(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0015】
以下、図面を参照しながら本発明の複数の実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。
【0016】
(発光体保護フィルム)
図1は本発明の一実施形態に係る発光体保護フィルムの概略断面図である。
図1の発光体保護フィルム10は、第一バリアフィルム1と第二バリアフィルム2と第一接着層11とを備え、第一バリアフィルム1と第二バリアフィルム2とが第一接着層11を介して貼り合わされている。第二バリアフィルム2の第一バリアフィルム1と反対側の面上には、必要に応じてコーティング層7が設けられる。発光体保護フィルム10は2枚のバリアフィルムを備えることから、高いガスバリア性が得られる。また、本実施形態において、第一接着層11はエポキシ化合物とアミン化合物との反応物を含んでいる。第一接着層11はバリアフィルム同士の接着性のみならず、他の材料を用いて得られた接着層と比べて優れたガスバリア性を得ることができる。
【0017】
第一バリアフィルム1は第一基材1aと第一基材1aの一方の面上に形成された第一バリア層1bとを有し、第二バリアフィルム2は第二基材2aと第二基材2aの一方の面上に形成された第二バリア層2bとを有し、第一バリア層1bと第二バリア層2bとが対向している。言い換えると、第一接着層11は第一バリア層1b及び第二バリア層2bの両方と隣り合うように配置され、これらのバリア層によって挟み込まれている。第一バリア層1b及び第二バリア層2bと第一接着層11との間に別の層が配置された場合、当該別の層の端部から僅かに酸素が浸入し、接着層に供給される可能性がある。しかしながら、上記層構成を備える発光体保護フィルム10ではこのような僅かな酸素の侵入をも抑制することができ、この結果、高温環境下に長時間曝露された場合にも第一接着層11の黄変、ひいては発光体保護フィルム10全体としての黄変を抑制することができ、発光体保護フィルムとして十分高い透明性を維持することができる。このような構成を備える発光体保護フィルム10を空気(1atm)中温度85℃の環境下に1000時間曝露した前後において、発光体保護フィルムのL
*a
*b
*表色系における色座標b
*の変化量Δb
*は1.00以下であることができる。変化量Δb
*は0.50以下であることが好ましく、0.30以下であることがより好ましく、0.10以下であることがさらに好ましい。この変化量Δb
*が上記範囲内であることで、発光体保護フィルム10は高温環境下に曝露されても透明性を長期間にわたって維持することができる。なお、L
*a
*b
*表色系はCIEによって規格化された表色系である。
【0018】
第一基材1a及び第二基材2aはそれぞれ第一バリア層1b及び第二バリア層2bを形成する基材であり、加工及び流通等における破損を抑制することもできる。発光体保護フィルム10の透明性の観点から、第一基材1a及び第二基材2aの全光線透過率は85%以上であることが好ましい。このような基材としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート及びポリエチレンナフタレート等のポリエステル;ナイロン等のポリアミド;ポリプロピレン及びシクロオレフィン等のポリオレフィン;ポリカーボネート;並びにトリアセチルセルロース等が挙げられるが、これらに限定されない。また、第一基材1a及び第二基材2aは二軸延伸されていることが好ましい。第一基材1a及び第二基材2aの厚さは、9〜100μmであることが好ましく、12〜50μmであることがより好ましい。基材1a,2aの厚さがそれぞれ9μm以上であると、基材1a,2aの強度を十分に確保することができ、100μm以下であると、長いロール(バリアフィルム1,2のロール)を効率的且つ経済的に製造することができる。
【0019】
