(58)【調査した分野】(Int.Cl.,DB名)
fcc構造を有し、金属板の表面において下記(a)又は(b)の条件を満たす金属板に対して、二軸引張変形が生じ、かつ前記金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工を施し、成形品を製造する成形品の製造方法。
(a)前記金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の面積分率が0.20以上0.35以下である。
(b)前記金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の、面積分率が0.45以下、かつ平均結晶粒径が15μm以下である。
fcc構造を有し、金属板の表面において下記(A)又は(B)の条件を満たす金属板に対して、二軸引張変形が生じ、かつ前記金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工を施し、成形品を製造する成形品の製造方法。
(A)前記金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の面積分率が0.25以上0.55以下である。
(B)前記金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の、面積分率が0.55以下、かつ平均結晶粒径が15μm以下である。
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、特許文献1では、圧延幅方向を主ひずみ方向とする一軸引張変形が生じる金属板の成形加工において、リジングを抑制することが示されているのみである。そして、深絞り成形、張り出し成形等、二軸引張変形が生じる金属板の成形加工については何ら考慮されていない。
【0006】
一方で、深絞り成形、張り出し成形等、二軸引張変形が生じる金属板の成形加工でも、近年の複雑な形状の成形品を製造することが要求されている。しかし、大きな加工量(金属板の板厚減少率10%以上となる加工量)で金属板を成形加工すると、成形品の表面に凹凸が発達し、肌荒れとなって外観上の美観を損ねるという問題が生じているのが現状である。
上記理由から,例えば、従来の自動車の外板の製品は、製品面に付与される歪量を金属板の板厚減少率10%未満となる加工量に制限して生産されている。すなわち肌荒れ発生を避けるため、加工条件に制約がある。しかしながら、より複雑な自動車の外板製品形状が要求されており,成形加工時の金属板の板厚減少率10%以上と肌荒れ抑制との両立できる方法が望まれている。
【0007】
そこで、本発明の課題は、上記事情に鑑み、fcc構造を有する金属板に対して、二軸引張変形が生じ、かつ金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工を施したときでも、肌荒れの発生が抑制され意匠性に優れた成形品が得られる成形品の製造方法を提供することである。
また、他の本発明の課題は、fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品であって、成形品の最大板厚をD1とし、成形品の最小板厚をD2としたとき、式:10≦(D1−D2)/D1×100≦30の条件、又は成形品の最大硬度をH1とし、成形品の最小硬度をH2としたとき、式:15≦(H1−H2)/H1×100≦40の条件を満たした成形品であっても、肌荒れの発生が抑制され意匠性に優れた成形品を提供することである。
【課題を解決するための手段】
【0008】
発明者らは、近年の複雑な形状の成形品を製造するために、大きな加工量(金属板の板厚減少率10%以上となる加工量)で金属板を成形加工するときの表面性状を調査した。その結果、発明者らは、次の知見を得た。二軸引張変形下において、bcc構造を有する金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒が優先変形し、凹凸が発達する。そこで、発明者らは、金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の面積分率及び平均結晶粒径に着目した。その結果、発明者らは、これら結晶粒の面積分率及び平均結晶粒径によって、凹凸の発達を抑え、肌荒れの発生が抑制され意匠性に優れた成形品が得られることを見出した。
【0009】
さらに、発明者らは、次の知見を得た。二軸引張変形下において、bcc構造を有する金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒が優先変形し、凹凸が発達する。そこで、発明者らは、金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の面積分率に着目した。その結果、発明者らは、これら結晶粒の面積分率によって、凹凸の発達を抑え、肌荒れの発生が抑制され意匠性に優れた成形品が得られることを見出した。
【0010】
そして、発明者らは、fcc構造を有する金属板のすべり系を仮定し、数値解析によって、金属板の加工後の肌荒れに及ぼす結晶方位の影響を調査した。その結果、次の知見を得た。bcc構造を有する金属板と同様に、fcc構造を有する金属板も、二軸引張変形下において、金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒が優先変形し、凹凸が発達する。また、二軸引張変形下において、金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒が優先変形し、凹凸が発達する。
そこで、発明者らは、fcc構造を有する金属板においても、金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の面積分率、及び、金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の面積分率に着目した。その結果、発明者らは、これら結晶粒の面積分率によって、凹凸の発達を抑え、肌荒れの発生が抑制され意匠性に優れた成形品を得られることを見出した。
【0011】
本発明の要旨は、以下の通りである。
【0012】
<1>
fcc構造を有し、金属板の表面において下記(a)又は(b)の条件を満たす金属板に対して、二軸引張変形が生じ、かつ前記金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工を施し、成形品を製造する成形品の製造方法。
(a)前記金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の面積分率が0.20以上0.35以下である。
(b)前記金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の、面積分率が0.45以下、かつ平均結晶粒径が15μm以下である。
<2>
fcc構造を有し、金属板の表面において下記(A)又は(B)の条件を満たす金属板に対して、二軸引張変形が生じ、かつ前記金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工を施し、成形品を製造する成形品の製造方法。
(A)前記金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の面積分率が0.25以上0.55以下である。
(B)前記金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の、面積分率が0.55以下、かつ平均結晶粒径が15μm以下である。
<3>
fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品であって、
成形品の最大板厚をD1とし、成形品の最小板厚をD2としたとき、式:10≦(D1−D2)/D1×100≦30の条件を満たし、
かつ成形品の表面において下記(c)又は(d)の条件を満たす成形品。
(c)前記成形品の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の面積分率が0.20以上0.35以下である。
(d)前記成形品の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の、面積分率が0.45以下、かつ平均結晶粒径が15μm以下である。
<4>
fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品であって、
成形品の最大板厚をD1とし、成形品の最小板厚をD2としたとき、式:10≦(D1−D2)/D1×100≦30の条件を満たし、
かつ成形品の表面において下記(C)又は(D)の条件を満たす成形品。
(C)前記成形品の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の面積分率が0.25以上0.55以下である。
(D)前記成形品の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の、面積分率が0.55以下、かつ平均結晶粒径が15μm以下である。
<5>
fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品であって、
成形品の最大硬度をH1とし、成形品の最小硬度をH2としたとき、式:15≦(H1−H2)/H1×100≦40の条件を満たし、
かつ成形品の表面において下記(c)又は(d)の条件を満たす成形品。
(c)前記成形品の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の面積分率が0.20以上0.35以下である。
(d)前記成形品の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の、面積分率が0.45以下、かつ平均結晶粒径が15μm以下である。
<6>
fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品であって、
成形品の最大硬度をH1とし、成形品の最小硬度をH2としたとき、式:15≦(H1−H2)/H1×100≦40の条件を満たし、
かつ成形品の表面において下記(C)又は(D)の条件を満たす成形品。
(C)前記成形品の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の面積分率が0.25以上0.55以下である。
(D)前記成形品の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の、面積分率が0.55以下、かつ平均結晶粒径が15μm以下である。
【発明の効果】
【0013】
本発明によれば、fcc構造を有する金属板に対して、二軸引張変形が生じ、かつ金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工を施したときでも、肌荒れの発生が抑制され意匠性に優れた成形品が得られる成形品の製造方法を提供することができる。
また、他の本発明によれば、fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品であって、成形品の最大板厚をD1とし、成形品の最小板厚をD2としたとき、式:10≦(D1−D2)/D1×100≦30の条件、又は、成形品の最大硬度をH1とし、成形品の最小硬度をH2としたとき、式:15≦(H1−H2)/H1×100≦30の条件を満たした成形品であっても、肌荒れの発生が抑制され意匠性に優れた成形品を提供することができる。
【発明を実施するための形態】
【0015】
以下、図面を参照して、本発明を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。
【0016】
(成形品の製造方法)
発明者らは、成形加工する金属板の組織について種々検討を行った。
まず、発明者らは、bcc構造を持つ金属板の組織について種々検討を行った。その結果、以下の知見を得た。
【0017】
(1)bcc構造を持つ金属板では、{001}面の方が{111}面と比較して、等二軸引張変形および等二軸引張変形に近い不等二軸引張変形の応力に弱い。また、{101}面の方が{111}面と比較して、等二軸引張変形および等二軸引張変形に近い不等二軸引張変形の応力に弱い。そのため、大きな加工量(金属板の少なくとも一部が板厚減少率10%以上30%以下となる加工量)で、深絞り成形及び張り出し成形等、二軸引張変形が生じる金属板の成形加工を行うと、金属板の表面と平行な{001}面から15°の結晶方位を持つ結晶粒にひずみが集中する。
【0018】
(2)bcc構造を持つ金属板の表面と平行な{001}面から15°の結晶方位を持つ結晶粒に集中したひずみは、金属板の表面が発達し、表面性状を悪化させる(つまり肌荒れが生じさせる)。
【0019】
(3)bcc構造を持つ金属板の表面に発達した凹凸が連結すると、更に表面性状が悪化する(つまり肌荒れが顕著に生じる。)。
【0020】
(4)bcc構造を持つ金属板の表面と平行な{001}面から15°の結晶方位を持つ結晶粒が少なすぎても、金属板の表面と平行な{001}面に対して15°に近い結晶方位を持つ結晶粒(例えば{001}面に対して15°超え30°以下の範囲に結晶方位を持つ結晶粒)にも局所変形が分散する。そのため、金属板の表面の凹凸が発達する。
【0021】
図1は、バルジ成形試験を行った後の金属板の表面の走査型電子顕微鏡(SEM)画像である。
図2は、バルジ成形試験を行った後、さらに電解研磨した金属板の表面のSEM画像である。
図1及び
図2共に、観察箇所は、バルジ成形試験により山状に隆起した金属板の頂点部である。
図1及び
図2を参照して、金属板に対してバルジ成形試験を行うと、10〜20μm程度の凹部1及び凹部2が観察された。
【0022】
すなわち、金属板に張り出し成形加工を行うと、金属板のある点に応力が集中する。応力が集中した箇所では、金属板の表面に凹凸が発達する。また、発達した凹凸が連結して、更に凹凸が発達する。これらが肌荒れ発生の原因となる。
【0023】
図3A〜
図5Aは、バルジ成形試験を行った後の金属板の表面を、EBSD(Electron BackScattering Diffraction)法により解析した場合の模式図である。
図3Aは、バルジ成形による張り出し高さを40mmとした場合(金属板の少なくとも一部が板厚減少率25%となる成形加工に相当する場合)に、金属板の表面に凹凸の発達が少なかった金属板の模式図である。
図4A及び
図5Aは、バルジ成形による張り出し高さを40mmとした場合(金属板の少なくとも一部が板厚減少率25%となる成形加工に相当する場合)に、金属板の表面に凹凸の発達が多かった金属板の模式図である。
【0024】
一方、
図3B〜
図5Bは、
図3A〜
図5Aの断面における金属板の表面凹凸を示す模式図である。つまり、
図3Bは、金属板の表面に凹凸の発達が少なかった金属板の表面凹凸を示す断面模式図である。
図4B及び
図5Bは、金属板の表面に凹凸の発達が多かった金属板の模式図である。
【0025】
ここで、
図3A〜
図5A中の結晶粒のうち、濃いグレー色の結晶粒3は、金属板の表面と平行な{001}面から15°以内の結晶方位を有する結晶粒である。以下、この結晶粒を「{001}結晶粒」ともいう。また、
