特許第6779435号(P6779435)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社白石中央研究所の特許一覧

<>
  • 特許6779435-炭酸カルシウム多孔質焼結体の製造方法 図000002
  • 特許6779435-炭酸カルシウム多孔質焼結体の製造方法 図000003
  • 特許6779435-炭酸カルシウム多孔質焼結体の製造方法 図000004
  • 特許6779435-炭酸カルシウム多孔質焼結体の製造方法 図000005
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6779435
(24)【登録日】2020年10月16日
(45)【発行日】2020年11月4日
(54)【発明の名称】炭酸カルシウム多孔質焼結体の製造方法
(51)【国際特許分類】
   C04B 38/10 20060101AFI20201026BHJP
   C04B 35/00 20060101ALI20201026BHJP
【FI】
   C04B38/10 L
   C04B35/00
【請求項の数】9
【全頁数】10
(21)【出願番号】特願2017-35244(P2017-35244)
(22)【出願日】2017年2月27日
(65)【公開番号】特開2018-140890(P2018-140890A)
(43)【公開日】2018年9月13日
【審査請求日】2019年4月9日
(73)【特許権者】
【識別番号】391009187
【氏名又は名称】株式会社白石中央研究所
(74)【代理人】
【識別番号】110001232
【氏名又は名称】特許業務法人 宮▲崎▼・目次特許事務所
(72)【発明者】
【氏名】田近 正彦
(72)【発明者】
【氏名】梅本 奨大
(72)【発明者】
【氏名】島井 駿蔵
【審査官】 手島 理
(56)【参考文献】
【文献】 特開平04−231367(JP,A)
【文献】 特開平05−310469(JP,A)
【文献】 特開昭62−036021(JP,A)
【文献】 特開平08−198623(JP,A)
【文献】 特開2011−251886(JP,A)
【文献】 国際公開第2017/038360(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C04B 38/00−38/10
C04B 35/00−35/84
(57)【特許請求の範囲】
【請求項1】
炭酸カルシウムとゲル化剤とを含む分散液を調製する工程と、
前記分散液に発泡剤を添加した後撹拌して泡立て、発泡体を作製する工程と、
前記発泡体をゲル化する工程と、
前記ゲル化した発泡体を焼結することにより、炭酸カルシウム多孔質焼結体を製造する工程とを備える、炭酸カルシウム多孔質焼結体の製造方法。
【請求項2】
前記分散液が焼結助剤を含む、請求項1に記載の炭酸カルシウム多孔質焼結体の製造方法。
【請求項3】
前記焼結助剤が、リチウム、ナトリウム及びカリウムの内の少なくとも2種の炭酸塩またはフッ化物を含み、かつ融点が600℃以下である、請求項2に記載の炭酸カルシウム多孔質焼結体の製造方法。
【請求項4】
前記分散液が、前記炭酸カルシウムを20体積%以上含有する、請求項1〜3のいずれか一項に記載の炭酸カルシウム多孔質焼結体の製造方法。
【請求項5】
前記焼結する工程が、仮焼結した後、本焼結する工程である、請求項1〜4のいずれか一項に記載の炭酸カルシウム多孔質焼結体の製造方法。
【請求項6】
仮焼結の温度が200〜500℃の範囲内であり、本焼結の温度が仮焼結の温度以上で、かつ420〜600℃の範囲内である、請求項に記載の炭酸カルシウム多孔質焼結体の製造方法。
【請求項7】
前記炭酸カルシウムが、透過型電子顕微鏡観察により測定した粒子径分布における平均粒子径(D50)が0.05〜0.30μmの範囲内である、請求項1〜6のいずれか一項に記載の炭酸カルシウム多孔質焼結体の製造方法。
