(58)【調査した分野】(Int.Cl.,DB名)
液体試料をプローブに導入して噴霧するとともに電荷を付与して荷電粒子化し、荷電粒子導入開口を通じてその後段に設けられた荷電粒子分析部に送出する荷電粒子の供給制御方法であって、
前記液体試料中の目的成分が前記プローブに導入される時間帯に、予め決められた所定の位置及び所定の向きに該プローブを配置して前記液体試料を噴霧し、
前記時間帯以外の時間帯に、前記所定の位置と異なる位置に、又は/及び前記所定の向きと異なる向きに前記プローブを配置して前記液体試料を噴霧する
ことを特徴とする荷電粒子の供給制御方法。
前記予め決められた所定の位置及び前記所定の向きのうちの少なくとも一方が前記目的成分毎に決められていることを特徴とする請求項1に記載の荷電粒子の供給制御方法。
前記予め決められた所定の位置及び前記所定の向きのうちの少なくとも一方が前記目的成分の特性に応じて決められていることを特徴とする請求項1に記載の荷電粒子の供給制御方法。
前記予め決められた所定の位置及び前記所定の向きのうちの少なくとも一方が前記目的成分毎に決められていることを特徴とする請求項4に記載の荷電粒子の供給制御装置。
【背景技術】
【0002】
液体試料に含まれる目的成分の定性や定量を行う装置の一つに、液体クロマトグラフと質量分析計を組み合わせてなる液体クロマトグラフ質量分析装置がある。液体クロマトグラフでは液体試料を移動相の流れに乗せてカラムに導入し、該液体試料に含まれる目的成分を他の成分から時間的に分離する。質量分析計では、液体クロマトグラフのカラムから溶出する試料を逐次イオン源でイオン化し、生成されたイオンを質量電荷比毎に測定する。これにより、所定の時間にカラムから溶出する目的成分をその質量電荷比により正確に同定し、定量を行うことができる。液体クロマトグラフ質量分析装置では、取り扱いの容易さからESIプローブ等を備えた大気圧イオン源が用いられることが多い。
【0003】
大気圧イオン源で生成されたイオンは、イオン導入開口を介して連通する分析室内に配置されたイオン輸送光学系で集束され、質量分離部で質量分離された後、検出器で測定される。このとき、目的成分由来のイオンだけでなく、液体試料に含まれる分析対象外の成分(移動相、液体試料の溶媒等)由来のイオンや中性分子もイオン輸送光学系や質量分離部に導入される。イオン輸送光学系及び質量分離部が配置される分析室は真空ポンプにより排気されているが、それでも導入された成分の一部はイオン輸送光学系のインターフェース部やレンズ系、あるいは質量分離部を構成する電極などに付着する。特に、イオン輸送光学系はイオン化室に近い位置に設けられているため、分析対象外の成分の流入により汚染されやすい。例えば、イオン輸送光学系のイオンレンズが付着物で汚染されると、イオンビームの集束効率が悪くなり質量分離部に導入されるイオン量が減少して感度が悪くなる。また、質量分離部の電極が付着物により汚染されると、所期の電場が形成されず正確な質量分離を行うことができなくなる。従って、ある程度の時間、質量分析を行った後には、イオン輸送光学系や質量分離部を洗浄するために、それらが配置された分析室の真空を解除して大気開放する必要がある。
【0004】
一旦、真空を解除すると、測定を再開するために所定の真空度まで排気するのに時間がかかる。こうした作業に要する時間(ダウンタイム)には測定を行うことができないため、イオン輸送光学系や質量分離部の汚染を抑制して洗浄のためのダウンタイムの発生間隔を長くすることが求められる。
【0005】
特許文献1には、イオン源としてESIプローブを備えた液体クロマトグラフ質量分析装置において、液体クロマトグラフから目的成分が溶出する時間帯とそれ以外の時間帯でESIプローブに印加する電圧及びESIプローブへのネブライザガスの送給の有無を切り替えることが記載されている。具体的には、目的成分の溶出時間帯にはESIプローブに所定の電圧を印加しつつネブライザガスを送給する第1モード、それ以外の時間帯にはESIプローブへの電圧の印加及びネブライザガスの送給を停止する第2モードを実行する。第1モードでは、液体クロマトグラフからの目的成分を含む溶出液の噴霧により生成された帯電液滴が気化に伴ってイオン化する。第2モードでは液体クロマトグラフからの溶出液をESIプローブからそのまま流下させる。この液体クロマトグラフ質量分析装置では、目的成分を含む溶出液以外は質量分析装置に導入されないため、イオン輸送光学系などが配置された分析室の汚染が抑制され、洗浄のためのダウンタイムの間隔を長くすることができる。