図3A〜
図5A中の結晶粒のうち、薄いグレー色の結晶粒4は、金属板の表面と平行な{001}面に対して15°に近い結晶方位を持つ結晶粒(例えば{001}面に対して15°超え20°以下の範囲に結晶方位を持つ結晶粒)である。以下、この結晶粒を「{001}近傍結晶粒」ともいう。
なお、
図3B〜
図5B中、31は{001}結晶粒3が存在する金属板の表面を示している。また、41は{001}近傍結晶粒4が存在する金属板の表面を示している。
【0026】
図3A及び
図3Bを参照して、金属板の表面に凹凸の発達が少なかった金属板の表面では、{001}結晶粒3の面積分率が0.20以上0.35以下であった。
【0027】
図4A〜
図5A及び
図4B〜
図5Bを参照して、金属板の表面に凹凸の発達が多かった金属板の表面では、{001}結晶粒3の面積分率が0.20より小さいか、又は0.35より大きかった。
【0028】
これは、{001}結晶粒3には、張り出し成形加工の際にひずみが集中するためである。そして、{001}結晶粒3に集中したひずみは、金属板の表面の凹凸を発達させる。さらに{001}結晶粒3の面積分率が高いと、{001}結晶粒3が互いに接する確率が高くなり、生じた凹凸が連結し易くなる。一方で、{001}結晶粒3の面積分率が低すぎると、{001}近傍結晶粒4にも局所変形が分散し、金属板の表面の凹凸を発達させる。
【0029】
具体的には、{001}結晶粒3の面積分率が適切な範囲内にある場合、金属板の表面において、{001}近傍結晶粒4に局所変形が分散されない。それにより{001}結晶粒3でのみで局所変形が生じる。このため、{001}結晶粒3が存在する領域では深い凹部が形成されるが、他の結晶粒({001}近傍結晶粒4等)が存在する領域では平坦部が確保される(
図3B参照)。これは、高い凹凸が形成されても、凹部が深く微細であれば、平坦部が確保されることを示している。
一方で、{001}結晶粒3の面積分率が低すぎる場合、金属板の表面において、{001}近傍結晶粒4に局所変形が分散する。それにより{001}結晶粒3と共に{001}近傍結晶粒4でも局所変形が生じる。このため、浅い凹部が形成される領域が大きくなり、平坦部が比較的少なくなる(
図4B参照)。
また、{001}結晶粒3の面積分率が高すぎる場合、金属板の表面において、{001}結晶粒3局所変形が生じ、浅い凹部が形成される領域が大きくなり、平坦部が少なくなる(
図5B)。
【0030】
そのため、{001}結晶粒3の面積分率が高すぎても、低すぎても、金属板の表面の凹凸が発達し、生じた凹凸が連結し易くなり、連結により凹凸が更に発達する。
【0031】
したがって、発明者らは、次のことを考えた。bcc構造を有する金属板に二軸引張変形が生じる成形加工を施す場合、{001}結晶粒3の割合を所定範囲とすることで、加工中に生じる金属板の表面の凹凸の発達を抑制可能できる。つまり、凹凸の発達が抑制できれば、成形品の外観上の美観を損ねる肌荒れが抑制できる。
【0032】
一方で、発明者らは、次のことを考えた。{001}結晶粒3の割合が低い場合、{001}結晶粒3の大きさが十分小さければ、加工中に生じる金属板の表面の凹凸が発達しても、金属板の表面に発達した凹凸は目立たず、成形品の外観上の美観を損ねる肌荒れとして認識され難くなる。
【0033】
そして、発明者らは、bcc構造を有する金属板とfcc構造を有する金属板が持つ結晶構造のすべり系(すべり面及びすべり方向)に着目した。つまり、発明者らは、次のことに着目した。bcc構造を有する金属板が持つ結晶構造のすべり面と、fcc構造を有する金属板が持つ結晶構造のすべり方向とが、平行関係にある。bcc構造を有する金属板が持つ結晶構造のすべり方向と、fcc構造を有する金属板が持つ結晶構造のすべり面とが、平行関係にある。そして、fcc構造を有する金属板は、二軸引張変形における結晶方位毎の強度分布がbcc構造を有する金属板と同様になると推定した。(下記表1参照)。
【0035】
両者の結晶構造のすべり系に着目した発明者らは、fcc構造を有する金属板において、二軸変形場(等二軸変形場及び不等二軸引張変形場)における結晶粒の結晶方位と成形品の肌荒れとの関係を、結晶塑性有限要素解析法(R.BECKER, 「Effects of strain localization on surface roughening during sheet forming」, Acta Mater. Vol. 46.No. 4.pp. 1385-1401, 1998)により調査した。
具体的には、bcc構造を有する金属板の断面(例えば、
図13〜
図18)の結晶方位のすべり系をfcc構造を有する金属板のすべり系に変更し,金属板の表面の{001}結晶粒3の面積分率を変化させた。そのときの塑性ひずみによる金属板の表面荒れの影響を数値解析で調査した。
【0036】
その結果、発明者らは、bcc構造を有する金属板と同様に、fcc構造を有する金属板も等二軸引張変形場および等二軸引張変形場に近い不等二軸引張変形場では、{001}結晶粒3にひずみが集中し、優先変形することを知見した。
【0037】
したがって、発明者らは、次のことを考えた。fcc構造を有する金属板に二軸引張変形が生じる成形加工を施す場合も、{001}結晶粒3の割合を所定範囲とすることで、加工中に生じる金属板の表面の凹凸の発達を抑制可能できる。つまり、凹凸の発達が抑制できれば、成形品の外観上の美観を損ねる肌荒れが抑制できる。
また、{001}結晶粒3の割合が低い場合、{001}結晶粒3の大きさが十分小さければ、加工中に生じる金属板の表面の凹凸が発達しても、金属板の表面に発達した凹凸は目立たず、成形品の外観上の美観を損ねる肌荒れとして認識され難くなる。
【0038】
以上の知見に基づいて完成した第一の本発明の成形品の製造方法は、fcc構造を有し、金属板の表面において下記(a)又は(b)の条件を満たす金属板に対して、二軸引張変形が生じ、かつ前記金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工を施し、成形品を製造する成形品の製造方法である。
(a)前記金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の面積分率が0.20以上0.35以下である。
(b)前記金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の、面積分率が0.45以下、かつ平均結晶粒径が15μm以下である。
【0039】
そして、第一の本発明の成形品の製造方法では、fcc構造を有する金属板に対して、二軸引張変形が生じ、かつ金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工を施したときでも、肌荒れの発生が抑制され意匠性に優れた成形品が得られる。
【0040】
ここで、「金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒」とは、
図6に示すように、{001}面3Aに対して、金属板の一方の面側に鋭角で15°傾斜した結晶方位3Bから、金属板の他方の面側に鋭角で15°傾斜した結晶方位3Cまでの範囲に、結晶方位を持つ結晶粒を意味する。つまり、結晶方位3Bと結晶方位3Cとが成す角度θの範囲に結晶方位を有する結晶粒を意味する。
【0041】
一方、さらに、発明者らは、上記知見に基づいて、bcc構造を有する金属板の組織について検討を進めた。その結果、発明者らは、次のことを知見した。二軸引張変形場(特に平面ひずみ変形場に近い不等二軸引張変形場)では、{001}結晶粒3のみならず、金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒(以下「{111}結晶粒」とも称する)以外の結晶粒にもひずみが集中し、優先変形することを知見した。