【請求項8】
前記炭酸カルシウムのBET比表面積が5〜25m/gである、請求項1〜7のいずれか一項に記載の炭酸カルシウム多孔質焼結体の製造方法。
【請求項9】
前記炭酸カルシウムの純度が99.9質量%以上である、請求項1〜8のいずれか一項に記載の炭酸カルシウム多孔質焼結体の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、炭酸カルシウム多孔質焼結体の製造方法に関する。
【背景技術】
【0002】
炭酸カルシウム焼結体は、人工真珠の成長核や生体用途などへの応用が期待されており、その製造方法について種々研究されている。従来の炭酸カルシウム焼結体の製造方法では、一般に、炭酸カルシウムと焼結助剤の混合物を静水圧プレスにより成形体とし、この成形体を炭酸ガス雰囲気中で焼結することにより製造されている(特許文献1及び非特許文献1)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2007−254240号公報
【非特許文献】
【0004】
【非特許文献1】都祭聡子ら“炭酸カルシウムの焼結における出発物質の影響”無機マテリアル学会学術講演会講演要旨集 Vol.105th P.46−47 (2002.11.14)
【発明の概要】
【発明が解決しようとする課題】
【0005】
炭酸カルシウム焼結体を多孔質にすることにより、炭酸カルシウム焼結体の表面積を高めることができ、生体用途など様々な用途において有用な炭酸カルシウム焼結体にすることができる。このような観点から、従来より、炭酸カルシウム多孔質焼結体を簡易に製造することができる方法が望まれている。
【0006】
本発明の目的は、炭酸カルシウム多孔質焼結体を簡易に製造することができる製造方法を提供することにある。
【課題を解決するための手段】
【0007】
本発明の製造方法は、炭酸カルシウムとゲル化剤とを含む分散液を調製する工程と、分散液に発泡剤を添加した後撹拌して泡立て、発泡体を作製する工程と、発泡体をゲル化する工程と、ゲル化した発泡体を焼結することにより、炭酸カルシウム多孔質焼結体を製造する工程とを備えることを特徴としている。
【0008】
本発明において、分散液は、焼結助剤を含んでいてもよい。この場合、焼結助剤としては、リチウム、ナトリウム及びカリウムの内の少なくとも2種の炭酸塩あるいはフッ化物を含み、かつ融点が600℃以下である焼結助剤が挙げられる。
【0009】
分散液は、炭酸カルシウムを20体積%以上含有することが好ましい。
【0010】
焼結する工程は、仮焼結した後、本焼結する工程であることが好ましい。
【0011】
仮焼結の温度は、200〜500℃の範囲内であり、本焼結の温度は、仮焼結の温度以上で、かつ420〜600℃の範囲内であることが好ましい。
【0012】
炭酸カルシウムとしては、例えば、透過型電子顕微鏡観察により測定した粒子径分布における平均粒子径(D50)が0.05〜0.30μmの範囲内であるものが好ましく用いられる。炭酸カルシウムのBET比表面積は、5〜25m/gであることが好ましい。
【0013】
本発明において、炭酸カルシウムの純度は99.9質量%以上であってもよい。不純物含有量の少ない高純度炭酸カルシウムを使用することで、焼結助剤を添加しなくても多孔質焼結体を作ることが可能である。このときの炭酸カルシウムの純度は、99.9質量%以上であることが好ましく、99.99質量%以上であることがより好ましい。
【0014】
本発明の炭酸カルシウム多孔質焼結体製造用炭酸カルシウムは、純度が99.9質量%以上であることを特徴としている。
【発明の効果】
【0015】
本発明によれば、炭酸カルシウム多孔質焼結体を簡易に製造することができる。
【図面の簡単な説明】
【0016】
図1】実施例1の炭酸カルシウム多孔質焼結体を示す走査型電子顕微鏡写真(倍率25倍)である。