第一基材1aの厚さと第二基材2aの厚さは同一であっても異なっていてもよい。波長変換シートの厚さをより薄くする観点から、発光体層に近い側の第一基材1aの厚さを、発光体層から遠い側の第二基材2aよりも薄くしてもよい。水分及び気体は、主に波長変換シートの表面から透過するため、第二基材2aの厚さを相対的に厚くして表面からの水分や酸素の透過を防ぎつつ、第一基材1aの厚さを相対的に薄くして波長変換シート全体の厚さを薄くすることができる。水分及び酸素の透過は、バリアフィルム1,2の表面からだけでなく、端面からも生じるため、第一基材1aの厚さが薄い方が端面からの水分や酸素の侵入を抑制することができる。第一基材1aの厚さは40μm以下であることが好ましい。
【0020】
第一基材1a及び第二基材2a上には、それぞれ第一バリア層1b及び第二バリア層2bが、必要に応じてアンカーコート層(図示しない)を介して、形成されている。アンカーコート層としてはポリエステル樹脂等が挙げられ、アンカーコート層の厚さは0.01〜1μm程度である。
【0021】
第一バリア層1bは、第一無機薄膜層1vと第一ガスバリア性被覆層1cとを含むことが好ましい。すなわち、第一バリア層1bは、第一基材1aの一方の面上に第一無機薄膜層1vが設けられ、この第一無機薄膜層1vの上に第一ガスバリア性被覆層1cが設けられた構成である。第二バリア層2bは、第二無機薄膜層2vと第二ガスバリア性被覆層2cとを含むことが好ましい。すなわち、第二バリア層2bは、第二基材2aの一方の面上に第二無機薄膜層2vが設けられ、この第二無機薄膜層2vの上に第二ガスバリア性被覆層2cが設けられた構成である。
【0022】
無機薄膜層1v,2vとしては、特に限定されるものではないが、例えば、酸化アルミニウム、酸化珪素、酸化マグネシウムあるいはそれらの混合物を用いることができる。これらの中でも、バリア性、生産性の観点から、酸化アルミニウム又は酸化珪素を用いることが望ましい。
【0023】
無機薄膜層1v,2vは無機化合物を含み、金属酸化物を含むことが好ましい。上記金属酸化物としては、例えば、アルミニウム、銅、銀、イットリウム、タンタル、ケイ素、マグネシウム等の金属の酸化物が挙げられる。金属酸化物は、安価でガスバリア性に優れることから、酸化ケイ素(SiO
x、xは1.0〜2.0)であることが好ましい。xが1.0以上であると、良好なガスバリア性が得られやすい傾向がある。
【0024】
無機薄膜層1v,2vは、製造コストの観点から、蒸着法で形成された無機蒸着膜層であることが好ましい。無機薄膜層1v,2vが無機蒸着膜層である場合、蒸着材料の飛散(スプラッシュ)により無機薄膜層1v,2vに孔が生じることがある。スプラッシュが生じる頻度は少ないものの、スプラッシュによって生じる孔は比較的大きな欠陥であり、基材1a,2aをも貫通する孔となり得る。したがって、スプラッシュによる孔が生じた保護フィルムでは、酸素の侵入経路となり得る。特に、発光体層に近い側に配置される第一基材1a及び第一無機薄膜層1vに孔が生じた場合、当該孔の周辺の発光体層にダークスポットがより発生しやすくなる。しかし、後述する第一接着層11の酸素透過度が1000cm
3/(m
2・day・atm)以下であると、仮に、上述のような比較的大きな欠陥があったとしても、欠陥がないときと同様にダークスポットの発生を抑制しやすくなる。したがって、第一無機薄膜層1vが無機蒸着膜層であり、且つ、第一接着層11の酸素透過度が1000cm
3/(m
2・day・atm)以下であることにより、製造コストを低減しつつダークスポットの発生を抑制しやすくなる。
【0025】
無機薄膜層1v,2vの厚さ(膜厚)はそれぞれ、5〜500nmであることが好ましく、10〜100nmであることがより好ましい。膜厚が5nm以上であると、均一な膜を形成しやすく、ガスバリア性の機能をより十分に果たすことができる傾向がある。一方、膜厚が500nm以下であると、無機薄膜層により十分なフレキシビリティを保持させることができ、成膜後に折り曲げ、引っ張りなどの外的要因により、薄膜に亀裂を生じることをより確実に防ぐことができる傾向がある。なお、第一無機薄膜層1vの厚さと第二無機薄膜層2vの厚さは、同一であっても異なっていてもよい。
【0026】
