように構成される。この様な構成によれば、点群から抽出される幾何要素が円筒、円錐又は球であっても、当該幾何要素に対する偏差分布を表示することができる。
【0016】
本発明の第5の態様による三次元測定装置は、上記構成に加え、上記立体形状表示手段が、上記第1の偏差に応じて異なる色を上記第1の点群に割り当てて上記第1の偏差の分布を表示するように構成される。この様な構成によれば、第1の幾何要素に対する第1の偏差の分布をカラーで表示することができる。
【0017】
本発明の第6の態様による三次元測定装置は、上記構成に加え、上記立体形状表示手段が、上記第2の偏差に応じて異なる色を上記第2の点群に割り当てて上記第2の偏差の分布を表示するように構成される。この様な構成によれば、第2の幾何要素に対する第2の偏差の分布をカラーで表示することができる。
【0018】
本発明の第7の態様による三次元測定装置は、三次元空間における多数の測定点の位置情報からなる三次元形状データを生成する形状データ生成手段と、上記三次元形状データに基づいて、測定対象物の立体形状を表示する立体形状表示手段と、抽出対象の幾何要素について、円筒、円錐又は球を含む基本形状の種別の指定を受け付ける形状種別指定手段と、上記測定点からなる点群であって、上記幾何要素を抽出するための点群を選択する点群選択手段と、上記点群にフィッティングさせた上記基本形状として、上記幾何要素を特定する幾何要素抽出手段と、上記点群に含まれる上記測定点について、上記幾何要素に対する偏差を求める偏差算出手段とを備える。上記立体形状表示手段は、上記幾何要素に対する上記偏差の分布を上記立体形状上に重畳して表示する。この様な構成によれば、円筒、円錐又は球を基本形状の種別として指定することにより、円筒、円錐又は球に対する偏差の分布を立体形状上に重畳して表示することができる。
【0019】
本発明の第8の態様による三次元測定装置は、上記構成に加え、上記幾何要素を内包する偏差表示対象領域を指定する偏差表示対象領域指定手段を備え、上記立体形状表示手段が、上記偏差表示対象領域内の上記測定点について、上記幾何要素に対する上記偏差の分布を表示するように構成される。この様な構成によれば、偏差分布の表示対象が幾何要素を内包する偏差表示対象領域内に制限されるため、偏差を求めるための幾何要素とは異なる部位の立体形状が偏差分布の表示によって確認できなくなるのを防止することができる。
【0020】
本発明の第9の態様による三次元測定装置は、上記構成に加え、上記基本形状が円筒、円錐又は球であり、上記偏差算出手段が、円筒の側面、円錐の側面又は球の表面に対する法線方向の偏差を求めるように構成される。この様な構成によれば、点群から抽出される幾何要素が円筒、円錐又は球であっても、当該幾何要素に対する偏差分布を表示することができる。
【0021】
本発明の第10の態様による三次元測定装置は、上記構成に加え、上記立体形状表示手段が、上記偏差に応じて異なる色を上記測定点に割り当てて上記偏差の分布を表示するように構成される。この様な構成によれば、幾何要素に対する偏差の分布をカラーで表示することができる。
【発明の効果】
【0022】
本発明によれば、複数の幾何要素に対する偏差の分布を立体形状上に重畳して表示することができる。特に、第1の幾何要素に対する第1の偏差の分布と第2の幾何要素に対する第2の偏差の分布とが立体形状上に重畳して表示されるため、立体形状上の複数の幾何要素について、うねり具合を比較することができる。また、円筒、円錐又は球を基本形状の種別として指定することにより、円筒、円錐又は球に対する偏差の分布を立体形状上に重畳して表示することができる。
【発明を実施するための形態】
【0024】
まず、本発明による三次元測定装置の概略構成について、
図1〜
図6を用いて以下に説明する。
【0025】
<三次元測定装置1>
図1は、本発明の実施の形態による三次元測定装置1の一構成例を示したシステム図である。この三次元測定装置1は、測定対象物Wの形状を光学的に測定する測定器であり、測定部2、コントローラ4及び情報処理端末5により構成される。
【0026】
<測定部2>
測定部2は、ステージ21上の測定対象物Wに可視光からなる検出光を照射し、測定対象物Wにより反射された検出光を受光して撮影画像を生成するヘッドユニットであり、ステージ21、回転駆動部22、撮像部23、投光部24、テクスチャ照明出射部25及び制御基板26により構成される。この測定部2は、ステージ21、撮像部23、投光部24及びテクスチャ照明出射部25が一体型の筐体に搭載される。
【0027】
ステージ21は、測定対象物Wを載置するための水平かつ平坦な載置面を有する作業台である。このステージ21は、円板状のステージプレート211と、ステージプレート211を支持するステージベース212とにより構成される。
【0028】