【発明の概要】
【発明が解決しようとする課題】
【0007】
液体クロマトグラフ質量分析装置はペプチドの分析にも広く用いられている。ペプチドを分析する際には、その前処理工程において、ペプチドを所定のアミノ酸の位置で切断するためにタンパク質分解酵素や変性剤を用いたり、ペプチドを溶解するためにpHを調整する塩や界面活性剤を用いたりすることがある。これらには難揮発性の成分が含まれている場合があるため、こうした前処理が施された液体試料を特許文献1に記載の液体クロマトグラフ質量分析装置にそのまま導入すると、第2モード実行中にプローブから流下する際に溶出液に含まれる変性剤等の難揮発性の成分がプローブの先端で析出してプローブの出口を塞いだり、析出物によって第1モード実行時にスプレーの安定性が低下したりする可能性がある。液体試料を液体クロマトグラフに導入する前に変性剤等を除去する前処理を行えばこうした問題は回避できるが、その前処理には時間と手間がかかり、また前処理の過程で目的成分のロスが生じる可能性がある。
【0008】
ここでは液体クロマトグラフ質量分析装置を例に挙げたが、例えばキャピラリ電気泳動装置を成分分離部として用いる場合や、液体クロマトグラフ等の成分分離部を用いず第1液(例えば移動相)の流れに第2液(例えば標準試料の溶液)を注入する場合にも上記同様の問題があった。また、質量分析計のほか、例えば、イオン移動度分光計(例えば特許文献2)や分級装置(例えば特許文献3)を荷電粒子分析部として用いる場合にも上記同様の問題があった。
【0009】
本発明が解決しようとする課題は、液体試料を荷電粒子化し、荷電粒子導入開口を通じてその後段に設けられた荷電粒子分析部に導入する方法及び装置であって、荷電粒子分析部内が汚染されるのを防ぐことができ、また難揮発性の成分を含む液体試料についての特別な前処理を必要としない、荷電粒子の供給制御方法及び装置を提供することである。
【課題を解決するための手段】
【0010】
上記課題を解決するために成された本発明は、液体試料をプローブに導入して噴霧するとともに電荷を付与して荷電粒子化し、荷電粒子導入開口を通じてその後段に設けられた荷電粒子分析部に送出する荷電粒子の供給制御方法であって、
前記液体試料中の目的成分が前記プローブに導入される時間帯に、予め決められた所定の位置及び所定の向きに該プローブを配置して前記液体試料を噴霧し、
前記時間帯以外の時間帯に、前記所定の位置と異なる位置に、又は/及び前記所定の向きと異なる向きに前記プローブを配置して前記液体試料を噴霧する
ことを特徴とする。
【0011】
前記液体試料中の目的成分は、例えば液体クロマトグラフ等の成分分離部で他の成分から時間的に分離されたものや、あるいは第1液(例えば移動相)の流れの中に注入された第2液に含まれる標準試料である。前記目的成分が成分分離部で他の成分から時間的に分離されたものである場合には、該目的成分がプローブに導入される時間帯(例えば、成分分離部が液体クロマトグラフである場合は保持時間)はデータベースを参照したり予備測定を行ったりすることにより事前に決めておけばよい。
【0012】
前記所定の位置及び前記所定の向きは、荷電粒子化装置の製造者や使用者が事前に行った予備測定の結果に基づいて、荷電粒子導入開口への荷電粒子の導入効率が高くなるように定められた位置及び向きである。
【0013】
プローブの種類や大きさ、該プローブに導入される液体試料の流速等によって異なるが、液体試料の荷電粒子化に用いられる典型的なプローブであるマイクロESIプローブやAPCIプローブを直交スプレー型の配置で使用する場合、その先端から噴霧される液体試料はネブライザガス等により約5mm程度の拡がりをもった柱状の噴霧領域に集束し、その内部に含まれる微細な液滴が荷電粒子導入開口に導かれる。そこで、前記所定の位置と異なる位置、又は/及び前記所定の向きと異なる向きを、例えば荷電粒子導入開口から20mm以上ずれた(オフセットした)位置や、プローブの中心軸が荷電粒子導入開口から20mm以上離れた位置を通るような向きにするとよい。また、ナノESIプローブのように、より小型のプローブである場合は、前記所定の位置と異なる位置、又は/及び前記所定の向きと異なる向きを、例えば、荷電粒子導入開口から5mm以上オフセットした位置や、プローブの中心軸が荷電粒子導入開口から5mm以上離れた位置を通るような向きにするとよい。これにより、プローブから噴霧される物質が荷電粒子導入開口を通過し荷電粒子分析部に進入するのを十分に抑制することができる。
