【課題を解決するための手段】
【0010】
(管路内での安定飛行)
管路内で安定して飛行することをテーマとした場合、更にそのテーマは以下のように細分化できる。
第一に、飛行ドローンを非GPS環境下で飛行させること、すなわち、自らの位置を特定すること(以下、「課題A−1」とする)。
第二に、閉鎖系で自らを安定させること(以下、「課題A−2」とする)。
第三に、閉鎖系における長手方向へ進行させること(以下、「課題A−3」とする)。
第四に、壁面へ接触してしまった場合の損傷を防止または抑制すること(以下、「課題A−4」とする)。
第五に、壁面へ接触してしまって安定性を損なったり墜落したりした場合に復帰させること(以下、「課題A−5」とする)。
第六に、復帰できなかった場合に何らかのバックアップ体制を取れること(以下、「課題A−6」とする)。
なお、以上で全ての課題を網羅しているわけではなく、各課題が独立しているわけでもない。更に、本願発明において、全ての課題を解決するということでもない。
【0011】
(管路内壁における異常箇所の発見およびその場所特定)
管路内壁において異常箇所を発見し、その異常箇所を特定することをテーマとした場合、更にそのテーマは以下のように細分化できる。
第一に、管路内壁の撮影のために、光無しに撮影可能な機能を備える、または十分な光を照射すること(以下、「課題B−1」とする)。
第二に、管路内壁の撮影において、ぶれずに撮影すること(以下、「課題B−2」とする)。
第三に、管路内壁の撮影において、焦点を定めて(ピントを合わせて)撮影すること(以下、「課題B−3」とする)。
第四に、水面下の内壁であっても撮影できること(以下、「課題B−4」とする)。
第五に、撮影した映像から異常箇所を発見できること(以下、「課題B−5」とする)。
第六に、異常箇所の場所を特定できること(以下、「課題B−6」とする)。
なお、以上で全ての課題を網羅しているわけではなく、各課題が独立しているわけでもない。更に、本願発明において、全ての課題を解決するということでもない。
【0012】
(第一の発明)
本願における第一の発明は、管路(たとえば下水管10)内を無人で飛行可能な飛行ドローン(20)を用いた管路内壁の調査装置に係る。
前記の飛行ドローン(20)には、垂直方向における上方向および下方向の壁に向かって赤外線またはレーザ光を発振し、その反射波または反射光を受信する垂直送受信機と、
進行方向に垂直な断面における右方向および左方向の壁に向かって赤外線またはレーザ光を発振し、その反射波または反射光を受信する水平送受信機と、
前記の垂直送受信機における発振および受信のタイミングに基づいて飛行ドローン(20)と上方および下方の壁面との距離が所定範囲内となるように制御する上下制御手段と、
前記の水平送受信機における発振および受信のタイミングに基づいて飛行ドローン(20)と右方および左方の壁面との距離が所定範囲内となるように制御する左右制御手段と、
管路内壁を撮影して撮影データを取得するカメラ(22)と、
管路内における前記の飛行ドローン(20)の現在位置を把握するための現在位置把握手段と、
その現在位置把握手段を用いて前記のカメラによる撮影データに対して撮影位置を紐付けて記録する撮影データ記録手段と、
を備える(
図2、11参照)。
【0013】
(用語説明)
「管路」とは、下水管、農業用水路、石油パイプラインなど、液体を移動させるための管である。
飛行ドローン(20)は、管壁へプロペラが衝突することを防止するためのプロペラガードを備えていることが望ましい。飛行速度は、撮影環境など、さまざまな環境、条件によって異なるが、毎秒1メートルの飛行では、全天球カメラによる画像データ取得にて、管路内壁の腐食箇所を判明することが可能であった。
管路における中央付近を飛行するために、管路の内壁からの距離を知るため、赤外線またはレーザ光を発振し、赤外線の反射波またはレーザ光の反射光を受信するのが、垂直送受信機および水平送受信機である。「垂直送受信機および水平送受信機」としては、たとえば、上下、左右の2方向への赤外線の発振と受信とが可能なPSD測距センサ(赤外線LEDとPSD(Position Sensitive Detector)とを使った三角測量方式によって対象物までの距離に応じたアナログ電圧を出力するセンサ)を採用する。
「管」とは、上下水道の管、各種の液体(たとえば石油)や気体(たとえば都市ガス)などを移動させるパイプなどである。