ステージプレート211は、中央付近で折り曲げて固定することができ、測定対象物Wを撮像部23に正対させるための傾斜台として機能させることができる。回転駆動部22は、ステージ21上の測定対象物Wに対する撮像アングルを調整するために、鉛直方向の回転軸を中心としてステージ21を回転させる。
【0029】
撮像部23は、ステージ21上の測定対象物Wを撮影する固定倍率のカメラであり、受光レンズ231及び撮像素子232により構成される。撮像素子232は、受光レンズ231を介して測定対象物Wからの検出光を受光し、撮影画像を生成する。撮像素子232には、例えば、CCD(Charge Coupled Devices:電荷結合素子)、CMOS(Complementary Metal Oxide Semiconductor:相補型金属酸化物半導体)などのイメージセンサが用いられる。この撮像素子232は、例えば、モノクロイメージセンサである。
【0030】
投光部24は、ステージ21上の測定対象物Wに検出光を照射する照明装置であり、投光用光源241、コレクタレンズ242、パターン生成ユニット243及び投光レンズ244により構成される。投光用光源241には、例えば、単色の検出光を生成するLED(発光ダイオード)又はハロゲンランプが用いられる。色収差補正等が容易であることから、白色光源を用いる場合に比べ、単色の投光用光源241を用いる方が有利である。また、波長は短い方が三次元形状データの解像度を上げるのに有利であることから、青色の光源、例えば、青色LEDを投光用光源241として用いることが好ましい。ただし、撮像素子232が良好なS/Nで受光することができる波長が選択される。
【0031】
なお、単色の投光用光源241を使用する場合、撮像素子232がカラーイメージセンサであれば、RGの受光素子が利用できないため、Bの受光素子のみの利用となり、利用できる画素数が減ることになる。従って、画素サイズや画素数をそろえた場合、撮像素子232には、モノクロイメージセンサを用いる方が有利である。
【0032】
投光用光源241から出射された検出光は、コレクタレンズ242を介してパターン生成ユニット243に入射する。そして、パターン生成ユニット243から出射された検出光は、投光レンズ244を介してステージ21上の測定対象物Wに照射される。
【0033】
パターン生成ユニット243は、構造化照明用のパターン光を生成するための装置であり、均一な検出光と、二次元パターンからなる検出光とを切り替えることができる。パターン生成ユニット243には、例えば、DMD(Digital Micromirror Device)又は液晶パネルが用いられる。DMDは、多数の微小なミラーが2次元状に整列配置され、各ミラーの傾きを制御することにより、画素ごとに明状態と暗状態とを切り替えることができる表示素子である。
【0034】
三角測距の原理を利用して測定対象物Wの立体形状を測定するための構造化照明法には、正弦波位相シフト法、マルチスリット法、空間コード法等がある。正弦波位相シフト法は、測定対象物Wに正弦波状の縞パターンを投影し、正弦波の周期よりも短いピッチで縞パターンを移動させるごとに撮影画像を取得する照明法である。各撮影画像の輝度値から各画素における位相値を求めて高さ情報に変換することにより、三次元形状データが求められる。
【0035】
マルチスリット法は、測定対象物Wに細線状の縞パターンを投影し、縞と縞との間隔よりも狭いピッチで縞パターンを移動させるごとに撮影画像を取得する照明法である。各撮影画像の輝度値から各画素における最大輝度の撮影タイミングを求めて高さ情報に変換することにより、三次元形状データが求められる。
【0036】
空間コード法は、測定対象物Wに対し、白黒のデューティ比が50%であり、縞パターンの幅が異なる複数の縞パターンを順次に投影し、撮影画像を取得する照明法である。各撮影画像の輝度値から各画素におけるコード値を求めて高さ情報に変換することにより、三次元形状データが求められる。
【0037】
パターン生成ユニット243では、上述した縞パターンを二次元パターンとして生成することができる。この三次元測定装置1では、マルチスリット法と空間コード法とを組み合わせることにより、高分解能かつ高精度に三次元形状データが取得される。
【0038】
また、この三次元測定装置1では、撮像部23を挟んで2つの投光部24が左右対称に配置されている。各投光部24の投光軸J2及びJ3は、三角測距の原理を利用するために、撮像部23の受光軸J1に対して傾斜している。この投光部24では、投光用光源241、コレクタレンズ242及びパターン生成ユニット243の光軸に対し、投光レンズ244を受光軸J1側にオフセットさせることにより、投光軸J2及びJ3を傾斜させている。この様な構成を採用することにより、投光部24全体を傾斜させる場合に比べ、測定部2を小型化することができる。