【0042】
つまり、発明者らは、次のことを考えた。bcc構造を有する金属板に二軸引張変形が生じる成形加工を施す場合、{111}結晶粒以外の結晶粒の割合を所定範囲とすれば、加工中に生じる金属板の表面の凹凸の発達を抑制可能できる。つまり、凹凸の発達が抑制できれば、成形品の外観上の美観を損ねる肌荒れが抑制できる。
【0043】
また、発明者らは、次のことを考えた。{111}結晶粒以外の結晶粒の割合が低い場合、{111}結晶粒以外の結晶粒の大きさが十分小さければ、加工中に生じる金属板の表面の凹凸が発達しても、金属板の表面に発達した凹凸は目立たず、成形品の外観上の美観を損ねる肌荒れとして認識され難くなる。
【0044】
そして、上記同様に、bcc構造を有する金属板とfcc構造を有する金属板が持つ結晶構造のすべり系に着目した発明者らは、fcc構造を有する金属板において、二軸変形場(等二軸変形場及び不等二軸引張変形場)における結晶粒の結晶方位と成形品の肌荒れとの関係を、結晶塑性有限要素解析法により調査した。
【0045】
その結果、発明者らは、bcc構造を有する金属板と同様に、fcc構造を有する金属板も二軸引張変形場(特に平面ひずみ変形場に近い不等二軸引張変形場)では、{111}結晶粒以外の結晶粒にひずみが集中し、優先変形することを知見した。
【0046】
したがって、発明者らは、次のことを考えた。fcc構造を有する金属板に二軸引張変形が生じる成形加工を施す場合も、{111}結晶粒以外の結晶粒の割合を所定範囲とすることで、加工中に生じる金属板の表面の凹凸の発達を抑制可能できる。つまり、凹凸の発達が抑制できれば、成形品の外観上の美観を損ねる肌荒れが抑制できる。
また、{111}結晶粒以外の結晶粒の割合が低い場合、{111}結晶粒以外の結晶粒の大きさが十分小さければ、加工中に生じる金属板の表面の凹凸が発達しても、金属板の表面に発達した凹凸は目立たず、成形品の外観上の美観を損ねる肌荒れとして認識され難くなる。
【0047】
以上の知見に基づいて完成した第二の本発明の成形品の製造方法は、fcc構造を有し、金属板の表面において下記(A)又は(B)の条件を満たす金属板に対して、二軸引張変形が生じ、かつ前記金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工を施し、成形品を製造する成形品の製造方法。
(A)前記金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の面積分率が0.25以上0.55以下である。
(B)前記金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の、面積分率が0.55以下、かつ平均結晶粒径が15μm以下である。
【0048】
そして、第二の本発明の成形品の製造方法では、fcc構造を有する金属板に対して、二軸引張変形が生じ、かつ金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工を施したときでも、肌荒れの発生が抑制され意匠性に優れた成形品が得られる。
【0049】
ここで、「金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒」とは、{111}面に対して、金属板の一方の面側に鋭角で15°傾斜した結晶方位から、金属板の他方の面側に鋭角で15°傾斜した結晶方位までの範囲に、結晶方位を持つ結晶粒を意味する。つまり、この2つの結晶方位が成す角度θの範囲に結晶方位を有する結晶粒を意味する。
【0050】
(成形加工)
金属板には、二軸引張変形が生じる成形加工を施す。この成形加工としては、深絞り成形、張り出し成形、絞り張り出し成形、曲げ成形がある。具体的には、成形加工としては、例えば、
図7Aに示すような、金属板10を張り出し成形加工する方法が挙げられる。この成形加工では、ダイス11と、ドロービード12Aが配されたホルダー12との間に金属板10の縁部を挟み込む。それにより、金属板10の縁部の表面にドロービード12Aに食い込ませて、金属板10を固定した状態とする。そして、この状態で、頂面が平坦のパンチ13を金属板10に押付けて、金属板10を張り出し成形加工する。ここで、
図7Aに示す張り出し成形加工により得られる成形品の一例を
図7Bに示す。
図7Aに示す張り出し成形加工では、例えば、パンチ10の頂面に位置する金属板10(成形品の天面)は、等二軸変形、又は比較的、等二軸変形に近い不等二軸引張変形が生じる。
【0051】
また、成形加工としては、例えば、
図8Aに示すような、金属板10を絞り張り出し成形加工する方法が挙げられる。この成形加工では、ダイス11と、ドロービード12Aが配されたホルダー12との間に金属板10の縁部を挟み込む。それにより、金属板10の縁部の表面にドロービード12Aに食い込ませて、金属板10を固定した状態とする。そして、この状態で、頂面が略V字状に突出しているパンチ13を金属板10に押付けて、金属板10を絞り張り出し成形加工する。ここで、
図8Aに示す絞り張り出し成形加工により得られる成形品の一例を
図8Bに示す。
図8Aに示す絞り張り出し成形加工では、例えば、パンチ10の頂面に位置する金属板10(成形品の天面)は、比較的、平面ひずみ変形に近い不等二軸引張変形が生じる。
【0052】
ここで、
図9に示すように、平面ひずみ引張変形は、ε1方向に伸び、ε2方向には変形が生じない変形である。また、二軸引張変形は、ε1方向に伸び、ε2方向にも伸びが生じる変形である。具体的には、平面ひずみ引張変形は、二軸方向のひずみを各々最大主ひずみε1および最小主ひずみε2としたとき、ひずみ比β(=ε2/ε1)がβ=0となる変形である。二軸引張変形は、ひずみ比β(=ε2/ε1)が0<β≦1となる変形である。なお、ひずみ比β(=ε2/ε1)が0<β<1となる変形が不等二軸変形であり、ひずみ比β(=ε2/ε1)がβ=1となる変形が等二軸変形である。ちなみに、一軸引張変形は、ε1方向に伸び、ε2方向に縮みが生じる変形であって、ひずみ比β(=ε2/ε1)が−0.5≦β<0となる変形である。
【0053】
ただし、上記ひずみ比βの範囲は、理論値であり、例えば、鋼板の表面に転写したスクライブドサークルにおける鋼板成形前後(鋼板変形前後)の形状変化から計測した最大主ひずみ及び最小主ひずみから算出される、各変形のひずみ比βの範囲は次の通りである。
・一軸引張変形: −0.5<β≦−0.1
・平面ひずみ引張変形: −0.1<β≦0.1
・不等二軸変形: 0.1<β≦0.8
・等二軸変形: 0.8<β≦1.0
【0054】
一方、成形加工では、金属板の少なくとも一部が板厚減少率10%以上30%以下となる加工量で行う。板厚減少率10%未満の加工量では、{111}結晶粒以外の結晶粒(特に{001}結晶粒)へのひずみ集中が少なく、成形加工時に凹凸の発達が生じ難い傾向がある。そのため、金属板が上記(a)および(b)の条件又は上記(A)および(B)の条件を満たさなくても、成形品の肌荒れ自体が発生し難い。一方、板厚減少率30%を超えると、成形加工により金属板(成形品)の破断が生じる傾向が高まる。よって、成形加工の加工量は、上記範囲とする。
【0055】