【0014】
本発明に係る荷電粒子の供給制御方法では、目的成分がプローブに導入される時間帯には該プローブが所定の位置及び所定の向きに配置され、該目的成分から生成された荷電粒子が荷電粒子導入開口を通じてその後段に位置する荷電粒子分析部に送出される。一方、それ以外の時間帯には前記所定の位置と異なる位置に、又は/及び前記所定の向きと異なる向きにプローブが配置され、液体試料中の目的成分以外のものから生成された荷電粒子や中性分子などが荷電粒子導入開口から荷電粒子分析部に導入されるのが抑制される。従って、荷電粒子分析部(例えばイオン輸送光学系や質量分離部)の内部が汚染されるのを防ぐことができる。
【0015】
また、この荷電粒子の供給制御方法では、目的成分がプローブに導入される時間帯とそれ以外の時間帯で該プローブの配置を変更するのみで、いずれの時間帯にも該プローブの先端から液体試料を噴霧し続ける。そのため、液体試料に変性剤、塩、あるいは界面活性剤といった難揮発性の成分が含まれている場合でも、プローブ先端から流出すると速やかに飛び離れ、こうした成分がプローブ先端に析出して該プローブの出口を塞いだりスプレーを不安定化させたりする心配がない。
【0016】
前記荷電粒子分析部は、例えば質量分析計、イオン移動度分光計、あるいは分級装置である。前記プローブは、例えば上述のESIプローブやAPCIプローブである。ESIプローブを用いる場合には、該ESIプローブにイオン化(荷電粒子化)電圧を印加して液体試料を帯電させつつ気化促進ガスによって霧化することによりイオン化する。ESIプローブは、単体で設けられるもの(マイクロESIプローブ)であってもよく、あるいはカラムと一体的に構成されたもの(ナノESIプローブ)であってもよい。APCIプローブを用いる場合には、気化促進ガスによって液体試料を霧化し、APCIプローブとイオン(荷電粒子)導入開口の間に配置されたニードル(コロナニードル)に電圧を印加してコロナ放電を生じさせる。これにより、APCIプローブから噴霧された液体試料に含まれる、イオン化しやすい分子(例えば移動相分子)をイオン化し、さらに目的成分の分子との間で電荷交換させることにより該目的成分をイオン化する。
【0017】
上記課題を解決するために成された本発明の別の態様は、液体試料を荷電粒子化し、荷電粒子導入開口を通じてその後段に設けられた荷電粒子分析部に送出する荷電粒子の供給制御装置であって、
a) 前記液体試料が導入されるプローブと、
b) 前記プローブの位置及び/又は向きを変更するプローブ配置変更機構と、
c) 前記液体試料中の目的成分が前記プローブに導入される時間帯に関する情報である目的成分導入時間帯情報の入力を受け付ける時間帯情報入力受付部と、
d) 前記目的成分導入時間帯情報に基づき、前記目的成分が前記プローブに導入される時間帯には予め決められた所定の位置及び所定の向きに該プローブを配置し、それ以外の時間帯には前記所定の位置と異なる位置に、又は/及び前記所定の向きと異なる向きに前記プローブを配置するように前記プローブ配置変更機構を動作させる制御部と
を備えることを特徴とする。
【発明の効果】
【0018】
本発明に係る荷電粒子の供給制御方法や荷電粒子の供給制御装置を用いることにより、荷電粒子分析部内が汚染されるのを防ぐことができる。また、析出しやすい難揮発性の成分が液体試料に含まれている場合であってもそうした成分を除去する前処理を行う必要がない。
【発明を実施するための形態】
【0020】
本発明に係る荷電粒子の供給制御方法及び装置の実施例について、以下、図面を参照して説明する。本実施例の荷電粒子の供給制御方法及び装置はイオンの供給を制御する方法及び装置である。本実施例のイオンの供給制御装置は、液体クロマトグラフ質量分析装置が有する液体クロマトグラフ(LC)と質量分析計(MS)のイオン源として設けられ、後述する制御部等と協働することによって具現化される。本実施例のイオンの供給制御装置は、液体クロマトグラフのカラムで時間的に分離された成分をイオン化して質量分析計に送出するために用いられる。