【0039】
テクスチャ照明出射部25は、測定対象物Wの色や模様を表面テクスチャ情報として検知するための可視光からなる均一な照明光をステージ21上の測定対象物Wに向けて出射する。このテクスチャ照明出射部25は、投光軸が撮像部23の受光軸J1と略平行であり、撮像部23の受光レンズ231を取り囲むように配置される。このため、投光部24からの照明と比べて測定対象物W上での影ができにくく、撮影時の死角が少なくなる。
【0040】
制御基板26は、回転駆動部22を制御する制御回路、投光部24の投光用光源241及びパターン生成ユニット243を駆動する駆動回路、撮像部23の撮像素子232からの検出信号を処理する処理回路等が設けられた回路基板である。
【0041】
コントローラ4は、測定部2用の制御装置であり、テクスチャ照明用の照明光を生成するテクスチャ光源41と、テクスチャ光源41用の駆動回路等が設けられた制御基板42と、測定部2内の各デバイスに電力を供給する電源43とにより構成される。テクスチャ光源41は、撮影画像からカラーのテクスチャ画像が得られるようにするために、例えば、R(赤)、G(緑)、B(青)の各色の照明光を順次に点灯する。撮像素子232がモノクロイメージセンサであることから、テクスチャ光源41に白色光源を用いてテクスチャ情報を取得する場合、カラー情報を取得することができない。このため、テクスチャ光源41ではRGBを切り替えて照明している。
【0042】
なお、モノクロのテクスチャ画像で十分な場合は、テクスチャ光源41に白色光源、例えば、白色LEDを用い、或いは、RGBの単色光を同時に照射する光源を用いても良い。また、測定精度の低下をある程度許容する場合には、撮像素子232にカラーイメージセンサを用いても良い。照明光は、ライトガイド3を介して測定部2のテクスチャ照明出射部25に伝送される。制御基板42及び電源43は、測定部2の制御基板26に接続されている。
【0043】
情報処理端末5は、測定部2を制御し、撮影画像の画面表示、寸法測定のための設定情報の登録、三次元形状データの生成、測定対象部Wの寸法算出等を行う端末装置であり、表示部51、キーボード52及びマウス53が接続されている。表示部51は、撮影画像や設定情報を画面に表示するモニタ装置である。キーボード52及びマウス53は、ユーザが操作入力を行う入力装置である。この情報処理端末は、例えば、パーソナルコンピュータであり、測定部2の制御基板26に接続されている。
【0044】
図2は、
図1の測定部2の一構成例を模式的に示した説明図である。この測定部2は、撮影倍率が互いに異なる2つの撮像部23a及び23bを備え、ステージ21と撮像部23a及び23bとの相対的な位置関係が変化しないようにベース筐体27に取り付けられている。このため、ステージ21の回転角が互いに異なる複数の撮影画像の連結合成が容易である。
【0045】
撮像部23aは、低倍率の撮像部23である。撮像部23bは、撮像部23aよりも高倍率の撮像部23である。撮像部23a及び23bは、測定対象物全体の三次元形状データが得られるようにするために、いずれもステージ21に対して受光軸J11及びJ12が傾斜するように配置されている。
【0046】
例えば、ステージ21に対する受光軸J11及びJ12の傾斜角は、45°程度である。また、撮像部23bは、焦点位置FPがステージ21の回転軸J4上において撮像部23aの焦点位置FPよりも下側となるように、撮像部23aの下方に配置され、受光軸J12は、受光軸J11と略平行である。
【0047】
この様な構成を採用することにより、撮像部23aの測定可能領域R1と撮像部23bの測定可能領域R2とをステージ21上に適切に形成することができる。測定可能領域R1及びR2は、いずれもステージ21の回転軸J4を中心とする円柱状の領域であり、測定可能領域R2は、測定可能領域R1内に形成される。
【0048】
図3のステップS101〜S113は、三次元測定装置1における寸法測定時の動作の一例を示したフローチャートである。まず、三次元測定装置1は、ステージ21上に載置された測定対象物Wを撮像部23により撮影して撮影画像を表示部51に表示し、投光照明の明るさ調整を行う(ステップS101)。この明るさ調整は、投光部24から均一な検出光を照射し、或いは、パターン光を照射して行われる。
【0049】
次に、三次元測定装置1は、テクスチャ照明に切り替えて撮影画像を取得し、表示部51に表示してテクスチャ照明の明るさ調整を行う(ステップS102)。この明るさ調整は、テクスチャ照明出射部25からR(赤)、G(緑)、B(青)の各色の照明光を順次に照射し、或いは、同時に照射して行われる。ステップS101とステップS102とは、順序を入れ替えても良い。
【0050】