【0014】
「カメラ(22)」は、たとえば、全天球カメラ(全方位カメラ)を採用する。赤外線カメラである場合には照明が不要となる場合があるが、一般には、管の内壁面を照射するための光源(たとえばライト23)を備える。カメラのレンズは、明るい(F値が低い)ほうが望ましい。なお、光源にLEDを採用した実験では、管内壁の撮影には、100ルクス以上の照度が確保されていることが望ましい(管路内壁における鉄筋の露出、骨材の劣化状況、クラック存在などを発見可能)ことが判明した。ただし、照度が高すぎると(たとえば300ルクス以上)、撮影画像が白くなってしまう。
前記のカメラに加えて、または前記のカメラの代わりに、管路内壁へレーザ光を照射して反射してくる超音波を受信して記録するレーザ超音波計測機を備えることとしてもよい。「レーザ赤外線計測機」とは、傷や欠陥を把握できる装置である。すなわち、レーザ光が照射された材料の内部において赤外線が励起される。その励起された赤外線は、当該材料における傷や欠陥によって散乱波となる。その散乱波を受信することで、傷や欠陥を把握できる。
壁面との距離についての「所定範囲内」とは、飛行ドローン(20)の大きさや性能、管路の内径(D)などによって異なるが、たとえば管内径の20〜40%である。
「現在位置把握手段」が把握した現在位置のデータは、カメラ(22)が取得した撮影データおよび/またはレーザ赤外線計測機が受信した赤外線データとの紐付けがなされる。
【0015】
(作用)
垂直送受信機が垂直方向における上方向の壁および下方向の壁または水面に向かって赤外線またはレーザ光を発振し、その反射波またはレーザ光を受信する。垂直送受信機における発振および受信のタイミングに基づいて、飛行ドローン(20)と上方および下方の壁面との距離が所定範囲内となるように、上下制御手段が制御する。
また、水平送受信機が進行方向に垂直な断面における右方向および左方向の壁に向かって赤外線またはレーザ光を発振し、その反射波または反射光を受信する。水平送受信機における発振および受信のタイミングに基づいて、飛行ドローン(20)と右方および左方の壁面との距離が所定範囲内となるように、左右制御手段が制御する。
飛行ドローン(20)は、上下および左右の壁面との距離を調整しながら、カメラ(22)が管路内壁を撮影する。撮影したその画像データは、撮影データ記録手段にて撮影位置を紐付けて記録されているので、管内壁の状態を撮影場所ごとに診断したり、異常箇所を特定したりすることに寄与する。
なお、飛行ドローン(20)にレーザ赤外線計測機が搭載されている場合には、管路内壁へレーザ光を管路内壁へ照射し、反射してくる赤外線を受信し、その赤外線データを記録する。
【0016】
(第一の発明のバリエーション1)
第一の発明における飛行ドローン(20)には、前記のカメラ(23)にて管路内壁を撮影する際の光源(23)を備えることとしてもよい(
図1参照)。
【0017】
光源(23)は、たとえば、150ルクス以上が好ましい。飛行速度やカメラの解像度などの条件によって異なるが、毎秒1メートル程度の飛行速度の場合には、170〜230ルクスがより好ましい。照射角度や壁面の角度によって、300ルクスでは取得した画像に「白飛び」が発生する事象が発生した。
【0018】
(第一の発明のバリエーション2)
第一の発明は、以下のように形成してもよい。
すなわち、前記の現在位置把握手段は、管路内に複数の無電源ICタグ(たとえばRFID15A,15B,15C,・・・)が予め設けられている場合において、その無電源ICタグと管路内における位置との対応テーブルを記憶している対応位置テーブル記憶手段と、前記の無電源ICタグとの間で短距離無線通信を実行する短距離無線通信装置を飛行ドローン(20)に備える。
そして、その短距離無線通信装置が無電源ICタグとの無線通信をしたことによって前記の対応位置テーブル記憶手段を用いて飛行ドローン(20)の現在位置データを取得することとしてもよい。
【0019】
(作用)
飛行ドローン(20)は、管路内を進行することによって、無電源ICタグとの短距離無線通信を実行する。対応位置テーブル記憶手段を用いて飛行ドローン(20)の現在位置データを取得する。
取得した現在位置データは、カメラ(22)にて撮影した画像データ(および/またはレーザ赤外線計測機が受信した赤外線データ)と紐づけたり、飛行記録として残したりする。
【0020】