成形加工は、金属板の少なくとも一部が板厚減少率10%以上30%以下となる加工量で行う。しかし、成形加工は、縁部(ダイスとホルダとで挟まれた部位)を除く金属板の全体が板厚減少率10%以上30%以下となる加工量で行ってもよい。成形する成形品の形状にもよるが、特に、成形加工は、パンチの頂面に位置する金属板の部位(金属板が二軸引張変形する部位)が板厚減少率10%以上30%以下となる加工量で行うことがよい。パンチの頂面に位置する金属板の部位は、成形品を外装部材として適用したとき、最も視線にさらされ易い部位となることが多い。このため、この金属板の部位を板厚減少率10%以上30%以下と多い加工量で成形加工したとき、凹凸の発達を抑えると、肌荒れ抑制効果が顕著となる。
【0056】
なお、板厚減少率は、成形加工前の金属板の板厚をTiとし、成形加工後の金属板(成形品)の板厚をTaとしたとき、式:板厚減少率=(Ti−Ta)/Tiで示される。
【0057】
(金属板)
[種類]
金属板は、fcc構造(体心立方格子構造)を有する金属板である。fcc構造を有する金属板としては、γ−Fe(オーステナイト系ステンレス鋼)、Al、Cu、Au、Pt、Pb等の金属板が挙げられる。
【0058】
金属板の厚みは、特に制限はないが、成形性の点から、3mm以下が好ましい。
【0059】
[{001}結晶粒]
二軸引張変形が生じる成形加工を施す場合、fcc構造を有する金属板の表面において、金属板の表面に平行な{001}面から15°以内の結晶方位を有する結晶粒({001}結晶粒)は、次の(a)又は(b)を満たす。
(a){001}結晶粒の面積分率が0.20以上0.35以下である。
(b){001}結晶粒の、面積分率が0.45以下、かつ平均結晶粒径が15μm以下である。
【0060】
上述のとおり、fcc構造を有する金属板の場合、{001}結晶粒が最も等二軸引張変形および等二軸引張変形に近い不等二軸引張変形の応力に弱い。したがって、大きな加工量(金属板の少なくとも一部が板厚減少率10%以上30%以下となる加工量)で、深絞り成形及び張り出し成形等、二軸引張変形が生じる金属板の成形加工を実施すれば、{001}結晶粒にひずみが集中しやすく、{001}結晶粒にて凹凸が発達しやすい。そして、{001}結晶粒の割合が多い場合、ひずみが集中しやすく、凹凸が発達しやすい。一方で、{001}結晶粒の割合が少ない場合、ひずみが集中する箇所が少なくなり、{001}近傍結晶粒にも局所変形が分散するため、逆に、凹凸が発達しやすくなる。ただし、{001}結晶粒の割合が少ない場合でも、{001}結晶粒の大きさが十分小さければ、{001}近傍結晶粒で局所変形する領域も小さくなり、凹凸が発達しても、微細となり、成形品の肌荒れとして認識され難くなる。
【0061】
よって、fcc構造を有する金属板が上記(a)を満たせば、成形加工による適度なひずみの集中が実現される。そのため、凹凸の発達が抑えられ、成形品の肌荒れの発生が抑制される。一方で、fcc構造を有する金属板が上記(b)を満たせば、{001}結晶粒の面積分率が0.20以上0.45以下の範囲では、成形加工による適度なひずみの集中が実現される。{001}結晶粒の面積分率が0.20未満の範囲では、凹凸が発達しても、成形品の肌荒れとして認識され難くなる。そのため、成形品の肌荒れの発生が抑制される。
【0062】
また、条件(b)において、{001}結晶粒の平均結晶粒径は、15μm以下であるが、肌荒れ抑制の点から、10μm以下が好ましい。{001}結晶粒の平均結晶粒径は、小さい程、肌荒れ抑制の点から好ましいが、1μm以上が好ましい。なぜなら、再結晶によって方位を制御しているため、結晶粒径の超微細化と方位制御の両立は難しいからである。
【0063】
{001}結晶粒の平均結晶粒径は次の方法で測定される。SEMを用いて、金属板の表面を観察し、測定領域を任意に選ぶ。EBSD法を用いて、それぞれの測定領域において、{001}結晶粒を選択する。選択した各{001}結晶粒に2本の試験線を引く。2本の試験線の算術平均を求めることにより、{001}結晶粒の平均結晶粒径が求まる。具体的には以下のとおりである。
図10は、EBSD法による解析結果から平均結晶粒径を求める方法を図示した模式図である。
図10を参照して、各{001}結晶粒3の重心を通る試験線5を、全ての{001}結晶粒3において同じ向きとなるように引く。さらに、試験線5と互いに直交するように、各{001}結晶粒3の重心を通る試験線6を引く。2本の試験線5及び6の長さの算術平均を、その結晶粒の結晶粒径とする。任意の測定領域における、全ての{001}結晶粒3の結晶粒径の算術平均を、平均結晶粒径とする。
【0064】
{001}結晶粒の面積分率は次の方法で測定される。SEMを用いて、金属板の断面(板厚方向に沿った切断面)を観察し、金属板の表面(板厚方向に対向する面)に該当する領域(線状の領域)を含む任意の測定領域を選ぶ。EBSD法を用いて、{001}結晶粒3を選択する。各視野において、金属板の表面(板厚方向に対向する面)に該当する領域における{001}結晶粒3の面積分率を算出することで、{001}結晶粒3の面積分率を求める。そして、任意の測定領域における{001}結晶粒3の面積分率の平均を{001}結晶粒の面積分率とする。
ここで、金属板の表面にめっき層等が形成されている場合、めっき層等と接触している金属板の表面に該当する領域(線状の領域)について、{001}結晶粒3の面積分率を測定する。
【0065】
[{111}結晶粒以外の結晶粒]
二軸引張変形が生じる成形加工を施す場合、fcc構造を有する金属板の表面において、金属板の表面に平行な{111}面から15°以内の結晶方位を有する結晶粒({111}結晶粒)以外の結晶粒(つまり、金属板の表面に平行な{111}面から15°を超えた結晶方位を有する結晶粒)は、次の(A)又は(B)を満たす。
(A){111}結晶粒以外の結晶粒の面積分率が0.25以上0.55以下である。
(B){111}結晶粒以外の結晶粒の、面積分率が0.55以下、かつ平均結晶粒径が15μm以下である。
【0066】
上述のとおり、fcc構造を有する金属板の場合、{111}結晶粒以外の結晶粒が二軸引張変形(特に平面ひずみ変形場に近い不等二軸引張変形)の応力に弱い(つまり{111}結晶粒が最も強い)。したがって、大きな加工量(金属板の少なくとも一部が板厚減少率10%以上30%以下となる加工量)で、深絞り成形及び張り出し成形等、二軸引張変形が生じる金属板の成形加工を実施すれば、{111}結晶粒以外の結晶粒にひずみが集中しやすく、{111}結晶粒以外の結晶粒にて凹凸が発達しやすい。そして、{111}結晶粒以外の結晶粒の割合が多い場合、ひずみが集中しやすく、凹凸が発達しやすい。一方で、{111}結晶粒以外の結晶粒の割合が少ない場合、ひずみが集中する箇所が少なくなり、{111}結晶粒にも局所変形が分散するため、逆に、凹凸が発達しやすくなる。ただし、{111}結晶粒以外の結晶粒の割合が少ない場合でも、{111}結晶粒以外の結晶粒の大きさが十分小さければ、{111}結晶粒で局所変形する領域も小さくなり、凹凸が発達しても、微細となり、成形品の肌荒れとして認識され難くなる。
【0067】
よって、fcc構造を有する金属板が上記(A)を満たせば、成形加工による適度なひずみの集中が実現される。そのため、凹凸の発達が抑えられ、成形品の肌荒れの発生が抑制される。一方で、fcc構造を有する金属板が上記(B)を満たせば、{111}結晶粒以外の結晶粒の面積分率が0.25以上0.55以下の範囲では、成形加工による適度なひずみの集中が実現される。{111}結晶粒以外の結晶粒の面積分率が0.25未満の範囲では、凹凸が発達しても、成形品の肌荒れとして認識され難くなる。そのため、成形品の肌荒れの発生が抑制される。
【0068】
また、条件(B)において、{111}結晶粒以外の結晶粒の平均結晶粒径は、15μm以下であるが、肌荒れ抑制の点から、10μm以下が好ましい。{111}結晶粒以外の結晶粒の平均結晶粒径は、小さい程、肌荒れ抑制の点から好ましいが、1μm以上が好ましい。なぜなら、再結晶によって方位を制御しているため、結晶粒径の超微細化と方位制御の両立は難しいからである。