三次元測定装置1は、照明条件が確定されるまで、ステップS101及びS102の処理手順を繰り返し、照明条件の確定後、ユーザにより測定開始が指示されれば(ステップS103)、投光部24からパターン光を投影し(ステップS104)、パターン画像を取得する(ステップS105)。このパターン画像は、ステージ21上の測定対象物Wが撮影された撮影画像である。パターン光の投影及び撮影画像の取得は、パターン生成ユニット243と撮像部23とを同期させて行われる。
【0051】
次に、三次元測定装置1は、テクスチャ照明に切り替えてテクスチャ画像を取得する(ステップS106,S107)。このテクスチャ画像は、R(赤)、G(緑)、B(青)の各色の照明光を順次に照射させて取得された複数の撮影画像を合成することによって得られる。連結測定時には、ステージ21を予め指定された複数の撮像アングルに順次に切り替えながら、ステップS104からステップS107までの処理手順が繰り返される(ステップS108)。
【0052】
次に、三次元測定装置1は、ステップS105において取得されたパターン画像を所定の計測アルゴリズムにより解析し、三次元形状データを生成する(ステップS109)。この三次元形状データの生成ステップでは、撮像アングルが異なる複数の撮影画像から求めた三次元形状データが必要に応じて合成される。そして、三次元測定装置1は、生成された三次元形状データにテクスチャ画像をマッピングし(ステップS110)、測定対象物Wの立体形状として表示部51に表示する(ステップS111)。
【0053】
三次元測定装置1は、所望の測定箇所について、三次元形状データが得られるまで、撮像アングルや撮影条件等を変更しながらステップS101からステップS111までの処理手順を繰り返し(ステップS112)、所望のデータが得られ、ユーザによりデータ解析が指示されれば、寸法測定用のアプリケーションプログラムにより、三次元形状データのデータ解析を行い、測定対象物Wの寸法を算出する(ステップS113)。
【0054】
図4のステップS201〜S211は、
図3のステップS101(投光照明の明るさ調整)について、詳細動作の一例を示したフローチャートであり、三次元測定装置1の動作が示されている。まず、三次元測定装置1は、左側の投光部24を点灯し(ステップS201)、ユーザによる明るさの調整を受け付ける(ステップS202)。
【0055】
次に、三次元測定装置1は、ユーザによる撮影倍率の選択を受け付け、撮影倍率が変更されれば、対応する撮像部23に切り替える(ステップS203)。このとき、三次元測定装置1は、所望の測定箇所に照明が当たっていなければ、ユーザ操作に基づいてステージ21を回転させることにより、測定対象物Wの位置及び姿勢の調整を行う(ステップS204,S205)。位置及び姿勢の調整は、左右の投光部24を同時に点灯させて行っても良い。
【0056】
そして、三次元測定装置1は、測定箇所の明るさが適切でなければ、ユーザによる明るさの調整を再度受け付ける(ステップS206,S207)。三次元測定装置1は、ユーザにより設定終了が指示されるまで、ステップS203からステップS207までの処理手順を繰り返す(ステップS208)。
【0057】
次に、三次元測定装置1は、ユーザにより設定終了が指示されれば、ユーザにより指定された照明条件を設定情報として登録し、右側の投光部24に切り替えて(ステップS209)、ユーザによる明るさの調整を受け付ける(ステップS210)。三次元測定装置1は、ユーザにより設定終了が指示されるまで、ステップS210の処理手順を繰り返し、ユーザにより設定終了が指示されれば、ユーザにより指定された照明条件を設定情報として登録し、この処理を終了する(ステップS211)。
【0058】
図5のステップS301〜S313は、
図3のステップS102(テクスチャ照明の明るさ調整)について、詳細動作の一例を示したフローチャートであり、三次元測定装置1の動作が示されている。まず、三次元測定装置1は、テクスチャ照明を点灯し(ステップS301)、ユーザによる明るさの調整を受け付ける(ステップS302)。三次元測定装置1は、測定箇所の明るさが適切でなければ(ステップS303)、ステップS302の処理手順を繰り返し、ユーザによる明るさの調整を再度受け付ける。
【0059】
次に、三次元測定装置1は、ユーザによるテクスチャ画像の画質の選択を受け付け(ステップS304)、通常画質が選択されれば、通常画質を指定し、ユーザにより指定された照明条件及び撮影条件を設定情報として登録し、この処理を終了する(ステップS313)。
【0060】
一方、三次元測定装置1は、ユーザによりフルフォーカス画質が選択されれば、フルフォーカス画質を指定する(ステップS305,S306)。フルフォーカス画質は、深度合成処理により得られる画質であり、焦点位置を異ならせながら取得された複数の撮影画像を合成することにより、画像全体においてピントの合った画像が得られる。
【0061】