(第一の発明のバリエーション3)
第一の発明は、以下のように形成してもよい。
すなわち、前記の現在位置把握手段は、予め管路内壁の画像データを記憶している管路内壁画像テーブルと、管路内壁の画像データを取得するビジョンセンサと、を備える。
そのビジョンセンサが取得した画像データと前記の管路内壁画像テーブルとを用いて飛行ドローン(20)の現在位置データを取得することとしてもよい。
【0021】
飛行ドローン(20)の現在位置の把握は、ビジョンセンサのみで行う場合のほか、前述した無線ICタグとの短距離無線通信との組合せを用いる場合もある。複数種類の現在位置把握の手段を組合せてデータを比較し、妥当な位置を現在位置とするなどとする。
【0022】
(第一の発明のバリエーション4)
第一の発明は、以下のように形成してもよい。
すなわち、前記の飛行ドローン(20)に追従して管路内を移動する中継移動機(たとえばフロート式ドローン30または水陸両用ドローン50)と、
その中継移動機(30or50)との間で通信するデータ収集解析機(たとえば管路の外に位置しているサポートカー40に内蔵されている)と、を備え、
前記の中継移動機(30or50)は、飛行ドローン(20)から撮影データおよび現在位置データを受信するとともに、受信した撮影データおよび現在位置データを前記のデータ収集解析機(40)へ送信し、
前記のデータ収集解析機(40)は、前記の中継移動機(30or50)から受信した撮影データおよび現在位置データを記録することとしてもよい(
図5参照)。
【0023】
(作用)
中継移動機(30or50)は、飛行ドローン(20)に追従して管路内を移動しつつ、飛行ドローン(20)から撮影データおよび現在位置データを受信する。そして、データ収集解析機(40)へ撮影データおよび現在位置データを送信する。
データ収集解析機(40)では、中継移動機(30or50)から受信した撮影データおよび現在位置データを記録する。
【0024】
(第一の発明のバリエーション5)
第一の発明における前述のバリエーション4は、以下のように形成してもよい。
すなわち、前記のデータ収集解析機(40)は、撮影データおよび現在位置データを解析することによって前記の飛行ドローン(20)の移動および/または撮影データの取得に対する必要な制御データを算出する制御データ算出手段と、その制御データ算出手段が算出した制御データを前記の中継移動機(30or50)を介して前記の飛行ドローン(20)へ送信する制御データ送信手段と、を備えることとしてもよい(
図9,10参照)。
【0025】
データ収集解析機(40)が撮影データおよび現在位置データを解析する。そして、飛行ドローン(20)に予め搭載された飛行制御プログラムには存在しないような事態が発生したと判断できたとする。
データ収集解析機(40)における制御データ算出手段は、飛行ドローン(20)の移動および/または撮影データの取得に対する必要な制御データを算出する。そして、必要な制御データは、前記の飛行ドローン(20)へ制御データ送信手段が中継移動機(30or50)を介して送信する。
【0026】
(第一の発明のバリエーション6)
第一の発明における前述のバリエーション4および/または5は、以下のように形成してもよい。
すなわち、前記の中継移動機(30or50)を介してから受信した撮影データおよび現在位置データを出力するデータ出力手段と、そのデータ出力手段が出力した撮影データおよび現在位置データを検証した操作者が飛行ドローン(20)の移動および/または撮影データの取得に対する必要な操作者制御データを入力する制御データ入力手段と、を備える。
そして、前記の制御データ送信手段は、前記の操作者制御データを前記の中継移動機を介して前記の飛行ドローン(20)へ送信することとしてもよい。
【0027】
(作用)
前述したバリエーション5では飛行ドローン(20)の制御データを自動作成したが、その場合と異なり、撮影データおよび現在位置データを検証した操作者が、飛行ドローン(20)の制御用データ(操作者制御データ)を入力する。
入力された操作者制御データは、中継移動機(30or50)を介して前記の飛行ドローン(20)へ操作者制御データ送信手段が送信する。
【0028】
(第一の発明のバリエーション7)
第一の発明における前述のバリエーション4から6における中継移動機は、管路内に水があってもなくても移動可能な水陸両用としてもよい(
図8参照)。