【0021】
図1は、本実施例のイオンの供給制御装置を備えた液体クロマトグラフ質量分析装置の概略構成図である。液体クロマトグラフ10のインジェクタ13から導入された液体試料は、ポンプ12により一定の速度で移動相容器11から供給される移動相の流れに乗ってカラム14に導入され時間的に成分分離される。液体クロマトグラフ10のカラム14からの溶出液は、イオン源20に導入される。
【0022】
イオン源20は、液体クロマトグラフ10のカラム14からの溶出液(分離された試料成分と移動相の混合液)に含まれる試料成分をESI(エレクトロスプレイイオン化)法によりイオン化する装置(エレクトロスプレイイオン源)である。イオン源20に設けられたマイクロESIプローブ22(以下、単に「ESIプローブ」と記載する。)は、
図2に示すように、カラム14からの溶出液が流通する試料送液管221と、試料送液管221の外周部を覆うように設けられたネブライザガス供給管222とを有し、その先端部には数kVの直流高電圧(ESI電圧)が印加される。ネブライザガス供給管222には、窒素ガス等のネブライザガスを送給するネブライザガス送給ライン223が接続されている。また、ESIプローブ22は、回転ステージ、ガイドレール、モータ等を有するプローブ配置変更機構24に取り付けられており、その位置及び向きを適宜に変更することができるようになっている。
【0023】
ESIプローブ22の試料送液管221に導入された溶出液は、該試料送液管221の先端部に到達すると高電圧により帯電し、また、ネブライザガス供給管222から放出されるネブライザガスが吹き付けられることにより霧化してイオン化室21に放出されイオン化する。生成されたイオンはイオン導入開口23を通過してイオン輸送光学系31が配置された中間真空室に送出される。イオン導入開口23の中央には脱溶媒管231が取り付けられている。また、脱溶媒管231には、加熱された乾燥ガスが質量分析計30側からイオン化室21側に向かって吹き付けられており、これによってESIプローブ22から噴霧される試料成分の脱溶媒化がさらに促進される。このような乾燥ガスを用いると、中性粒子や溶媒由来の低分子イオンが後段のイオン輸送光学系31等に入射するのを防ぐことができる。しかし、その一方で目的成分由来のイオンの導入量も減少する。従って、目的成分の量や濃度に応じて乾燥ガスの使用/不使用、また使用する際の流量を適宜に決めておくことが好ましい。
【0024】
中間真空室にはイオン導入開口23(及び脱溶媒管231)から導入されたイオンを収束させつつ後段へと送るイオン輸送光学系31が配置されている。また、中間真空室の後段に位置する分析室にはイオン輸送光学系31を通過したイオンを質量分離して測定する質量分離部32が配置されている。イオン輸送光学系31はイオンレンズ311及び多重極イオンガイド312を備えている。質量分離部32はいわゆるトリプル四重極型(三連四重極型)であり、上流側から順に、イオンを質量電荷比に応じて分離する前段四重極マスフィルタ(Q1)321、多重極イオンガイド(q2)323が内部に設置されたコリジョンセル322、イオンを質量電荷比に応じて分離する後段四重極マスフィルタ(Q3)324、及びイオン検出器325を備えている。イオン輸送光学系31及び質量分離部32が本発明の荷電粒子分析部に相当する構成要素である。中間真空室及び分析室の内部は、分析実行中、真空ポンプ(図示なし)により所定の高真空に維持されている。なお、上述したイオン輸送光学系31及び質量分離部32の具体的な構成は一例であって、上記以外のものを用いてもよい。
【0025】