第一ガスバリア性被覆層1c及び第二ガスバリア性被覆層2cはそれぞれ、後工程での二次的な各種損傷を防止するとともに、高いバリア性を付与するために設けられるものである。これらのガスバリア性被覆層1c,2cは、優れたバリア性を得る観点から、水酸基含有高分子化合物、金属アルコキシド、金属アルコキシド加水分解物及び金属アルコキシド重合物からなる群より選択される少なくとも1種を成分として含有していることが好ましい。
【0027】
水酸基含有高分子化合物としては、例えば、ポリビニルアルコール、ポリビニルピロリドン及びデンプン等の水溶性高分子が挙げられる。水酸基含有高分子化合物はバリア性の観点からポリビニルアルコールであることが好ましい。これらは、1種だけでなく、複数種を組み合わせて使用することもできる。
【0028】
金属アルコキシドとしては、例えば、下記式(1)で表される化合物が挙げられる。
M(OR
1)
m(R
2)
n−m ・・・(1)
【0029】
上記式(1)中、R
1及びR
2はそれぞれ独立に炭素数1〜8の1価の有機基であり、メチル基、エチル基等のアルキル基であることが好ましい。MはSi、Ti、Al、Zr等のn価の金属原子を示す。mは1〜nの整数である。金属アルコキシドとしては、例えば、テトラエトキシシラン[Si(OC
2H
5)
4]、トリイソプロポキシアルミニウム[Al(O−iso−C
3H
7)
3]等が挙げられる。金属アルコキシドは、加水分解後、水系の溶媒中において比較的安定であることから、テトラエトキシシラン又はトリイソプロポキシアルミニウムであることが好ましい。金属アルコキシドの加水分解物としては、例えば、テトラエトキシシランの加水分解物であるケイ酸(Si(OH)
4)、及び、トリプロポキシアルミニウムの加水分解物である水酸化アルミニウム(Al(OH)
3)等が挙げられる。これらは、1種だけでなく、複数種を組み合わせて使用することもできる。
【0030】
ガスバリア性被覆層1c,2cの厚さ(膜厚)はそれぞれ、50〜1000nmであることが好ましく、100〜500nmであることがより好ましい。膜厚が50nm以上であると、より十分なガスバリア性を得ることができる傾向があり、1000nm以下であると、より十分なフレキシビリティを保持できる傾向がある。なお、第一ガスバリア性被覆層1cの厚さと第二ガスバリア性被覆層2cの厚さは、同一であっても異なっていてもよい。
【0031】
バリアフィルム1,2の水蒸気透過度は100mg/(m
2・day)以下であることが好ましく、50mg/(m
2・day)以下であることがより好ましい。バリアフィルム1,2の水蒸気透過度が100mg/(m
2・day)以下であることにより、一層優れたガスバリア性が得られる傾向がある。
【0032】
第一接着層11はエポキシ化合物とアミン化合物とを含む熱硬化性の接着剤を硬化することにより得られ、上記エポキシ化合物とアミン化合物との反応物を含む。上記のように得られた第一接着層11を備える発光体保護フィルム10では一層高いガスバリア性が得られる。第一接着層11の酸素透過度は、厚さ5μmにおいて、厚さ方向に、1000cm
3/(m
2・day・atm)以下であることが好ましい。上記酸素透過度は500cm
3/(m
2・day・atm)以下であることがより好ましく、100cm
3/(m
2・day・atm)以下であることがさらに好ましく、50cm
3/(m
2・day・atm)以下であることがよりさらに好ましく、10cm
3/(m
2・day・atm)以下であることが特に好ましい。第一接着層11の酸素透過度が、1000cm
3/(m
2・day・atm)以下であることにより、発光ユニットに用いた場合に、バリアフィルムが欠陥を有していたとしても、当該欠陥周辺の発光体層におけるダークスポットの発生を抑制できる傾向がある。上記酸素透過度の下限値は特に制限されないが、例えば、0.1cm
3/(m
2・day・atm)である。
【0033】