【0029】
(第一の発明のバリエーション8)
第一の発明におけるバリエーション4から7は、前記のデータ収集解析機およびその運搬装置(例えば水素エンジン搭載のサポートカー40)は、再生されたエネルギ燃料を動力源とするとともに、運搬装置は、前記の飛行ドローン(20)を収納して運搬可能としてもよい(
図5参照)。
【0030】
「エネルギ燃料」としては、下水の排熱を利用して製造された水素、廃棄プラスチックなどから製造された軽油などの再生エネルギのほか、そうした再生エネルギを用いた発電装置による電気エネルギ、太陽光発電や風力発電などの自然エネルギによる電気エネルギも含む。
なお、飛行ドローン(20)のみならず、中継移動機(30or50)が存在するバリエーションにおいては、中継移動機(30or50)をも収納して運搬可能としてもよい。
【0031】
(第一の発明のバリエーション9)
第一の発明は、以下のように形成してもよい。
すなわち、前記の飛行ドローン(20)には、前記の管路(10)内における所定のガスの濃度を検知するためのガス濃度計を備えることするのである。
ここで、「ガス濃度計」とは、たとえば、硫化水素の濃度を検知する硫化水素濃度計、酸素濃度を検知する酸素濃度計などである。
【0032】
こうしたガスの発生は、管路が腐食する要因となることから、その腐食箇所を特定できる可能性がある。
また、たとえば硫化水素は臭気の原因として代表的なものであるので、臭気の発生場所の特定にも寄与する。なお、硫化水素は空気よりも重たいので、下水管においては管路の下や水面近くに滞留していることが多い。しかし、飛行ドローン(20)の飛行に伴って撹拌されるので、濃度測定のために管路の下側や水面に近づく必要がない。
【0033】
(第一の発明のバリエーション10)
第一の発明は、以下のように形成してもよい。
すなわち、前記の現在位置把握手段は、管路内に複数のバーコード(たとえば、一次元バーコード、または二次元バーコード)が予め設けられている場合において、そのバーコードと管路内における位置との対応テーブルを記憶している対応位置テーブル記憶手段と、前記のバーコードを読み取るバーコードリーダと、を前記の飛行ドローン(20)に備える。
そして、そのバーコードリーダが前記のバーコードを読み取ったことによって前記の対応位置テーブル記憶手段を用いて飛行ドローン(20)の現在位置データを取得することとしてもよい。
「バーコード」が二次元バーコードである場合、バーコードリーダは、前記のカメラが兼用することができる。
【0034】
(第一の発明のバリエーション11)
第一の発明は、以下のように形成してもよい。
すなわち、垂直方向の孔(人孔13)の長手方向に沿って所定の深さまで降ろし、飛行ドローン(20)の発着ボートを形成するドローン発着ポート(折り畳みポート70A)を備えるのである。
そのドローン発着ポート(折り畳みポート70A)は、垂直方向へ降ろして用いる垂直ポール(伸縮ポール71)と、その垂直ポール(71)に対して回動可能であるように支持されるポート支持フレーム(72)と、そのポート支持フレーム(72)の回動角度を規制する支持機構(支持リンク73)と、前記のポート支持フレーム(72)における前記の支持機構(73)とは反対側で支持されるポート本体(74)と、を備える。
そのポート本体(74)は、前記の飛行ドローン(20)の発着のための発着面(74A)を備える。
前記の支持機構(73)は、前記のポート支持フレーム(72)の長手方向が前記の垂直ポール(71)の長手方向となす角度が鋭角となるような第一ポジション、および前記の発着面(74A)を垂直ポール(71)から離した上で水平となるような第二ポジション、をとることを可能とするように前記のポート支持フレーム(72)を支持することとする。
【0035】
前記のドローン発着ポート(折り畳みポート70A)は、第一の発明とは独立した発明としても提供可能である。すなわち、飛行ドローンを用いた管路内壁の調査装置の一部としてではなく、単なるドローン発着ポート(折り畳みポート70A)として提供しても、有益である。垂直方向の孔(人孔13)の入り口から調査対象となる管路まで、ドローンを運ぶ簡易な方法が提供されていないからである。
【0036】
(ドローン発着ポートのバリエーション1)
前述した第一の発明のバリエーション11は、以下のように形成してもよい。