制御部50は、記憶部51の他に、機能ブロックとして時間帯情報入力受付部53及び分析制御部54を備えている。記憶部51には化合物データベース(化合物DB)52が保存されている。化合物データベース52には、分析条件(移動相の種類や流量、カラムの種類等)やイオン源の各種パラメータ(ESI電圧値、ネブライザガス流量、ヒータ温度等)毎に、複数の化合物のそれぞれの保持時間(カラム14から溶出されはじめる溶出開始時間とカラム14からの溶出が終了する溶出終了時間)とESIプローブ22の配置に関する情報が対応付けられて保存されている。この化合物データベース52には、新たな分析条件やイオン源のパラメータでの分析や新たな化合物の分析が実行されると、それらの情報が順次、追加登録される。また、目的成分がESIプローブ22に導入されない時間帯のESIプローブ22の配置に関する情報も併せて保存されている。各化合物の保持時間は、本発明における、目的成分がプローブに導入される時間帯に対応する。本実施例では各化合物の保持時間をそのまま前記時間帯として用いるが、カラム14からESIプローブ22までの流路が長い場合には、保持時間から該流路を流れるのに要する時間だけ遅れた時間帯を前記時間帯とすることが好ましい。
【0026】
図3(a)に一例を示すように、ESIプローブ22の配置に関する情報は、予め決められたESIプローブ22の標準位置を原点とするxyz座標と、z軸に対してESIプローブ22が成す角度の組み合わせである。ただし、説明を容易にするために、本実施例ではESIプローブ22の角度を全て0としている。化合物データベース52にはまた、例えば疎水性や分子量といった化合物の特性とESIプローブ22の配置に関する情報を対応付けたものも保存されている(
図3(b)(c))。
【0027】
本実施例のイオン源20におけるESIプローブ22とイオン導入開口23の相対的な位置関係について、
図2を参照して説明する。ESIプローブ22の最適位置、即ちイオン導入開口23に最も効率よくイオンが導入されるESIプローブ22の位置は、化合物毎に異なる。これは、ESIプローブ22の先端から噴霧されるイオンの広がり方や脱溶媒のしやすさが該溶出液に含まれる目的成分や移動相等の種類によって異なるためである。特許文献4に記載されているように、ESIプローブ22の先端から噴霧されるイオンの好ましい広がりの形状はESIプローブ22の先端に頂点を有する円錐状であり、これはテイラーコーンと呼ばれる。テイラーコーンの中心軸上にイオン導入開口23が位置するようにESIプローブ22を配置するよりも、該中心軸をイオン導入開口23からオフセットした方がイオンの導入効率が高くなる場合があることが知られており、そのオフセットの程度は化合物の種類や特性によって異なる(位置A及びB)。例えばテイラーコーンが広がりやすい化合物ほどオフセット量が大きくなる傾向がある(位置B)。また、脱溶媒しやすい化合物は短い飛行距離でイオン化されるため、それらを効率よくイオン導入開口23に導くことができるように、脱溶媒しにくい化合物に比べてイオン導入開口23に近い位置がESIプローブ22の最適配置とされる。
【0028】
目的成分がESIプローブ22に導入されない時間帯のESIプローブ22の配置は、上述した(目的成分がESIプローブ22に導入される時間帯のESIプローブ22の)位置や向きと異なる位置や向きであり、具体的には、例えば、ESIプローブ22の先端をイオン導入開口23から遠ざけた位置や、ESIプローブ22の先端がイオン導入開口23から離れた位置を向くような向きである。これにより、目的成分がESIプローブ22に導入されない時間帯に、該ESIプローブ22の先端から噴霧される溶出液に由来するイオンや中性分子がイオン導入開口23に導入されるのが抑制される。
【0029】
化合物データベース52には、測定対象になりうる化合物全てについての情報が保存されていることが好ましいが、複数の分析条件であらゆる化合物の予備測定を行ったり利用可能な既存の化合物データベースを探索したりすることは現実的でない。そこで、本実施例の化合物データベース52では、代表的な化合物についてのみ、予備実験等に基づいて決められたESIプローブ22の最適配置に関する情報を保存しておく。それ以外の化合物についてもESIプローブ22の最適配置を決定することができるように、化合物の特性(本実施例では疎水性及び分子量)とESIプローブ22の配置に関する情報を対応付けたものが保存されている。また、上述したテイラーコーンの形状や脱溶媒のしやすさは、移動相の種類によっても異なるため、各分析条件の中に、当該分析に用いられる移動相に対応したESIプローブ22の配置が補正値(例えば化合物毎に決められた座標や角度からの追加変化量)として設定されており、これは分析条件の一つのパラメータとして組み込まれている。