図2】実施例1の炭酸カルシウム多孔質焼結体を示す走査型電子顕微鏡写真(倍率150倍)である。
図3】実施例1の炭酸カルシウム多孔質焼結体を示す走査型電子顕微鏡写真(倍率5000倍)である。
図4】実施例1の炭酸カルシウム多孔質焼結体を示す走査型電子顕微鏡写真(倍率20000倍)である。
【発明を実施するための形態】
【0017】
以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。
【0018】
(炭酸カルシウム)
本発明において用いる炭酸カルシウムは、炭酸カルシウム多孔質焼結体の製造に用いることができるものであれば特に限定されない。緻密な壁部を有する多孔質焼結体を作製することができるという観点からは、透過型電子顕微鏡観察により測定した粒子径分布における平均粒子径(D50)が0.05〜0.30μmの範囲内である炭酸カルシウムが好ましい。
【0019】
透過型電子顕微鏡観察により測定した粒子径分布における平均粒子径(D50)は、0.05〜0.30μmの範囲内であることが好ましく、より好ましくは0.08〜0.25μmの範囲内であり、さらに好ましくは0.10〜0.20μmの範囲内である。平均粒子径(D50)をこのような範囲内にすることにより、緻密な壁部を有する多孔質焼結体を製造することができる。透過型電子顕微鏡観察による粒子径分布は、測定対象である炭酸カルシウムを透過型電子顕微鏡観察で1000個以上測定することにより求めることができる。
【0020】
本発明において用いる炭酸カルシウムは、例えば、一般的に良く知られた石灰乳に炭酸ガスを吹き込んで反応させる炭酸ガス化合法により製造することができる。特に平均粒子径(D50)が0.1μmを超える粒子については特許第0995926号の製造方法に従い製造することができる。
【0021】
本発明において用いる炭酸カルシウムのBET比表面積は、5〜25m/gであることが好ましく、7〜20m/gであることがより好ましく、8〜15m/gであることがさらに好ましい。BET比表面積を上記の範囲内にすることにより、炭酸カルシウムの焼結性を高めることができる。このため、緻密な壁部を有する多孔質焼結体を製造することができる。
【0022】
本発明において用いる炭酸カルシウムの純度は、99.0質量%以上であることが好ましく、99.5質量%以上であることがより好ましく、99.6質量%以上であることがさらに好ましい。
【0023】
本発明においては、純度が99.7質量%以上である高純度炭酸カルシウムを用いることができる。高純度炭酸カルシウム用いることにより、焼結に必要な焼結助剤の量を少なくすることができる。また、焼結助剤を用いることなく、焼結することもできる。純度は、99.8質量%以上であるものが好ましく、99.9質量%以上であるものがより好ましく、99.95質量%以上であるものがさらに好ましい。このような高純度炭酸カルシウムは、例えば、特開2012−240872号公報に開示された方法で製造することができる。
【0024】
なお、高純度炭酸カルシウムの純度の上限値は特に限定されるものではないが、一般には、99.9999質量%である。
【0025】
(焼結助剤)
本発明において用いる焼結助剤は、炭酸カルシウムを焼結させて多孔質焼結体を製造することが可能なものであれば、特に限定されることなく用いることができる。焼結助剤としては、例えば、リチウム、ナトリウム及びカリウムの内の少なくとも2種の炭酸塩を含み、かつ融点が600℃以下である焼結助剤が挙げられる。焼結助剤の融点は、550℃以下であることが好ましく、530℃以下であることがより好ましく、450〜520℃の範囲であることがさらに好ましい。焼結助剤の融点を上記範囲にすることにより、より低温で焼成して炭酸カルシウム多孔質焼結体を製造することができる。焼結の際には、炭酸カルシウムに添加して使用することから、実際の融点は上記の温度よりさらに低くなるため焼結助剤として十分に機能する。焼結助剤は、炭酸カリウム及び炭酸リチウムの混合物であることが好ましい。焼結助剤の融点は、例えば、相図から求めることができるし、示差熱分析(DTA)により測定することも可能である。