【0069】
{111}結晶粒以外の結晶粒の平均結晶粒径は、測定対象となる結晶粒が異なる以外は、{001}結晶粒の平均結晶粒径と同じ方法で測定される。
一方、{111}結晶粒以外の結晶粒の面積分率は、測定対象となる結晶粒が異なる以外は、{001}結晶粒と同じ方法で測定される。
【0070】
(成形品)
第一の本発明の成形品は、fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品である。そして、第一の本発明の成形品は、成形品の最大板厚をD1とし、成形品の最小板厚をD2としたとき、式:10≦(D1−D2)/D1×100≦30の条件、又は、成形品の最大硬度をH1とし、成形品の最小硬度をH2としたとき、式:15≦(H1−H2)/H1×100≦40の条件を満たし、かつ成形品の表面において下記(c)又は(d)の条件を満たす。
(c)成形品の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒({001}結晶粒)の面積分率が0.20以上0.35以下である。
(d)成形品の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒({001}結晶粒)の、面積分率が0.45以下、かつ平均結晶粒径が15μm以下である。
【0071】
一方、第二の本発明の成形品は、fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品である。そして、第二の本発明の成形品は、成形品の最大板厚をD1とし、成形品の最小板厚をD2としたとき、式:10≦(D1−D2)/D1×100≦30の条件、又は、成形品の最大硬度をH1とし、成形品の最小硬度をH2としたとき、式:15≦(H1−H2)/H1×100≦40の条件を満たし、かつ成形品の表面において下記(C)又は(D)の条件を満たす。
(C)成形品の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒({111}結晶粒)以外の結晶粒の面積分率が0.25以上0.55以下である。
(D)成形品の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒({111}結晶粒)以外の結晶粒の、面積分率が0.55以下、かつ平均結晶粒径が15μm以下である。
【0072】
ここで、fcc構造を有する金属板は、第一及び第二の本発明の成形品の製造方法で使用する金属板と同義である。そして、この金属板の成形品には、二軸引張変形が生じる成形加工が施されている。
成形品に、二軸引張変形が生じる成形加工が施されていることを確認する方法は次の通りである。
成形品の3次元形状を測定し、数値解析用のメッシュを作製し、コンピュータによる逆解析によって、板材から3次元形状へ至るまでの過程を導出する。そして、前記各メッシュにおける最大主ひずみと最小主ひずみとの比(前記β)を算出する。この算出により、二軸引張変形が生じる成形加工が施されていることを確認することができる。
例えば、Comet L3D(東京貿易テクノシステム(株))等の三次元計測機により、成形品の三次元形状を測定する。得られた測定データを基に,成形品のメッシュ形状データを得る。次に、得られたメッシュ形状データを用いて、ワンステップ法(加工硬化算出ツール「HYCRASH(株式会社JSOL)」等)の数値解析により、成形品の形状を元にそれを一度平坦な板に展開する。そのときの成形品の伸び、曲げ状態などの形状情報から成形品の板厚変化、残留ひずみなどを計算する。この計算によっても、二軸引張変形が生じる成形加工が施されていることを確認することができる。
【0073】
また、式:10≦(D1−D2)/D1×100≦30の条件を満たすことは、金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工により成形品が成形されていると見なすことができる。
つまり、成形品の最大板厚D1は成形加工前の金属板の板厚と見なすことができ、成形品の最小板厚D2は成形加工後で最も板厚減少率が大きい部位の金属板(成形品)の板厚と見なすことができる。
【0074】
一方、式:15≦(H1−H2)/H1×100≦40の条件を満たすことも、金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工により成形品が成形されていると見なすことができる。これは、成形加工の加工量(板厚減少率:Thickness reduction)が大きくなるにつれて、加工硬化(つまり加工硬度:Vickers hardness)が大きくなることに起因する。
つまり、成形品の最大硬度H1となる部位は成形加工後で最も板厚減少率が大きい部位の金属板(成形品)の硬度と見なすことができ、成形品の最小硬度H2は成形加工前の金属板の硬度と見なすことができる。
【0075】
なお、硬度は、JIS規格(JIS Z 2244)に記載のビッカース硬さ測定方法に従い測定される。ただし、硬度の測定は、この方法に限られず、他の方法で硬さを測定し、硬さ変換表を用いて、ビッカース硬さに換算する方法を採用してもよい。
【0076】
また、上記(c)又は(d)で示される条件および上記(C)又は(D)で示される条件において、成形品の表面における{001}結晶粒の面積分率及び平均結晶粒径、並びに、成形品の表面における{111}結晶粒以外の結晶粒の面積分率及び平均結晶粒径は、成形品の最大板厚D1又は最小硬度H2となる部位で測定される。
そして、上記(c)又は(d)で示される条件は、第一の本発明の成形品の製造方法で説明した上記(a)又は(b)で示される条件と、成形加工前の金属板に代えて、成形品の表面における{001}結晶粒の面積分率及び平均結晶粒径を条件としている以外は同義である。
同様に、上記(C)又は(D)で示される条件は、第二の本発明の成形品の製造方法で説明した上記(A)又は(B)で示される条件と、成形加工前の金属板に代えて、成形品の表面における{111}結晶粒以外の結晶粒の面積分率及び平均結晶粒径を条件としている以外は同義である。
【0077】
以上説明したように、第一及び第二の本発明の成形品は、上記各要件を満たすことで、第一及び第二の本発明の成形品の製造方法により成形された成形品と見なすことができる。そして、第一及び第二の本発明の成形品は、fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品であって、式:10≦(D1−D2)/D1×100≦30の条件、又は、式:10≦(H1−H2)/H1×100≦30の条件を満たした成形品であっても、肌荒れの発生が抑制され意匠性に優れた成形品となる。
【実施例】
【0078】
<第一の参考例>
[成形品の成形]
次に、表2に示す特性を持つ鋼板(bcc構造を有する鋼板)に対して、次に張り出し加工を施し、
図11に示すように、成形品20の天板部20Aの直径R=150mm、成形品20の高さH=18mm、成形品20の縦壁部20Bの角度θ=90℃の皿状の成形品No.1〜5、8、10を成形した。また、成形品20の高さH=15mmとした以外は、成形品No.1〜5、8、10と同様にして、成形品No.6〜7、9を成形した。
なお、この成形は、天板部20Aとなる鋼板の板厚減少率(
図11中、天板部20Aの評価部A(天板部20Aの中心部)の板厚減少率)が表2に示す板厚減少率となる加工量で実施した。
【0079】
[評価方法]
得られた各鋼板、及び各成形品に対して、次の測定試験及び目視評価を行った。結果を表2及び表3に示す。