第一接着層11の厚さは、0.5〜50μmであることが好ましく、1〜20μmであることがより好ましく、2〜6μmあることがさらに好ましい。第一接着層11の厚さが0.5μm以上であることにより、第一バリアフィルム1と第二バリアフィルム2との密着性が得られやすくなり、上記厚さが50μm以下であることにより、より優れたガスバリア性及び透明性が得られやすくなる。
【0034】
コーティング層(マット層)7は、一以上の光学的機能、帯電防止機能又は傷付け防止機能を発揮させるために、第二基材2aの他方の面上に設けられ、発光体保護フィルム10の最表面となっている。光学的機能としては、特に限定されるものではないが、干渉縞(モアレ)防止機能、反射防止機能、拡散機能等が挙げられる。これらの中でも、コーティング層7は、光学的機能として少なくとも干渉縞防止機能を有することが好ましい。本実施形態では、コーティング層7が少なくとも干渉縞防止機能を有するものである場合について説明する。
【0035】
コーティング層7は、例えば、バインダー樹脂と、微粒子とを含んで構成されている。コーティング層7の表面から微粒子の一部が突出するように微粒子がバインダー樹脂に埋め込まれることにより、コーティング層7の表面には微細な凹凸が生じていてもよい。このようにコーティング層7を発光体層と反対側の表面に設けることにより、ニュートンリング等の干渉縞の発生をより十分に防止することができる。
【0036】
バインダー樹脂としては、特に限定されるものではないが、光学的透明性に優れた樹脂を用いることができる。より具体的には、例えば、ポリエステル系樹脂、アクリル系樹脂、アクリルウレタン系樹脂、ポリエステルアクリレート系樹脂、ポリウレタンアクリレート系樹脂、ウレタン系樹脂、エポキシ系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、メラミン系樹脂、フェノール系樹脂などを用いることができる。バインダー樹脂は熱可塑性樹脂、熱硬化性樹脂及び放射線硬化性樹脂のいずれであってもよい。これらの中でも耐光性や光学特性に優れるアクリル系樹脂を使用することが望ましい。これらは、一種だけでなく、複数種を組み合わせて使用することもできる。
【0037】
微粒子としては、特に限定されるものではないが、例えば、シリカ、クレー、タルク、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、酸化チタン、アルミナなどの無機微粒子の他、スチレン樹脂、ウレタン樹脂、シリコーン樹脂、アクリル樹脂などの有機微粒子を用いることができる。これらは、一種だけでなく、複数種を組み合わせて使用することもできる。
【0038】
微粒子の平均粒径は、0.1〜30μmであることが好ましく、0.5〜10μmであることがより好ましい。微粒子の平均粒径が0.1μm以上であると、優れた干渉縞防止機能が得られる傾向があり、30μm以下であると、透明性がより向上する傾向がある。コーティング層7における微粒子の含有量は、コーティング層7全量を基準として0.5〜30質量%であることが好ましく、3〜10質量%であることがより好ましい。微粒子の含有量が0.5質量%以上であると、光拡散機能と干渉縞の発生を防止する効果がより向上する傾向があり、30質量%以下であると、輝度の低減を十分に抑制できる傾向がある。
【0039】
図2に示すように、発光体保護フィルム10はさらに第二接着層22と支持基材3とを備えていてもよい。
図2において、支持基材3は第二基材2aの他方の面上に第二接着層22を介して貼り合わされおり、コーティング層7が支持基材3上に形成されて最表面となっている。発光体保護フィルム10が支持基材3を備えることにより、発光体保護フィルム10をロールtoロールで製造した際に加えられる熱及び張力によるシワの発生を低減できる傾向がある。また、仮に、第一バリアフィルム及び第二バリアフィルムの製造においてシワが発生していても、最終的にはシワを十分低減することができる傾向がある。
【0040】