【0026】
また、リチウム、ナトリウム及びカリウムの内の少なくとも2種のフッ化物を含み、かつ融点が600℃以下である焼結助剤が挙げられる。このような焼結助剤も、上記の融点の範囲を有するものであることが好ましい。このような焼結助剤として、例えば、フッ化カリウム、フッ化リチウム及びフッ化ナトリウムの混合物が挙げられる。具体的には、例えば、フッ化カリウム10〜60モル%、フッ化リチウム30〜60モル%、及びフッ化ナトリウム0〜30モル%の組成範囲を有する混合物が挙げられる。このような範囲とすることにより、より低い温度で焼成し、緻密な壁部を有する炭酸カルシウム多孔質焼結体を製造することができる。
【0027】
焼結助剤の含有割合は、炭酸カルシウムと焼結助剤の合計に対し、0.1〜3.0質量%の範囲内であることが好ましく、より好ましくは0.2〜2.5質量%の範囲内であり、さらに好ましくは0.3〜2.0質量%の範囲内である。焼結助剤の含有割合が少なすぎると、炭酸カルシウムが十分に焼結しない場合がある。焼結助剤の含有割合が多すぎると、炭酸カルシウム多孔質焼結体の壁部の密度を高めることができない場合がある。
【0028】
(ゲル化剤)
本発明の分散液には、ゲル化剤が含まれる。ゲル化剤を含むことにより、発泡後の分散発泡体中の気泡の強度が上がり、発泡体の形状を安定化することができる。ゲル化剤としては、メチルセルロースなどの多糖類や、イソブチレン―無水マレイン酸共重合体のアルカリ水溶性ポリマーなどが挙げられる。
【0029】
分散液中のゲル化剤の含有量は、炭酸カルシウム100質量部に対して0.1〜5質量部の範囲が好ましく、0.5〜3質量部の範囲がより好ましい。ゲル化剤の含有量が少なすぎると、発泡体中の気泡の強度が上がらず、発泡体の形状を安定化することができない場合がある。ゲル化剤の含有量が多くなりすぎると、含有量に比例した上記効果を得ることができない場合がある。
【0030】
(分散液)
本発明においては、水などの分散媒に炭酸カルシウムを徐々に添加しながら、ディスパー、ミキサー、ボールミル等の攪拌力の強い装置を用いて、炭酸カルシウムを分散媒に分散することが好ましい。焼結助剤が必要な場合には、一般に、分散液に添加する。炭酸カルシウムの含有量は、一般に、分散液中において30〜70質量%であることが好ましい。このとき、必要であれば炭酸カルシウム100質量部に対して0〜3質量部程度のポリアクリル酸塩などの高分子界面活性剤を分散剤として添加してもよい。
【0031】
ゲル化剤は、炭酸カルシウムの添加前、添加後、あるいは炭酸カルシウムの添加と同時に、分散媒に添加することができる。
【0032】
(発泡剤)
本発明において用いる発泡剤としては、ラウリル硫酸トリエタノールアミンなどのアルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテル酢酸塩、アルキルポリグルコシドなどが挙げられる。
【0033】
(発泡体の作製)
本発明では、上記分散液に発泡剤を添加した後撹拌し泡立てることにより発泡体を作製する。発泡剤は、分散液中の発泡剤の濃度が0.01〜5質量%程度となるように添加することが好ましく、0.1〜3質量%程度となるように添加することがより好ましい。攪拌は、ハンドミキサーやディスパーなどで行うことが好ましい。撹拌を行うことで分散液の温度が上昇することがあるため、必要であれば、分散液を冷却しながら撹拌を行ってもよい。
【0034】
(発泡体のゲル化)
本発明においては、作製した発泡体をゲル化する。発泡体をゲル化することにより、焼結の際に発泡体の形状を保持することができる。ゲル化させる方法としては、分散液中のカルシウムイオンで架橋構造を作ることによりゲル化させる方法、ゲル化剤自身の温度特性を利用してゲル化を促進させる方法などが挙げられる。