そして、三次元測定装置1は、ユーザによりHDR(ハイダイナミックレンジ)画質が選択されれば、HDR画質を指定する(ステップS307,S308)。HDR画質は、露光時間を異ならせながら取得された複数の撮影画像を合成することにより、ダイナミックレンジの広い画像が得られる。
【0062】
次に、三次元測定装置1は、ユーザによりテクスチャ画像の確認が指示されれば(ステップS309)、ユーザにより指定された照明条件及び撮影条件に基づいて、撮影画像を取得し(ステップS310)、テクスチャ画像を作成して表示部51に表示する(ステップS311)。
【0063】
三次元測定装置1は、ユーザにより設定終了が指示されるまで、ステップS305からステップS311までの処理手順を繰り返し、ユーザにより設定終了が指示されれば、ユーザにより指定された照明条件及び撮影条件を設定情報として登録し、この処理を終了する(ステップS312)。
【0064】
図6のステップS401〜S413は、
図3のステップS113(データ解析)について、詳細動作の一例を示したフローチャートであり、三次元測定装置1の動作が示されている。まず、三次元測定装置1は、ユーザ操作に基づいて、三次元形状データを所定のデータ形式で読み込み、測定対象物Wの立体形状を表示部51に表示する(ステップS401,S402)。
【0065】
次に、三次元測定装置1は、ノイズの除去、穴埋め、不要データの削除等の前処理を行い(ステップS403)、ユーザによる表示倍率及び姿勢の調整を受け付ける(ステップS404)。
【0066】
次に、三次元測定装置1は、表示中の立体形状上において、測定箇所の幾何要素を抽出するための点群の指定を受け付ける(ステップS405)。そして、三次元測定装置1は、幾何要素について、形状種別の指定を受け付ける(ステップS406)。形状種別には、点、線、円、面、球、円筒、円錐等がある。ステップS405とステップS406とは、順序を入れ替えても良い。
【0067】
三次元測定装置1は、全ての幾何要素について、点群及び形状種別の指定が完了するまで、ステップS405及びS406の処理手順を繰り返し(ステップS407)、点群及び形状種別の指定が完了すれば、ユーザによる幾何要素の選択を受け付ける(ステップS408)。そして、三次元測定装置1は、選択された幾何要素について、寸法種別の選択を受け付ける(ステップS409)。寸法種別には、距離、角度、幾何公差、直径等がある。ステップS408とステップS409とは、順序を入れ替えても良い。
【0068】
次に、三次元測定装置1は、選択された幾何要素について、点群に基本形状をフィッティングさせることによって幾何要素を特定し、幾何要素間の寸法値を算出する(ステップS410)。次に、三次元測定装置1は、寸法値を測定対象物Wの立体形状上の測定箇所に対応づけて表示する(ステップS411)。三次元測定装置1は、所望の測定箇所が他にもあれば、ステップS408からステップS411までの処理手順を繰り返し(ステップS412)、所望の測定箇所が他になければ、測定結果を出力してこの処理を終了する(ステップS413)。
【0069】
次に、本発明による三次元測定装置1のさらに詳細な構成について、
図7〜
図14を用いて以下に説明する。
【0070】
<情報処理端末5>
図7は、
図1の情報処理端末5内の機能構成の一例を示したブロック図である。この情報処理端末5は、形状測定部10、形状データ記憶部11、表示制御部12、形状種別指定部13、点群選択部14、幾何要素抽出部15、偏差算出部16及び偏差表示対象領域指定部17により構成される。
【0071】
形状測定部10は、三次元空間における複数の測定点の位置情報を測定し、測定対象物Wの立体形状を表す点群を生成する。点群は、複数の測定点に対応する。形状測定部10は、多数の測定点の位置情報からなる三次元形状データを点群として生成する形状データ生成手段である。生成された三次元形状データは、形状データ記憶部11内に格納される。三次元形状データは、例えば、測定部2の撮像部23から取得した撮影画像に基づいて作成される。
【0072】
表示制御部12は、形状データ記憶部11内の三次元形状データに基づいて、表示部51を制御し、測定対象物Wの立体形状を表示する。例えば、多数の測定点が三次元的に配置されたオブジェクト体を所定の視点から眺めるように、立体形状が表示部51の画面に表示される。画面内における立体形状(オブジェクト体)の位置、視点及び表示倍率は、任意に指定することができる。
【0073】
形状種別指定部13は、抽出対象の幾何要素について、基本形状の種別の指定を受け付ける。指定可能な基本形状には、点、直線、円、平面、円筒面、円錐面、球面などがあり、キーボード52又はマウス53によるユーザ操作に基づいて、いずれかの形状種別が指定される。
【0074】