支持基材3としては、特に限定されるものではないが、全光線透過率が85%以上の基材が望ましい。例えば透明性が高く、耐熱性に優れた基材として、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルムなどを用いることができる。支持基材3の厚さは、好ましくは10〜250μmであり、より好ましくは25〜240μmであり、さらに好ましくは40〜210μmであり、特に好ましくは55〜200μmである。支持基材3の厚さが10μm以上であることにより、発光体保護フィルム10のシワを改善する効果を得るための支持基材3の強度を十分に確保しやすくなり、250μm以下であることにより、波長変換シートの総厚が過剰に厚くなることを抑制しやすくなる。
【0041】
第二接着層22は、
図2に示すように、バリアフィルム2と支持基材3とを貼り合わせて積層するために、バリアフィルム2と支持基材3との間に設けられている。第二接着層22を構成する接着剤としては、アクリル系接着剤、エポキシ系接着剤、ウレタン系接着剤等が挙げられる。第二接着層22を構成する粘着剤としては、アクリル系粘着剤、ポリビニルエーテル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤、でんぷん糊系接着剤等が挙げられる。粘着剤はアクリル系粘着剤であることが好ましい。アクリル系粘着剤を用いることにより、第二接着層22の透明性を長期間維持しやすくなる。第二接着層22の厚さは、0.5〜50μmであることが好ましく、1〜20μmであることがより好ましく、2〜6μmあることがさらに好ましい。第二接着層22の厚さが0.5μm以上であることにより、バリアフィルム2と支持基材3との密着性が得られやすくなり、50μm以下であることにより、より優れたガスバリア性が得られやすくなる。
【0042】
次に、発光体保護フィルム10の製造方法について説明する。まず、例えば、ロールtoロール方式によって、バリアフィルム1,2をそれぞれ製造する。具体的には、第一基材1aの一方の面上に無機薄膜層1vを例えば蒸着法等によって積層する。次いで、水酸基含有高分子化合物、金属アルコキシド、金属アルコキシド加水分解物及び金属アルコキシド重合物からなる群より選択される少なくとも1種の成分等を含む水溶液あるいは水/アルコール混合溶液を主剤とするコーティング剤を無機薄膜層1vの表面上に塗布し、例えば80〜250℃で乾燥することで、ガスバリア性被覆層1cを形成する。これにより、第一基材1aの一方の面上にバリア層1b(無機薄膜層1v及びガスバリア性被覆層1c)が設けられた第一バリアフィルム1が得られる。これと同様の操作をすることで、第二基材2aの一方の面上にバリア層2b(無機薄膜層2v及びガスバリア性被覆層2c)が設けられた第二バリアフィルム2が得られる。
【0043】
なお、基材と、その表面に積層される無機薄膜層と密着性を向上させるため、基材と無機薄膜層との間にアンカーコート層を設けてもよい。アンカーコート層は、上述した樹脂を含む溶液を基材上に塗布し、例えば50〜200℃で乾燥硬化させることで形成することができる。アンカーコート層の厚さは、5〜500nmの範囲内とすることが好ましく、10〜100nmの範囲内とすることがより好ましい。
【0044】
第一バリアフィルム1及び第二バリアフィルム2をそれぞれ製造した後、これらを第一接着層11で貼り合わせることによって積層フィルムを製造する。具体的には、ラミネート装置を使用し、ロールtoロール方式によって第一バリアフィルム1のバリア層1bと、第二バリアフィルム2のバリア層2bとを対向させて、第一接着層11を構成する接着剤(又は粘着剤)でバリアフィルム1,2を貼り合わせ、接着剤を乾燥することにより、積層フィルムが得られる。
【0045】
さらに、積層フィルムと支持基材3とが貼り合わされてもよい。具体的には、ラミネート装置を使用し、ロールtoロール方式によって、積層フィルムの第二基材2aと、支持基材3とを対向させて、第二接着層22を構成する接着剤(又は粘着剤)で積層フィルムと支持基材3とが貼り合される。接着剤を乾燥することにより、保護フィルムが得られる。
【0046】