【0035】
ゲル化した発泡体は、乾燥させて少なくとも一部の水分を除去した後、焼結することが好ましい。乾燥温度は、30〜200℃の範囲であることが好ましい。
【0036】
(発泡体の焼結)
本発明においては、ゲル化した発泡体を焼結することにより、炭酸カルシウム多孔質焼結体を製造する。本発明においては、仮焼結した後、本焼結することが好ましい。これにより、発泡体中に含まれている有機分が残存、炭化して黒ずんだり、有機分が急激に分解を起こすことで、焼結体にヒビの発生を生じることを防ぐことができる。
【0037】
仮焼結の温度は200〜500℃の範囲内であることが好ましく、300〜420℃の範囲内であることがより好ましい。本焼結の温度は、仮焼結の温度以上で、かつ420〜600℃の範囲内であることが好ましく、450〜540℃の範囲内であることがより好ましい。
【0038】
また、仮焼結及び本焼結の際の昇温速度は、2〜20℃/分の範囲内であることが好ましい。これにより、有機分が急激に分解を起こすことで、焼結体にヒビの発生を生じることを防ぐことができる。
【0039】
焼結の際の雰囲気は、空気中であることが好ましい。しかしながら、本発明はこれに限定されるものではなく、炭酸ガス雰囲気中、あるいは窒素ガスなどの不活性ガス雰囲気中で焼結してもよい。本発明によれば、空気中で焼結させても、炭酸カルシウム多孔質焼結体を製造することができる。
【0040】
(炭酸カルシウム多孔質焼結体)
本発明の炭酸カルシウム多孔質焼結体の気孔率は、50体積%以上であることが好ましく、60体積%以上であることがより好ましく、70体積%以上であることがより好ましく、80体積%以上であることがさらに好ましく、82体積%以上であることが特に好ましい。これにより、炭酸カルシウム多孔質焼結体を、生体用途などにも用いることができる。なお、炭酸カルシウム多孔質焼結体の気孔率の上限値は特に限定されるものではないが、一般には、95体積%である。
【0041】
本発明の炭酸カルシウム多孔質焼結体は、焼結体の外部に至る連通孔が形成されていることが好ましい。これにより、多孔質焼結体内部の炭酸カルシウムを外部の雰囲気と容易に接触させることができる。従って、例えば、生体用途などにさらに好適に用いることができる。
【実施例】
【0042】
以下、本発明に従う具体的な実施例を説明するが、本発明はこれらの実施例に限定されるものではない。
【0043】
<実施例1>
(炭酸カルシウム)
純度99.61質量%、平均粒子径(D50)0.15μm、BET比表面積10m/gである炭酸カルシウムを用いた。平均粒子径(D50)は、測定対象である炭酸カルシウム粒子について、透過型電子顕微鏡観察により1500個の粒子径を測定し、粒子径分布から求めた。BET比表面積は、島津製作所製のフローソーブ2200を用いて、1点法により測定した。純度は、差分法により導出した。具体的には、誘導結合プラズマ発光分析装置を用いて、質量既知の試料を溶解した測定検液中の不純物量を測定し、得られた結果の和を不純物含量として、全体から不純物含量を引いた値を純度とした。
【0044】
上記の炭酸カルシウムを用いて、以下のようにして、炭酸カルシウム多孔質焼結体を製造した。
【0045】
(分散液の調製)
イオン交換水55質量部と、炭酸カルシウム100質量部と、メチルセルロース0.55質量部と、特殊ポリカルボン酸型高分子界面活性剤2.5質量部(有効部数1.0質量部)と、炭酸カリウム0.32質量部と、炭酸リチウム0.28質量部とをホモディスパーを用いて混合し、分散液を得た。メチルセルロースはゲル化剤であり、特殊ポリカルボン酸型高分子界面活性剤は分散剤であり、炭酸カリウム及び炭酸リチウムは焼結助剤である。
【0046】
(発泡体の作製)