すなわち、前記の発着面(74A)の周囲には、前記の第二ポジションをなしている際の発着面(74A)における垂直方向の投影面積を拡開させるサポート板(77)を備える。そのサポート板(77)は、前記の第一ポジションをなしている際には発着面(74A)における垂直方向の投影面積を狭めるように折り畳み可能であるように形成するのである。
【0037】
垂直方向の投影面積を狭めるように折り畳むことで、垂直方向の孔(人孔13)をポート本体(74)等が移動する際、孔(13)の壁へぶつかる確率を減らすことに寄与する。
【0038】
(ドローン発着ポートのバリエーション2)
前述した第一の発明のバリエーション11は、以下のように形成してもよい。
すなわち、前記のポート本体(74)の下側には、下端が管路の下面内壁へ接した場合に前記の発着面(74A)を水平とするための脚部(78)を備えることとする。そして、その脚部(78)は、管路に液体が存在する場合にその液体の流れに当たる面積が小さくなる構造とする。
【0039】
(ドローン発着ポートのバリエーション3)
前述した第一の発明のバリエーション11は、以下のように形成してもよい。
すなわち、前記のサポート板(77)は、少なくとも発着面(74A)の面にクッション性のある材質の板状部材を備えることとする。
【0040】
(ドローン発着ポートのバリエーション4)
前述した第一の発明のバリエーション11は、以下のように形成してもよい。
すなわち、前記の発着面(74A)へ着陸している飛行ドローン(20)に対する充電を実施可能な充電設備を備えることとしてもよい。
飛行ドローン(20)は、発着面(74A)へ着陸している際に充電し、新たな飛行の際の航続距離を伸ばすことが可能となる。
【0041】
(ドローン発着ポートのバリエーション5)
前述した第一の発明のバリエーション11は、以下のように形成してもよい。
すなわち、前記の発着面(74A)へ着陸している飛行ドローン(20)に格納されている所定のデータを受信するドローン格納データ受信手段と、
そのドローン格納データ受信手段が受信した所定のデータを、前記の垂直方向の孔の外へ設置されたデータ受信蓄積手段へ送信するドローン格納データ送信手段と、を備えることとしてもよい。
【0042】
「所定のデータ」とは、たとえば、カメラ(22)が取得した撮影データや、その撮影データに紐付けられた撮影場所に関する位置データなどである。
飛行ドローン(20)が発着面(74A)へ着陸している際に、そうした所定のデータに関するバックアップを取ることができる。そのため、バックアップ後に飛行ドローン(20)へトラブルが発生したりしても、バックアップしたデータについては、確実に回収できることとなる。
【0043】
(第一の発明のバリエーション12)
第一の発明は、以下のように形成してもよい。
すなわち、垂直方向の孔(人孔13)の長手方向に沿って所定の深さまで降ろし、ドローン(20、30,50)を回収するドローン回収装置を備える。
そのドローン回収装置は、垂直方向へ降ろして用いるワイヤ(吊りワイヤ80)と、そのワイヤ(80)の先端に固定して、下水に流されてくるドローン(20、30,50)を引っ掛けるドローン引っ掛け具(粘着テープ91,回収用網92)と、を備える。
【0044】
前記のドローン回収装置もまた、第一の発明とは独立した発明としても提供可能である。すなわち、飛行ドローンを用いた管路内壁の調査装置の一部としてではなく、単なるドローン回収装置として提供しても、有益である。管路内壁の調査装置の一部である各種のドローン(20、30,50)が下水に流された場合に、それらを回収する手段は提供されていないからである。
【0045】
(第一の発明におけるドローン回収装置のバリエーション)
第一の発明に用いるドローン回収装置における前記のドローン引っ掛け具は、以下のように形成してもよい。
すなわち、流体の出し入れによって膨張収縮するものであって、液体を注入した場合に、前記の管路内を流れる液体に流されてくるドローンを引っ掛けるのに適した形状となるとともに、
注入した液体を抜き取った場合には、前記の垂直方向の孔における長手方向を昇降させやすい形状となるように形成するのである(
図20参照)。
【0046】
「流体の出し入れによって膨張収縮する」ドローン引っ掛け具とは、たとえば、一方の口から他方の口までが連通したチューブで形成され、液体が入っていない状態では萎ませて小さくすることができることによって、垂直方向の孔の長手方向を移動させるのに便利であり、液体が注入されると、飛行ドローンが調査対象とする管路の内径に広がった編み目をなすようなものである(