次に、ロールtoロール方式によって、保護フィルムの一方の表面(例えば、支持基材3表面)上に、必要に応じて、コーティング層7が形成される。具体的には、保護フィルムの一方の面(例えば、支持基材3表面)上に、バインダー樹脂と微粒子と必要に応じて溶剤とを混合したコーティング液を塗布し、乾燥することで、コーティング層7を形成する。これにより、コーティング層付き保護フィルムが得られる。以上のようにして、発光体保護フィルム10が得られる。
【0047】
(波長変換シート)
図3は、本発明の一実施形態に係る波長変換シートの概略断面図である。波長変換シートは液晶ディスプレイ用バックライトユニットの光源からの光の一部の波長を変換可能なシートである。
図3において、波長変換シート100は、蛍光体層50と、蛍光体層50の一方の面側及び他方の面側に、第一保護フィルム及び第二保護フィルムとして、それぞれ設けられた発光体保護フィルム10,10とを備える。すなわち、発光体保護フィルム10、蛍光体層50及び発光体保護フィルム10がこの順で積層されている。波長変換シート100は、一対の発光体保護フィルム10,10の間に蛍光体層50が包み込まれた(すなわち、封止された)構造となっている。一対の発光体保護フィルム10,10は、それぞれの第一バリアフィルムが蛍光体層50側を向くように配置されている。
【0048】
蛍光体層50は、厚さ数十〜数百μmの薄膜であり、
図3に示すように封止樹脂51と蛍光体52とを含む。封止樹脂51の内部には、蛍光体52が一種以上混合された状態で封止されている。封止樹脂51は、蛍光体層50と一対の発光体保護フィルム10,10とを積層する際に、これらを接合するとともに、これらの空隙を埋める役割を果たす。蛍光体層50は、一種類の蛍光体52のみが封止された蛍光体層が二層以上積層されたものであってもよい。それら一層又は二層以上の蛍光体層に用いられる二種類以上の蛍光体52は、励起波長が同一のものが選択される。この励起波長は、光源Lが照射する光の波長に基づいて選択される。二種類以上の蛍光体52の蛍光色は相互に異なる。光源に青色発光ダイオード(青色LED)を用いる場合、各蛍光色は、赤色、緑色である。各蛍光の波長、及び光源が照射する光の波長は、カラーフィルタの分光特性に基づき選択される。蛍光のピーク波長は、例えば赤色が610nm、緑色が550nmである。
【0049】
封止樹脂51としては、例えば、熱可塑性樹脂、熱硬化性樹脂、及び紫外線硬化型樹脂等を使用することができる。これらの樹脂は、一種を単独で又は二種以上を組み合わせて用いることができる。
【0050】
熱可塑性樹脂としては、例えば、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース及びメチルセルロース等のセルロース誘導体;酢酸ビニルとその共重合体、塩化ビニルとその共重合体、及び塩化ビニリデンとその共重合体等のビニル系樹脂;ポリビニルホルマール及びポリビニルブチラール等のアセタール樹脂;アクリル樹脂とその共重合体、メタアクリル樹脂とその共重合体等のアクリル系樹脂;ポリスチレン樹脂;ポリアミド樹脂;線状ポリエステル樹脂;フッ素樹脂;並びに、ポリカーボネート樹脂等を用いることができる。熱硬化性樹脂としては、フェノール樹脂、尿素メラミン樹脂、ポリエステル樹脂、及びシリコーン樹脂等が挙げられる。紫外線硬化型樹脂としては、エポキシアクリレート、ウレタンアクリレート、及びポリエステルアクリレート等の光重合性プレポリマーが挙げられる。また、これら光重合性プレポリマーを主成分とし、希釈剤として単官能や多官能のモノマーを使用することもできる。
【0051】
蛍光体52としては、量子ドットが好ましく用いられる。量子ドットとしては、例えば、発光部としてのコアが保護膜としてのシェルにより被膜されたものが挙げられる。コアとしては、例えば、セレン化カドミウム(CdSe)等が挙げられ、シェルとしては、例えば、硫化亜鉛(ZnS)等が挙げられる。CdSeの粒子の表面欠陥がバンドギャップの大きいZnSにより被覆されることで量子効率が向上する。また、蛍光体52は、コアが第一シェル及び第二シェルにより二重に被覆されたものであってもよい。この場合、コアにはCsSe、第一シェルにはセレン化亜鉛(ZnSe)、第二シェルにはZnSが使用できる。また、量子ドット以外の蛍光体52として、YAG:Ce等を用いることもできる。