【0080】
[平均結晶粒径の測定試験]
鋼板に対して、{001}結晶粒の平均結晶粒径の測定試験を実施した。測定試験には、EBSD法を用いた。
図12は、鋼板を上部から観察した模式図である。
図12を参照して、鋼板の幅方向における、端から1/4より中心部において、1mm四方の測定領域4を任意に3箇所選んだ。それぞれの測定領域4において、鋼板の表面での、鋼板表面と平行な{001}面から15°以内の結晶方位を持つ結晶粒({001}結晶粒3)を選択した。
【0081】
上述のとおり、{001}結晶粒3の平均結晶粒径を算出した。測定は、3箇所の測定領域4における、全ての{001}結晶粒3に対して行った。得られた{001}結晶粒3の結晶粒径の算術平均を、平均結晶粒径とした。なお、成形品の表面における{001}結晶粒3の平均結晶粒径も、鋼板の{001}結晶粒3の平均結晶粒径と同様の値となる。
【0082】
[面積分率の測定試験]
鋼板に対して、{001}結晶粒の面積分率の測定試験を実施した。上述のとおり、鋼板から測定領域4を選び、EBSD法を用いて、{001}結晶粒3を選択した。各視野において、{001}結晶粒3の面積分率を算出し、その平均値を求めた。なお、成形品の{001}結晶粒3の面積分率も、鋼板の{001}結晶粒3の面積分率と同様の値となる。
【0083】
[板厚の測定試験]
成形品に対して、板厚の測定試験を行った。具体的には、成形品のコンピュータによる成形シミュレーションを実施し、板厚が最大及び最小となる部位を特定した。その後、成形品の板厚測定を板厚が最大及び最小となる部位それぞれにおいて、板厚ゲージを使用し、測定した。これにより、最大板厚D1、最小板厚D2を求めた。ただし、最大板厚D1は、成形品(成形品全体)の最大板厚を求め、最小板厚D2は、成形品の評価部の最小板厚を求めた。
【0084】
[硬度の測定試験]
成形品に対して、硬度の測定試験を行った。具体的には、成形品のコンピュータによる成形シミュレーションを実施し、相当塑性ひずみが最大及び最小となる部位を特定した。その後、成形品の硬度測定を板厚が最大及び最小となる部位それぞれにおいて、JIS規格(JIS Z 2244)に従い、測定した。これにより、最大硬度H1、最小硬度H2を求めた。ただし、最大硬度H1は、成形品(成形品全体)の最大硬度を求め、最小硬度H2は、成形品の評価部の最小硬度を求めた。
【0085】
[凹凸高さ測定試験]
成形品に対して、成形品表面の凹凸高さの測定試験を行った。具体的には、成形品の評価部を切出し、接触式の粗さ計で、長手方位の凹凸を計測した。結晶方位を確認するために凹凸が最も顕著な部分を、クロスセクションポリッシャ(Cross section polisher)加工を用いて切断し、表層の結晶方位と凹凸の関係を分析した。
【0086】
[目視評価]
本来、化成処理後電着塗装を行うが、簡易的評価手法として、ラッカースプレーを均一に成形品の表面を塗装したのち、目視にて観察し、下記基準に従って、肌荒れの発生度合と評価面の鮮鋭度について調べた。
さらに、表面性状の優劣を示す他のパラメータとして、算術平均うねりWaの値をKeyence社製レーザーマイクロスコープにより測定した。測定条件は,評価長さを1.25mm,カットオフ波長λcを0.25mmとした。そして、カットオフ波長λcよりも長波長側のプロファイルを評価した。
評価基準は、以下の通りである。
A(◎): 成形品の天板部の評価部表面に目視で模様が確認されず、表面に艶があるもの(Wa≦0.5μm)。自動車外板部品としてより望ましく、高級車の外板部品としても利用できる。
B(○): 成形品の天板部の評価部表面に目視で模様が確認されないが、表面の艶が消えているもの(0.5μm<Wa≦1.0μm)。自動車部品として利用できる。
C(△): 成形品の天板部の評価部表面に目視で模様が確認されるが、表面に艶があるもの(1.0μm<Wa≦1.5μm)。自動車の外板部品として利用できない。
D(×): 成形品の天板部の評価部表面に目視で模様が確認され、表面に艶がないもの(1.5μm<Wa)。自動車の部品として利用できない。
【0087】
【表2】
【0088】
【表3】
【0089】
上記結果から、bcc構造を有する鋼板を成形加工した、比較参考例対応の成形品No.1、6、9に比べ、参考例対応の成形品No.2〜5、7、8、10は、肌荒れが抑制され意匠性に優れることがわかる。
ここで、参考例対応の成形品No.2、3、比較参考例対応の成形品No.1の断面ミクロ組織と表面凹凸を示す模式図を、
図13〜
図15に示す。
図13〜
図15は、成形品の断面を、EBSD法によって解析した模式図である。なお、
図13〜
図15中、NDは板厚方向を示し、TDは板幅方向を示す。
この
図13〜
図15の比較から、比較参考例対応の成形品No.1に比べ、参考例対応の成形品No.2、3は、成形品の表面の凹凸高さが低く、肌荒れが抑制され意匠性に優れることがわかる。ただし、
図13と
図14との比較から、成形品No.2に比べ、成形品No.3は、成形品の表面の凹凸高さが高いが、肌荒れが抑制され意匠性に優れることがわかる。これは、成形品の表面の凹凸が高くても、又は同等でも、凹部が深く微細であれば、肌荒れとして認識され難くなることもあるためである(成形品No.6と成形品No.7との比較も参照)。
参考例対応の成形品No.7と比較参考例対応の成形品No.9との比較から、{001}結晶粒の面積分率が0.20未満と低くても、{001}結晶粒の平均結晶粒径が15μm未満であれば、肌荒れが抑制され意匠性に優れることがわかる。
参考例対応の成形品No.10から、{001}結晶粒の面積分率が0.45と高くても、{001}結晶粒の平均結晶粒径が15μm未満であれば、肌荒れが抑制され意匠性に優れることがわかる。
【0090】
<第二の参考例>
[成形品の成形]
次に、表4に示す特性を持つ鋼板(bcc構造を有する鋼板)に対して、張り出し加工を施した。それにより、
図11に示すように、成形品20の天板部20Aの直径R=150mm、成形品20の高さH=18mm、成形品20の縦壁部20Bの角度θ=90℃の皿状の成形品No.101〜105、108を成形した。また、成形品20の高さH=15mmとした以外は、成形品No.101〜105、108と同様にして、成形品No.106〜107、109、125を成形した。
なお、この成形は、天板部20Aとなる鋼板の板厚減少率(
図11中、天板部20Aの評価部A(天板部20Aの中心部)の板厚減少率)が表4に示す板厚減少率となる加工量で実施した。
【0091】
さらに、
図11中、成形品20の天板部板20Aの評価部B(天板部20Aの中心と縁と間の中央部)の板厚減少率が、成形品No.101〜109、125の板厚減少率(
図11中、天板部板20Aの評価部Aの板厚減少率)と同様となるように、成形品20の高さHを調整した以外は、成形品No.101〜109、125と同様にして、成形品No.110〜118、126を成形した。
【0092】
また、
図11中、成形品20の天板部板20Aの評価部C(天板部20Aの縁部)の板厚減少率が、成形品No.101〜109、125の板厚減少率(
図11中、天板部板20Aの評価部Aの板厚減少率)と同様となるように、成形品20の高さHを調整した以外は、成形品No.101〜109、125と同様にして、成形品No.119〜124、127を成形した。
【0093】
ここで、上記成形品の成形では、成形品の評価部に相当する鋼板の表面にスクライブドサークルを転写しておき,成形前後(変形前後)のスクライブドサークルの形状変化を計測することで、最大主ひずみ、最小主ひずみを計測した。それらの値から,成形品の評価部での変形比βを算出した.