【0030】
時間帯情報入力受付部53は、使用者による、目的成分がESIプローブ22に導入される時間帯に関する情報の入力を受け付ける。分析制御部54は、使用者からの入力指示に応じて分析動作を制御するものであり、例えば、液体試料をインジェクタ13から注入したり、電源部40に制御信号を送信して液体クロマトグラフ10及び質量分析計30の各部に所定の電圧を印加したりする等の動作を行う。制御部50の実体はパーソナルコンピュータであり、記憶部51に保存された分析制御プログラムを動作させることにより時間帯情報入力受付部53及び分析制御部54が具現化される。また、制御部50には入力部60及び表示部70が接続されている。
【0031】
本実施例における液体クロマトグラフ質量分析装置の動作について、
図4のフローチャートを参照して説明する。本実施例の液体クロマトグラフ質量分析装置は、液体試料に含まれる既知の目的成分を行うために好適に用いられる。
【0032】
使用者が分析開始を指示すると、時間帯情報入力受付部53は、表示部70に時間帯情報入力受付画面を表示する(ステップS1)。この画面には、分析条件(移動相の種類、移動相の流量、カラムの種類等)と目的成分(化合物)の名称を入力する欄が設けられている(
図5)。本実施例では、使用者が分析条件を簡便に入力できるように、移動相の種類及び流量とカラムの種類が予め組み合わされたもの(分析条件A等)をプルダウン形式で入力するようになっている。各分析条件の組み合わせの詳細は図示しない別画面に表示される。また、予め用意された組み合わせの中に分析条件として使用するものがない場合、プルダウン項目から「該当なし」を選択し、分析条件を個別に入力することができるようになっている。
【0033】
目的成分についても同様に、化合物データベース52に保存されている化合物の名称をプルダウンで選択できるようになっている。使用者が目的成分を選択して「追加」ボタンを押すと、画面下部の「選択済みの目的成分一覧」の欄に当該化合物の名称と化合物データベースから読み出された当該化合物の保持時間が追加されていく。使用者は追加した各化合物の保持時間を確認し、それらが時間的に重複していないことを確認することができる。各化合物名の横の「キャンセル」ボタンを押すと、当該化合物が目的成分一覧から削除される。
【0034】
使用者が、目的成分のプルダウン項目から「該当なし」を選択すると、使用者に目的成分の名称及び保持時間を手入力させる欄と、当該目的成分の特性を選択させる欄が表示される(
図6)。本実施例では、目的成分の特性として、疎水性(弱、中、強)及び分子量(小、中、大)が用意されており、それらをプルダウンで選択入力できるようになっている。使用者がこれらを入力して「追加」ボタンを押すと、
図5の画面下方の欄に当該化合物が目的成分として追加される。目的成分の特性としては、これらのほか、イオンの極性や価数等を入力することができる。これらを入力させる場合には、それぞれに対応するESIプローブ22の配置に関する情報を予め化合物データベースに保存しておく。
【0035】
使用者が分析条件及び目的成分の入力を終えると(ステップS2)、分析制御部54は、化合物データベースから入力された分析条件及び目的成分の名称に合致するESIプローブ22の配置を読み出してメソッドファイルを作成し(ステップS3)、記憶部51に保存するとともに表示部70に表示する。
図7に目的成分として化合物A、化合物B、及び化合物Xを選択した場合に作成されるメソッドファイルの例を示す。なお、メソッドファイルには分析条件の詳細等、多岐に渡る項目が含まれるが、
図7では本実施例に特徴的な項目のみを示している。なお、
図7の化合物Xに対応するESIプローブ22の座標(x', y', z')は、疎水性「弱」に対応する座標(x4, y4, z4)と分子量「中」に対応する座標(x8, y8, z8)の中間位置である。このように、化合物に関する複数の特性や移動相等のそれぞれに対応する座標を用いてESIプローブ22の位置を決定する場合には、それらの平均値を用いればよい。あるいは、それらに重み付けを付して平均することにより得た位置を用いることもできる。