得られた分散液に、発泡剤としてのラウリル硫酸トリエタノールアミン0.97質量部(有効部数0.39質量部)を添加し、ハンドミキサーで、1000rpm、10分間撹拌して泡立て、発泡体を作製した。
【0047】
(発泡体のゲル化)
発泡体を紙で作製した成形型に入れ、成形型を熱風乾燥機に移し、熱風乾燥機内で発泡体を80℃、0.5時間加熱することにより、発泡体をゲル化させた。ゲル化した発泡体を、80℃、12時間加熱することにより、乾燥させた。
【0048】
(発泡体の焼結)
ゲル化して乾燥させた発泡体を、仮焼結温度(400℃)まで5℃/分の昇温速度で昇温させ、昇温後10時間仮焼結を行った。次に、400℃から、同様の昇温速度で本焼結温度(510℃)まで昇温させ、昇温後3時間本焼結を行い、その後、10℃/分の速度で室温まで冷却し、炭酸カルシウム多孔質焼結体を得た。
【0049】
得られた炭酸カルシウム多孔質焼結体の気孔率は、82体積%であった。気孔率は、焼結体を直方体ブロック状に切り出し、ブロックの重量と見かけの体積から密度を求め、炭酸カルシウムの真密度2.711g/cmで除し、相対密度(%)を求め、100%から相対密度を引いた値を気孔率とした。
【0050】
<実施例2>
発泡剤の量を、0.97質量部から0.04質量部に変更したこと以外は、実施例1と同様にして、発泡体を作製し、作製した発泡体をゲル化して焼結し、炭酸カルシウム多孔質焼結体を得た。得られた炭酸カルシウム多孔質焼結体の気孔率は、64体積%であった。
【0051】
<実施例3>
ゲル化剤として、イソブチレン―無水マレイン酸共重合体のアルカリ水溶性ポリマーを用いる以外は、実施例1と同様にして、発泡体を作製し、作製した発泡体をゲル化して焼結し、炭酸カルシウム多孔質焼結体を得た。得られた炭酸カルシウム多孔質焼結体の気孔率は、78体積%であった。
【0052】
<比較例1>
ゲル化剤を用いないこと以外は、実施例1と同様にして、発泡体を作製し、作製した発泡体をゲル化して焼結した。しかしながら、焼結の際に発泡体の形状を維持することができず、炭酸カルシウム多孔質焼結体を得ることができなかった。
【0053】
<炭酸カルシウム多孔質焼結体の走査型電子顕微鏡観察>
図1図4は、実施例1で得られた炭酸カルシウム多孔質焼結体の走査型電子顕微鏡写真である。図1は倍率25倍、図2は倍率150倍、図3は倍率5000倍、図4は倍率20000倍である。図1及び図2から明らかなように、炭酸カルシウム多孔質焼結体は、焼結体の外部に至る連通孔を有していることがわかる。また、図3及び図4から明らかなように、炭酸カルシウム粒子が緻密に焼結されて、緻密な壁部を有する多孔質焼結体が形成されていることがわかる。
【0054】
<実施例4>
純度99.99質量%、平均粒子径(D50)0.15μm、BET比表面積10m/gである炭酸カルシウムを用い、焼結助剤としての炭酸カリウム及び炭酸リチウムを分散液に添加しない以外は、実施例1と同様にして、発泡体を作製し、作製した発泡体をゲル化して焼結し、炭酸カルシウム多孔質焼結体を得た。得られた炭酸カルシウム多孔質焼結体の気孔率は、84体積%であった。
【0055】
<実施例5>
純度99.91質量%、平均粒子径(D50)0.15μm、BET比表面積10m/gである炭酸カルシウムを用い、焼結助剤としての炭酸カリウム及び炭酸リチウムを分散液に添加しない以外は、実施例1と同様にして、発泡体を作製し、作製した発泡体をゲル化して焼結し、炭酸カルシウム多孔質焼結体を得た。得られた炭酸カルシウム多孔質焼結体の気孔率は、81体積%であった。
【0056】
<参考例1>
焼結助剤としての炭酸カリウム及び炭酸リチウムを分散液に添加しない以外は、実施例1と同様にして、発泡体を作製し、作製した発泡体をゲル化して焼結したが、炭酸カルシウム多孔質焼結体は得られなかった。
【0057】
実施例4及び5と参考例1との比較から、高純度炭酸カルシウムを用いることにより焼結助剤を用いずに、炭酸カルシウム多孔質焼結体を製造できることがわかる。
図1
図2
図3
図4