図20参照)。
液体の注入は、たとえばポンプを用い、液体としてはたとえば水を用いる。
【0047】
(第一の発明のバリエーション13)
第一の発明は、以下のように形成してもよい。
すなわち、垂直方向の孔の長手方向に沿って降ろすとともに調査対象である前記の管路内の長手方向へ連続して到達させるスケールワイヤ(61)と、
そのスケールワイヤ(61)に対して等間隔に固定された等間隔固定体(たとえば、フロートボール63)と、を備えた位置確認具(60)を備え、
前記の飛行ドローン(20)における前記の現在位置確認手段は、前記の等間隔固定体(63)が近接したことを認識することで現在位置を把握することするのである(
図21参照)。
【0048】
「等間隔固定体(63)」は、管路内を流れる液体に対して浮くような素材を採用するのが望ましい。液体が流れていない場合には、管路の内壁にこすられることとなるので、摩耗に強い素材を採用することが望ましい。飛行ドローン(20)がこの「等間隔固定体」を認識する手段としては、たとえば、RFIDを内蔵することによって短距離無線通信をする場合、表面の色や模様を異ならせておいて飛行ドローン(20)が内蔵するカメラにて視認させる場合、などがある。
「スケールワイヤ(61)」は、管路内を液体が流れている場合には、柔軟な紐状体でもよいが、液体が流れていない場合にも使えるようにするためには、押して送り出せる程度の堅さのある鋼材のワイヤ等を採用する。
【0049】
前記の位置確認具(60)は、第一の発明とは独立した発明としても提供可能である。すなわち、飛行ドローンを用いた管路内壁の調査装置の一部としてではなく、単なる位置確認具として提供しても、有益である。調査対象となる管路における長手方向の位置を把握する簡易な方法が提供されていないからである。
【0050】
(第二の発明)
本願における第二の発明は、管路内の位置を把握しつつ管路内を無人で飛行するとともに管路内壁を撮影して撮影データを取得する飛行ドローン(20)と、前記の飛行ドローン(20)に追従して管路内を移動する中継移動機と、その中継移動機との間で通信するデータ収集解析機と、を備えた管路内壁の調査装置を制御するコンピュータプログラムに係る。
そのコンピュータプログラムは、前記の中継移動機を介して前記の飛行ドローン(20)から撮影データおよび現在位置データを受信するデータ受信手順と、そのデータ受信手順にて受信した撮影データおよび現在位置データを記録するデータ記録手順と、を前記のデータ収集解析機のコンピュータに実行させるものである。
上記の各手順は、ハードウェアとしての中央演算処理装置(CPU)と、コンピュータプログラムとの協働によって実行される。
【0051】
(第二の発明のバリエーション1)
第二の発明は、以下のようにしてもよい。
すなわち、前記のデータ受信手順にて受信した撮影データおよび現在位置データを解析することによって前記の飛行ドローン(20)の移動および/または撮影データの取得に対する必要な制御データを算出する制御データ算出手順と、
その制御データ算出手順にて算出した制御データを前記の中継移動機を介して前記の飛行ドローン(20)へ送信する制御データ送信手順と、
をデータ収集解析機のコンピュータに実行させることとしてもよい。
【0052】
(第二の発明のバリエーション2)
第二の発明は、以下のようにしてもよい。
すなわち、前記のデータ収集解析機には、前記の前記のデータ受信手順にて受信した撮影データおよび現在位置データを出力させるデータ出力手段と、そのデータ出力手段が出力した撮影データおよび現在位置データを検証した操作者が飛行ドローン(20)の移動および/または撮影データの取得に対する必要な操作者制御データを入力する制御データ手段と、を備えることとする。
そして、前記の制御データ送信手順は、前記の操作者制御データを前記の中継移動機を介して前記の飛行ドローン(20)へ送信することとしてもよい。
【0053】
(第二の発明の提供手段)
第二の発明に係るコンピュータプログラムは、記録媒体へ格納して提供することもできる。また、通信回線を介して提供することもできる。
ここで、「記録媒体」とは、それ自身では空間を占有し得ないコンピュータプログラムを担持することができる媒体であり、例えば、ハードディスク、CD−R、DVD−R、などである。