【0036】
表示部70に表示されたメソッドファイルを使用者が確認し、測定開始を指示すると(ステップS4)、分析制御部54は、インジェクタ13から液体試料を注入する。インジェクタ13から注入された試料は移動相の流れに乗ってカラム14に導入され、その内部で各成分が時間的に分離される。カラム14から溶出した成分はESIプローブ22に導入され、ESI電圧の印加及びネブライザガスの送給により帯電液滴となってイオン化室21内に噴霧されイオン化される。
【0037】
分析制御部54は、分析開始と同時に、メソッドファイルに記載された配置に基づいてESIプローブ22の位置(及び角度)を変更するとともに所定のESI電圧を印加する。また、ネブライザガス供給管に所定の流量のネブライザガスを送給するように各部を制御する。分析開始時には、目的成分はESIプローブ22に導入されないため、ESIプローブ22は座標(x0, y0, z0)の位置(初期位置)に配置される(ステップS5)。上述したとおり、この位置(及び向き)は、ESIプローブ22の先端がイオン導入開口23から遠ざけられた位置であり、目的成分を含まない溶出液から生成されたイオンや中性分子がイオン導入開口23に導入されることが抑制される。
【0038】
分析開始後、目的成分の溶出開始時間(最初は3.5min)になると(ステップS6でYES)、分析制御部54は、ESIプローブ22の位置(及び角度)を変更する。具体的には、化合物Bに対応付けられている座標(x2, y2, z2)の位置にESIプローブ22を移動する。(ステップS7)。このように、目的成分の溶出時間帯には該目的成分から生成されるイオンが効率よくイオン導入開口23に導入される位置にESIプローブ22を配置するため、各目的成分を高感度で測定することができる。その後、目的成分の溶出終了時間になると(ステップS8でYES)、全ての目的成分が溶出していれば(ステップS9でYES)測定を終了し、未だ溶出していない目的成分がある場合(ステップS9でNO)には、ステップS5に戻ってESIプローブ22を初期位置に移動する。ある目的成分の溶出終了時刻に別の目的成分が溶出し始める場合には、ESIプローブ22を初期位置に移動することなく次の目的成分に対応する位置に移動すればよい
【0039】
本実施例のイオンの供給制御方法及び装置では、目的成分がESIプローブ22に導入される時間帯には、当該目的成分が効率よくイオン導入開口23に導入されるように予め決められた位置(及び角度)にESIプローブ22を移動する。そして、それ以外の時間帯には目的成分を含まない溶出液由来のイオンや中性分子がイオン導入開口23に導入されるのを抑制するように予め決められた位置(及び角度)にESIプローブ22を移動する。そのため、目的成分以外の化合物由来によって中間真空室や分析室の内部が汚染されるのを防ぐことができる。従って、中間真空室や分析室の内部を洗浄するために真空を解除する頻度を少なくしてダウンタイムの発生頻度を抑えることができる。
【0040】
また、本実施例のイオンの供給制御方法及び装置では、液体クロマトグラフ10のカラム14からの溶出液がESIプローブ22に導入されている間、分析制御部54は、目的成分がESIプローブ22に導入されているか否かを問わず、ESIプローブ22に所定のESI電圧を印加し、またネブライザガスを送給する。そのため、液体試料に変性剤、塩、あるいは界面活性剤といった難揮発性の成分が含まれている場合でも、それらはESIプローブ22の先端から流出すると速やかに飛び離れ、こうした成分がプローブ先端に析出して該プローブの出口を塞いだりスプレーを不安定化させたりする心配がない。
【0041】
上記実施例では、イオン源として一般的なESIプローブ(マイクロESIプローブ)22を用いる場合について説明したが、他の大気圧イオン源でも同様に構成することができる。以下、
図8を参照してナノESIプローブ22aを備えた構成例を、
図9を参照してAPCIプローブ22bを備えた構成例を、それぞれ説明する。上記実施例と同じ構成要素には共通の符号を付して詳細な説明を省略する。また、
図8及び