点群選択部14は、表示中の立体形状上において、幾何要素を抽出するための点群を選択する。点群は、2以上の測定点からなり、キーボード52又はマウス53によるユーザ操作に基づいて、立体形状に対する位置の指定を受け付け、当該位置の指定に基づいて、選択される。例えば、マウス操作などにより、画面上で所望の点群を取り囲む図形、例えば、多角形を指定することにより、当該点群が選択される。また、マウス操作などにより、画面上で立体形状上の1つの位置を指定することにより、当該位置を含み、かつ、ユーザにより指定された形状種別の基本形状にフィットする点群が選択される。
【0075】
幾何要素抽出部15は、点群選択部14により選択された点群にフィッティングさせた基本形状として、幾何要素を特定する。幾何要素抽出部15は、例えば、点群選択部14により選択された第1の点群にフィッティングする第1の幾何要素を特定し、また、点群選択部14により選択された第2の点群にフィッティングする第2の幾何要素を特定する。
【0076】
ユーザにより指定された形状種別の基本形状を点群にフィッティングさせる方法には、従来から知られている統計的手法を利用することができる。例えば、点群を構成する測定点と基本形状との距離に基づく最小二乗法により、幾何要素の三次元位置、姿勢及びサイズが特定される。
【0077】
偏差算出部16は、点群選択部14により選択された点群に含まれる測定点について、幾何要素抽出部15により特定された幾何要素に対する偏差を求める。偏差算出部16は、第1の点群から第1の幾何要素が特定され、かつ、第2の点群から第2の幾何要素が特定されれば、第1の点群について、第1の幾何要素に対する第1の偏差を求めるとともに、第2の点群について、第2の幾何要素に対する第2の偏差を求める。
【0078】
この偏差算出部16は、幾何要素が平面である場合、平面の法線方向の偏差が求められる。すなわち、平面と測定点との間の距離から偏差が求められる。また、偏差の符号は、測定点が平面の外側であるのか、或いは、内側であるのかによって決定される。
【0079】
幾何要素が円筒である場合、円筒の側面の法線方向の偏差が求められる。幾何要素が円錐である場合、円錐の側面の法線方向の偏差が求められる。幾何要素が球である場合、球の表面の法線方向の偏差が求められる。
【0080】
偏差表示対象領域指定部17は、幾何要素抽出部15により特定された幾何要素を内包する偏差表示対象領域を指定する。例えば、点群から抽出された幾何要素が平面であれば、当該幾何要素を基準面とし、この基準面(平面)の法線方向に色割り当てのレンジ幅と同じ距離だけ上下にオフセットした2つの平面で挟まれる領域が偏差表示対象領域として指定される。
【0081】
点群から抽出された幾何要素が円筒である場合、基準面(円筒面)の法線方向、すなわち、径方向に色割り当てのレンジ幅と同じ距離だけオフセットした2つの円筒面で挟まれる領域が偏差表示対象領域として指定される。点群から抽出された幾何要素が円錐である場合、基準面(円錐面)の法線方向、すなわち、母線に垂直な方向に色割り当てのレンジ幅と同じ距離だけオフセットした2つの円錐面で挟まれる領域が偏差表示対象領域として指定される。点群から抽出された幾何要素が球である場合、基準面(球面)の法線方向、すなわち、径方向に色割り当てのレンジ幅と同じ距離だけオフセットした2つの球面で挟まれる領域が偏差表示対象領域として指定される。
【0082】
偏差表示対象領域指定部17は、第1の幾何要素及び第2の幾何要素が偏差算出のための基準面として指定されれば、第1の幾何要素を内包する偏差表示対象領域と、第2の幾何要素を内包する偏差表示対象領域とをそれぞれ指定する。
【0083】
表示制御部12は、幾何要素を基準面とする偏差の分布を立体形状上に重畳して表示する。表示制御部12は、第1の幾何要素に対する第1の偏差の分布と、第2の幾何要素に対する第2の偏差の分布とを立体形状上に重畳して表示する。
【0084】
この表示制御部12は、ユーザが偏差表示の基準面として指定した幾何要素以外の部位について偏差が表示されることを防止するために、偏差表示対象領域内の測定点を表示対象として、偏差分布を表示する。すなわち、表示制御部12は、偏差表示対象領域内の第1の点群について、第1の幾何要素に対する第1の偏差の分布を表示するとともに、偏差表示対象領域内の第2の点群について、第2の幾何要素に対する第2の偏差の分布を表示する。
【0085】
また、表示制御部12は、偏差算出部16により求められた偏差に応じて異なる色を測定点に割り当てて偏差分布を表示する。具体的には、第1の偏差に応じて異なる色を第1の点群に割り当てることにより、第1の偏差の分布が表示される。また、第2の偏差に応じて異なる色を第2の点群に割り当てることにより、第2の偏差の分布が表示される。例えば、偏差の値と表示色との対応関係が定められたカラーテーブルを用いて色割り当てが行われる。