【0052】
蛍光体52の平均粒子径は、好ましくは1〜20nmである。蛍光体層50の厚さは、好ましくは1〜500μmである。蛍光体層50における蛍光体52の含有量は、蛍光体層50全量を基準として、1〜20質量%であることが好ましく、3〜10質量%であることがより好ましい。
【0053】
なお、波長変換シート100の上記実施形態において、発光体保護フィルム10は、蛍光体層50の両面に設けられていたが、蛍光体層50の一方の面のみに設けられていてもよい。すなわち、蛍光体層50の一方の面には第一保護フィルムとして発光体保護フィルム10が設けられ、他方の面には第二保護フィルムとして別の保護フィルムが設けられていてもよい。
【0054】
波長変換シート100の製造方法としては、特に限定されず、以下の方法が挙げられる。例えば、封止樹脂51に蛍光体52を分散させ、調製した蛍光体分散液を発光体保護フィルム10の第一バリアフィルム1側の面上に塗布した後、塗布面に別の発光体保護フィルム10を貼り合わせ、蛍光体層50を硬化することにより、波長変換シート100を製造することができる。
【0055】
図4は、上記波長変換シートを用いて得られるバックライトユニットの概略断面図である。
図4において、バックライトユニット200は光源Lと波長変換シート100とを備える。詳細には、バックライトユニット200は、波長変換シート100、導光板G及び反射板Rがこの順で配置され、光源Lは上記導光板Gの側方(導光板Gの面方向)に配置される。導光板Gの厚さは、例えば、100〜1000μmである。
【0056】
導光板G及び反射板Rは、光源Lから照射された光を効率的に反射し、導くものであり、公知の材料が使用される。導光板Gとしては、例えば、アクリル、ポリカーボネート、及びシクロオレフィンフィルム等が使用される。光源Lには、例えば、青色発光ダイオード素子が複数個設けられている。この発光ダイオード素子は、紫色発光ダイオード、又はさらに低波長の発光ダイオードであってもよい。光源Lから照射された光は、導光板G(D
1方向)に入射した後、反射及び屈折等を伴って蛍光体層50(D
2方向)に入射する。蛍光体層50を通過した光は、蛍光体層50を通過する前の光に蛍光体層50で発生した黄色光が混ざることで、白色光となる。
【実施例】
【0057】
以下に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。
【0058】
(実施例1)
[発光体保護フィルムの作製]
バリアフィルムをロールtoロール方式によって以下のようにして作製した。まず、基材としての厚さ30μmのポリエチレンテレフタレート(PET)フィルムの片面に、無機薄膜層として酸化珪素を真空蒸着法により厚さ30nmで設け、さらに、無機薄膜層上に厚さ300nmのガスバリア性被覆層を形成した。このガスバリア性被覆層は、テトラエトキシシランとポリビニルアルコールとを含む塗液をウエットコーティング法により塗工することによって形成した。これにより、基材の一方の面上に無機薄膜層及びガスバリア性被覆層からなるバリア層が設けられたバリアフィルムのロールを得た。このバリアフィルムと同じ構成のバリアフィルムのロールを別途作製した。得られたバリアフィルムの水蒸気透過度をJIS K 7129の赤外線センサ法に準ずる方法で水蒸気透過度を測定したところ、50mg/(m
2・day)であった。水蒸気透過度の測定には水蒸気透過率測定装置(商品名:Permatran、MOCON社製)を用いた。透過セルの温度は40℃とし、高湿度チャンバの相対湿度は90%RHとし、低湿度チャンバの相対湿度を0%RHとした。
【0059】
上記のようにして得た二つのバリアフィルムを貼り合わせた。貼り合わせにはエポキシ樹脂主剤と、アミン系硬化剤からなる二液型エポキシ系接着剤を使用し、硬化後の膜厚が5μmとなる接着層(酸素透過度:5cm
3/(m
2・day・atm))を形成し、二枚のバリアフィルムのガスバリア性被覆層同士が対向するように積層されたフィルムを作製した。なお、接着層の酸素透過度は以下のように測定した。厚さ20μmの延伸ポリプロピレン(OPP)フィルム(酸素透過度:3000cm