図9ではプローブ移動機構の図示を省略している。ここでは、大気圧イオン源として特に広く用いられているエレクトロスプレイイオン化及び大気圧化学イオン化法を用いるものについてのみ説明するが、大気圧光イオン化(APPI:Atmospheric Pressure Photo Ionization)法等、他の様々な大気圧イオン化法についても同様に構成することができる。
【0042】
図8は、極微量の液体試料を測定する際に用いられるナノESIプローブ22aを備えたイオン源である。ナノESIプローブ22aでは、液体試料に含まれる各種成分を分離するためのカラム224aがナノESIプローブ22a内に設けられている。液体試料はインジェクタ13aから、ポンプ12aにより一定の速度で移動相容器11aから供給される移動相の流れに乗ってカラム224aに導入されて成分分離された後、試料送液管221aを通ってナノESIプローブ22aの先端部に送給され、イオン化室21内に噴霧されてイオン化される。また、上記実施例と同様に、分析制御部54による制御の下、分析中は、常時、電源部40からナノESIプローブ22aにESI電圧が印加される。また、目的成分の溶出時間帯とそれ以外の時間帯で上記同様にナノESIプローブ22aの配置を変更する。この構成においても、目的成分の溶出時間帯以外の時間帯に溶出液から生成されたイオンや中性分子がイオン導入開口23を通じて質量分析計30に流入するのが防止される。そのため、目的成分以外の成分によって中間真空室や分析室の内部が汚染されるのを防ぐことができる。
【0043】
図9は、大気圧化学イオン化(APCI: Atmospheric Pressure Chemical Ionization)法によってイオンを生成する構成例であり、APCIプローブ22bとコロナニードル25を備えている。ESIプローブ22を用いる実施例と同様に、液体試料に含まれる各種成分は液体クロマトグラフ10のカラム14で分離され、順次、APCIプローブ22bの試料送液管221bに導入される。APCIプローブ22bに導入された溶出液は、ネブライザガス供給管222bからのネブライザガスによりイオン化室21内に噴霧される。APCIプローブ22bの出口端近傍には、所定の高電圧(APCI電圧)が印加されたコロナニードル25が配置されている。APCIプローブ22bから噴霧された溶出液に含まれる移動相等の溶媒の分子は、コロナ放電領域内でイオン化される。液体試料に含まれる各種成分は、イオン化された溶媒分子と電荷交換することによりイオン化されイオン導入開口23を通って質量分析計30に送出される。この構成においても分析制御部54の動作は上記同様であり、目的成分以外の成分によって質量分析計30の内部が汚染されるのを防ぐことができる。なお、APCIプローブを用いる場合、目的成分の溶出時間帯とそれ以外の時間帯でAPCIプローブ22bの配置のみを変更してもよく、あるいはコロナニードル25の配置も併せて変更するようにしてもよい。
【0044】
上記実施例は一例であって、本発明の趣旨に沿って適宜に変更することができる。
上記実施例では液体クロマトグラフとトリプル四重極型の質量分析計を組み合わせてなる液体クロマトグラフ質量分析装置を例に挙げて説明したが、試料に含まれる目的成分を他の成分から時間的に分離して測定することが可能なものであれば、液体クロマトグラフ以外の成分分離部を用いてもよく、またトリプル四重極型以外の構成の質量分析計(飛行時間型の質量分析計等)や、イオン移動度分析計等の他のイオン分析計を用いてもよい。あるいはイオンを分析するものに限らず、イオン以外の荷電粒子の分析装置(分級装置等)においても上記同様の構成を採ることができる。
【0045】
また、液体クロマトグラフ等の成分分離部を有しない装置、例えば第1液(移動相等)の流れに第2液(標準試料)を注入する場合にも上記同様に構成することができる。この場合には、第2液(標準試料)を目的成分として取り扱い、該第2液が注入される時間帯(あるいはそれよりも少し遅い時間帯)をプローブに導入される時間帯とすればよい。
【0046】
上記実施例では、目的成分の測定時の動作を説明したが、カラム14や流路等を洗浄する洗浄液をESIプローブ22等に導入する際にも上記同様に動作させる(つまり、洗浄中は目的成分がESIプローブ22等に導入されない時間帯として取り扱う)ことができる。これにより、洗浄液によって質量分析計30の内部が汚染されるのを防ぐことができる。