【0086】
また、偏差に応じた色割り当ては、偏差の上限値を上限偏差とし、偏差の下限値を下限偏差とする範囲内で行われ、上限偏差を上回る偏差や下限偏差を下回る偏差には単一の色が割り当てられる。
【0087】
また、2つの基準面に対してそれぞれ指定された偏差表示対象領域の一部が互いに重複している場合、重複領域内の点群について、色を合成して偏差表示を行っても良いし、或いは、偏差を非表示とするような構成であっても良い。また、基準面として指定された幾何要素に対して優先順位づけを行い、重複領域内の点群は、優先順位に従って偏差表示を行うような構成であっても良い。例えば、先に基準面として登録された幾何要素の色付けが優先される。
【0088】
図8は、
図7の情報処理端末5における偏差分布の表示時の動作の一例を示した図であり、偏差分布の表示対象を制限するための偏差表示対象領域R
1及びR
2が示されている。図中には、画面表示された測定対象物Wの立体形状が示されている。この測定対象物Wは、階段状の段差を有しており、下段の上面S
1と上段の上面S
2との2つの矩形状の平面がそれぞれ基準面に指定されている。
【0089】
偏差表示対象領域R
1は、下段の上面S
1に対し、法線方向の正方向に色割り当ての上限偏差だけオフセットした矩形状平面と、法線方向の負方向に色割り当ての下限偏差の絶対値だけオフセットした矩形状平面とで挟まれた直方体状の領域である。偏差表示対象領域R
2は、上段の上面S
2に対し、法線方向の正方向に色割り当ての上限偏差だけオフセットした矩形状平面と、法線方向の負方向に色割り当ての下限偏差の絶対値だけオフセットした矩形状平面とで挟まれた直方体状の領域である。
【0090】
偏差分布の表示は、この様な偏差表示対象領域R
1及びR
2に内包されている測定点について行われる。基準面に対して偏差表示対象領域を指定する際のオフセット量は、上述した上限偏差及び下限偏差に限られるものではなく、予め定められた任意の値を用いても良い。また、上記オフセット量は、固定値であっても良いが、ユーザが任意に指定できるような構成であっても良い。
【0091】
図9は、
図7の情報処理端末5における偏差分布の表示時の動作の一例を示した図であり、測定対象物Wの上面S
1及びS
2について偏差分布が示されている。図中には、下段の上面S
1を基準面とする偏差分布と上段の上面S
1を基準面とする偏差分布とが、立体形状上に重畳して表示されている。
【0092】
この様に複数の幾何要素をそれぞれ基準面に指定することができ、これらの基準面に対応づけて複数の偏差分布を立体形状上に同時に表示することができる。従って、立体形状上の複数の幾何要素について、形状のうねり具合を容易に比較することができる。また、偏差分布の表示対象が基準面ごとに指定される偏差表示対象領域内の測定点に制限されるため、基準面として指定された幾何要素以外の部位がべた塗りになり、立体形状が確認できなくなるのを防止することができる。
【0093】
図10は、
図7の情報処理端末5における偏差分布の表示時の動作の一例を示した図であり、円筒の側面S
3に対して指定された偏差表示対象領域R
3が示されている。円筒の側面S
3が基準面に指定された場合の偏差表示対象領域R
3は、側面S
3に対し、法線方向の正方向に色割り当ての上限偏差だけオフセットした円筒面と、法線方向の負方向に色割り当ての下限偏差の絶対値だけオフセットした円筒面とで挟まれた領域である。偏差分布の表示は、偏差表示対象領域R
3に内包されている測定点について行われ、偏差表示対象領域R
3外の測定点については偏差表示が行われない。
【0094】
図11のステップS501〜S507は、
図7の情報処理端末5における偏差分布の表示時の動作の一例を示したフローチャートである。まず、情報処理端末5は、表示部51の画面に表示中の立体形状について、偏差分布を求めるための基準面の登録を行う(ステップS501)。基準面の登録処理は、立体形状上の点群を選択して幾何要素を抽出することにより行われる。
【0095】
次に、情報処理端末5は、登録された基準面について、偏差の表示対象を制限するために偏差表示対象領域を指定する(ステップS502)。偏差表示対象領域は、基準面を内包する領域であり、偏差の表示対象が基準面の近傍の点群に制限される。
【0096】
情報処理端末5は、指定された偏差表示対象領域について、偏差表示対象領域内の多数の測定点からなる点群を選択し、偏差の表示対象として登録する(ステップS503,S504)。点群の選択処理は、測定点と基準面との距離に基づいて行われる。
【0097】
次に、情報処理端末5は、登録された点群について、偏差に応じて異なる色を割り当て、色割り当て情報を偏差カラーマップとして記憶する(ステップS505)。情報処理端末5は、偏差カラーマップに従って、基準面に対応づけて偏差分布を立体形状上に表示する(ステップS506)。偏差分布の表示処理は、登録された点群に偏差カラーマップの色を着色することによって行われる。基準面の追加があれば、ステップS501からステップS506までの処理手順が繰り返される(ステップS507)。