【0094】
[評価方法]
使用した各鋼板、及び得られた各成形品に対して、1){111}結晶粒以外の結晶粒の平均結晶粒径及び面積分率、2)板厚の測定試験、3)硬度の測定試験、4)凹凸高さ測定試験、5)目視評価を、第一の参考例に準じて行った。結果を表4及び表5に示す。
【0095】
【表4】
【0096】
【表5】
【0097】
上記結果から、比較参考例対応の成形品No.101、106、109〜110、115、118〜119、124に比べ、参考例対応の成形品No.102〜105、107〜108、111〜114、116〜117、120〜123、125〜127は、肌荒れが抑制され意匠性に優れることがわかる。
ここで、参考例対応の成形品No.102、103、比較参考例対応の成形品No.101の断面ミクロ組織と表面凹凸を示す模式図を、
図16〜
図18に示す。
図16〜
図18は、成形品の断面を、EBSD法によって解析した模式図である。なお、
図16〜
図18中、NDは板厚方向を示し、TDは板幅方向を示す。
この
図16〜
図18の比較から、比較参考例対応の成形品No.101に比べ、参考例対応の成形品No.102、103は、成形品の表面の凹凸高さが低く、肌荒れが抑制され意匠性に優れることがわかる。ただし、
図16と
図17との比較から、成形品No.102に比べ、成形品No.103は、成形品の表面の凹凸高さが高いが、肌荒れが抑制され意匠性に優れることがわかる。これは、成形品の表面の凹凸が高くても、又は同等でも、凹部が深く微細であれば、肌荒れとして認識され難くなることもあるためである(成形品No.106と成形品No.107との比較も参照)。
そして、上記結果より、bcc構造を有する鋼板を成形加工した、参考例対応の成形品では、二軸変形場において、成形品の肌荒れが抑制されていることがわかる。
【0098】
<実施例>
[成形品の成形シミュレーション]
参考例において使用したbcc構造を有する金属板の断面(例えば、
図13〜
図18)を用いて、fcc構造を有する金属板の断面の結晶粒をモデリングした。そして、fcc構造を有する金属板の断面の結晶粒の粒径を変化させると共に、{001}結晶粒又は{111}結晶粒以外の結晶粒の平均面積分率を変化させて、表6〜表7に示す特性を持つ仮想材をモデリングした。
次に、モデリングした仮想材に対して、張り出し加工による
図11に示す成形品20の成形に相当する成形シミュレーションを実施した。つまり、モデリングした仮想材に対して、成形品の天板部20Aとなる仮想材の板厚減少率(
図11中、天板部20Aの評価部A(天板部20Aの中心部)の板厚減少率)に相当する「相当塑性ひずみ」を付与する成形シミュレーションを実施した。
具体的には、まず、仮想材に表6〜表7に示す「相当塑性ひずみ」となる変位を付与するため、
図8Bに示すモデル形状のプレス成形シミュレーション(以下、プレス成形シミュレーションという)を有限要素解析法で実施した。それにより、プレス成形シミュレーション実施後の仮想材における、「最大板厚D1(成形品の最大板厚D1に相当)」、「最小板厚D2(成形品の最小板厚D2に相当)」、最大硬度H1(成形品の最大硬度H1に相当)、及び「最小硬度H2(成形品の最小硬度H2に相当)」を算出した。
そして、このプレス成形シミュレーションに相当する仮想材の成形シミュレーションとして、仮想材の断面の左右、手前、及び奥行き方向に、表6〜表7に示す「相当塑性ひずみ」となる変位を付与し,2軸引張変形させる成形シミュレーション(以下、成形シミュレーションという)を結晶塑性有限要素解析法で実施した。
【0099】
ここで、前記プレス成形シミュレーション実施後の仮想材における「最大板厚D1(成形品の最大板厚D1に相当)、及び「最小板厚D2(成形品の最小板厚D2に相当)」は、次の通りとした。
最大板厚D1は、プレス成形品の板面内で板厚が最大となる場所での板厚である。
最小板厚D2は、プレス成形品の板面内で板厚が最小となる場所での板厚である。
【0100】
また、前記プレス成形シミュレーション実施後の仮想材における「最大硬度H1(成形品の最大硬度H1に相当)、及び「最小硬度H2(成形品の最小硬度H2に相当)」は、次の通りとした。
最大硬度H1は、成形前の硬度を仮想材の平均降伏強度YP
1(MPa)から下記式により計算した。
・式:最大硬度H1=YP
1(MPa)/3
最小硬度H2は、成形後(加工硬化後)の硬度を前記仮想材の平均降伏強度YP
2(MPa)から下記式により計算した。
・式:最大硬度H2=YP
2(MPa)/3
【0101】
ただし、成形前の硬度を仮想材の平均降伏強度YP
1(MPa)は、仮想材として,6000系アルミ合金板の降伏強度とその結晶方位依存性を基に算出した。
また、成形後(加工硬化後)の硬度を仮想材の平均降伏強度YP
2(MPa)は、6000系アルミ合金板の機械特性を入力した前記プレス成形シミュレーションにより前記プレス成形品の板面内で板厚が最小となる場所での相当応力値を用いて算出した.
【0102】
そして、前記成形シミュレーション実施後の仮想材について、次の評価を実施した。結果を表6及び表7に示す。
【0103】
(凹凸高さ)
前記成形シミュレーション実施後の仮想材について、次の方法により、表面の凹凸高さを算出した。前記成形シミュレーション実施後の仮想材の表面プロファイルを仮想材の断面曲線とし,前記断面曲線の最大値と最小値から算出した.
【0104】
(断面曲線の算術平均高さPa)
前記成形シミュレーション実施後の仮想材の表面性状について、仮想材の断面曲線を得た後、断面曲線の算術平均高さPaを算出した。そして、下記評価基準で評価した。
断面曲線の算術平均高さPaは、JIS B0601(2001)に規定された算術平均高さである。測定条件は、次の通りである。
・評価長さ:1mm
・基準長さ:1mm
【0105】
仮想材の表面性状の評価基準は、以下の通りである。
A(◎):Pa≦0.5μm(自動車外板部品としてより望ましく、高級車の外板部品としても利用できる。)
B(○):0.5μm<Pa≦1.0μm(自動車部品として利用できる。)
C(△):1.0μm<Pa≦1.5μm(自動車の外板部品として利用できない。)
D(×):1.5μm<Pa(自動車の部品として利用できない。)
【0106】
【表6】
【0107】
【表7】
【0108】
上記結果から、上記結果から、比較例対応のNo.A1、A6、A9、A101、A106、A109に比べ、実施例対応のNo.A2〜A5、A7、A8、A10、A102〜A105、A107、A108、A110は、肌荒れが抑制され意匠性に優れることがわかる。
ここで、
図19に、No.A1〜A10(
図19中、丸を付した1〜10の番号で示す)の成形シミュレーション後の仮想材について、Pa評価の結果と、{001}結晶粒の平均結晶粒径及び結晶粒径との関係を示す。
上記のように、fcc構造を有する仮想材を、二軸変形が生じる成形シミュレーションを実施した結果、bcc構造を有する鋼板と同様に、fcc構造を有する金属板でも、{001}結晶粒の粒径及び面積分率、又は{111}結晶粒の粒径及び面積分率を制御することで、二軸変形が生じる成形加工を施しても、成形品の肌荒れが抑制されていることがわかる。