3/(m
2・day・atm)(測定限界)以上)上に硬化後の膜厚が5μmとなるように前述の二液型エポキシ系接着剤膜を形成し評価用サンプルを作製し、差圧式ガス測定装置(GTRテック社製、GTR−10X)を用いて、JIS K7126−1(附属書1)に記載の方法に従って30℃70%RH環境下におけるサンプルの酸素透過度を測定した。
【0060】
上記のようにして得た積層フィルムと、厚さ30μmのPETフィルム(支持基材)とを貼り合わせた。貼り合わせにはアクリル系粘着剤を使用し、ラミネート後の厚みが2μmとなるように接着層を形成した。これにより、積層フィルム(基材側)と支持基材との間に接着層が介在する保護フィルム(コーティング層形成前)のロールを得た。
【0061】
上記のようにして得た保護フィルムの支持基材の表面に、厚さ3μmのコーティング層(マット層)を形成した。このコーティング層は、アクリル樹脂と、シリカ微粒子(平均粒径3μm)とを含む塗液をウエットコーティング法により塗工することによって形成した。これにより、コーティング層付き保護フィルムのロールを得た。
【0062】
[波長変換シートの作製]
第一保護フィルム及び第二保護フィルムとして、得られたコーティング層付き保護フィルム2枚を準備した。量子ドットとしてのCdSe/ZnS 530(商品名、SIGMA−ALDRICH社製)をエポキシ系感光性樹脂と混合後、混合液を第一保護フィルムの基材側に塗布し、そこに第二保護フィルムを積層し、UV硬化ラミネートにより、波長変換シートを得た。
【0063】
(比較例1)
二つのバリアフィルムを基材同士が対向するように積層して積層フィルムを作製し、積層フィルム(ガスバリア性被覆層側)に支持基材を貼り合わせたこと以外は、実施例1と同様にして、コーティング層付き保護フィルムのロール、及び、波長変換シートを得た。
【0064】
[発光体保護フィルムの評価]
実施例及び比較例で得られたコーティング層付きフィルムを85℃の空気中に1000時間曝露し、曝露前後のコーティング層付きフィルムをそれぞれ準備した。
【0065】
(L
*a
*b
*表色系における色座標b
*の変化量Δb
*)
実施例及び比較例で得られた高温環境曝露前後でのコーティング層付きフィルムのL
*a
*b
*表色系における色座標b
*を、分光色差計(日本電色工業株式会社製、NF333)を用いて測定し、色座標b
*の変化量Δb
*を求めた。高温環境曝露前後での色座標b
*の測定結果とその変化量Δb
*の計算結果を表1に示す。
【0066】
(分光透過率)
実施例及び比較例で得られた高温環境曝露前後でのコーティング層付きフィルムの波長435nmにおける分光透過率を、分光光度計(株式会社島津製作所製、UV3600)を用いて測定した。高温環境曝露前後での分光透過率の測定結果とその差を表1に示す。
【0067】
(水蒸気透過度)
水蒸気透過度をJIS K 7129の赤外線センサ法に準ずる方法で、実施例及び比較例で得られた高温環境曝露前後でのコーティング層付き保護フィルムの水蒸気透過度を測定した。高温環境曝露前後での水蒸気透過度の測定結果を表1に示す。水蒸気透過度の測定には水蒸気透過率測定装置(商品名:Permatran、MOCON社製)を用いた。透過セルの温度は40℃とし、高湿度チャンバの相対湿度は90%RHとし、低湿度チャンバの相対湿度を0%RHとした。
【0068】
【表1】
【0069】
実施例1及び比較例1ではともに発光体保護フィルムの分光透過率が高く、水蒸気透過度が小さいことが確認された。実施例1では高温環境曝露前後での変化量Δb
*が小さく、分光透過率の低下が小さかったのに対し、比較例1では変化量Δb
*が大きく、実施例1と比べて分光透過率が大きく低下した。また、実施例1では高温環境曝露前後での水蒸気透過度の変化がなかったのに対し、比較例1では水蒸気透過度が低下した。これは、高温環境曝露によってエポキシ系接着剤によって形成された接着層が酸化し、接着層によるガスバリア性の効果が低下したためであると考えられる。