【0098】
図12のステップS601〜S606は、
図11のステップS501(基準面の登録)について、詳細動作の一例を示したフローチャートであり、情報処理端末5の動作が示されている。まず、情報処理端末5は、ユーザにより形状種別が指定されれば(ステップS601)、指定された形状種別の幾何要素を抽出するための点群を立体形状上で選択する(ステップS602)。形状種別の指定は、マウス操作などによって行われる。
【0099】
次に、情報処理端末5は、選択された点群に基本形状をフィッティングさせることにより、幾何要素を抽出する(ステップS603)。情報処理端末5は、抽出された幾何要素を立体形状上に表示する(ステップS604)。情報処理端末5は、ユーザによる確定操作が検知されるまで、ステップS601からステップS604までの処理手順を繰り返し(ステップS605)、確定操作が検知されれば、抽出された幾何要素を偏差分布の表示対象として登録する(ステップS606)。
【0100】
図13のステップS701〜S708は、
図12のステップS602(点群の選択)について、詳細動作の一例を示したフローチャートであり、情報処理端末5の動作が示されている。まず、情報処理端末5は、ユーザによる点群の選択方法の指定を受け付ける(ステップS701)。
【0101】
次に、情報処理端末5は、指定された選択方法に従って、幾何要素を抽出するための点群を選択する。すなわち、情報処理端末5は、自動選択が指定された場合、立体形状上の位置がユーザにより指定されれば(ステップS702,S703)、指定された位置を含み、かつ、ステップS601において指定された形状種別の基本形状にフィットする点群を自動的に判別して点群を選択する(ステップS704)。立体形状上の位置は、マウス操作などによって指定される。点群の自動判別処理では、ユーザにより指定された位置を含む基本形状をフィッティングによって推定し、推定された基本形状の近傍の点群が抽出される。
【0102】
一方、情報処理端末5は、自動選択が指定されなかった場合、立体形状上で多角形がユーザにより指定されれば(ステップS702,S706)、指定された多角形の内部に含まれる点群を選択又は削除する(ステップS707)。情報処理端末5は、ユーザによる確定操作が検知されるまで、ステップS706及びS707の処理手順を繰り返す(ステップS708)。次に、情報処理端末5は、点群の選択処理が完了するまで、ステップS701以降の処理手順を繰り返し、選択処理が完了すれば、この処理を終了する(ステップS705)。
【0103】
図14のステップS801〜S803は、
図12のステップS603(幾何要素の抽出)について、詳細動作の一例を示したフローチャートであり、情報処理端末5の動作が示されている。まず、情報処理端末5は、選択されている点群から外れ値を除去する(ステップS801)。
【0104】
外れ値の除去処理には、従来から知られている統計的手法が用いられる。例えば、選択されている点群からステップS601において指定された形状種別の基本形状をフィッティングによって抽出し、点群の頂点と基本形状との距離、又は、頂点が有する法線と基本形状の法線との角度差を所定の閾値と比較することにより、外れ値となる頂点を決定し、幾何要素を抽出するための点群から除去する。
【0105】
次に、情報処理端末5は、選択されている点群からステップS601において指定された形状種別の基本形状をフィッティングによって抽出し(ステップS802)、抽出された基本形状から幾何要素を特定する(ステップS803)。なお、選択された点群から外れ値を除去するステップS801は、省略しても良い。
【0106】
本実施の形態によれば、第1の幾何要素に対する第1の偏差の分布と第2の幾何要素に対する第2の偏差の分布とが立体形状上に重畳して表示されるため、立体形状上の複数の幾何要素について、うねり具合を比較することができる。特に、偏差分布の表示対象が幾何要素を内包する偏差表示対象領域内に制限されるため、偏差を求めるための幾何要素とは異なる部位の立体形状が偏差分布の表示によって確認できなくなるのを防止することができる。また、点群から抽出される幾何要素が円筒、円錐又は球であっても、当該幾何要素に対する偏差分布を表示することができる。
【0107】
なお、本実施の形態では、測定対象物Wの形状を光学的に測定して三次元形状データが取得される場合の例について説明したが、本発明は、三次元形状データの取得方法をこれに限定するものではない。例えば、プローブを測定対象物Wに接触させて立体形状を測定する接触式の測定器にも本発明は適用可能である。