(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0025】
以下、図面を参照して、本発明の実施形態に係るベーンポンプ100,200について説明する。ベーンポンプ100,200は、車両に搭載される油圧機器1(例えば、パワーステアリング装置や変速機等)の油圧供給源として用いられる。ここでは、作動流体として作動油が用いられるベーンポンプ100,200について説明するが、作動水等の他の流体を作動流体として用いてもよい。
【0026】
<第1実施形態>
まず、
図1から
図7を参照して、本発明の第1実施形態に係るベーンポンプ100について説明する。ベーンポンプ100は、駆動シャフト10と、駆動シャフト10に連結されるロータ20と、ロータ20に設けられる複数のベーン30と、ロータ20及びベーン30を収容するカムリング40と、を備える。
【0027】
駆動シャフト10は、ポンプボディ50及びポンプカバー60に回転自在に支持される。駆動シャフト10にエンジンまたは電動モータ(図示省略)の動力が伝わると、駆動シャフト10の回転駆動に伴ってロータ20が回転する。
【0028】
以下において、ロータ20の回転軸に沿う方向を「軸方向」と称し、ロータ20の回転軸を中心とする放射方向を「径方向」と称し、ベーンポンプ100の通常作動時にロータ20が回転する方向を「回転方向」と称する。
【0029】
ベーンポンプ100は、ロータ20及びカムリング40を軸方向に挟んで配置される第1サイド部材及び第2サイド部材としての第1サイドプレート70及び第2サイドプレート80を更に備える。第1サイドプレート70及び第2サイドプレート80は、それぞれ、ロータ20及びカムリング40に当接する側面70a及び側面80aを有する。ロータ20、カムリング40、隣り合うベーン30、第1サイドプレート70及び第2サイドプレート80によって、ポンプ室41が画定される。
【0030】
図2は、ロータ20、ベーン30及びカムリング40を組み立てポンプカバー60の側から見た正面図である。
図2に示すように、ロータ20には、外周面に開口部21を有するスリット22が所定間隔をおいて放射状に複数形成される。スリット22の開口部21は、ロータ20の外周から径方向外側に隆起した隆起部23に形成される。つまり、ロータ20の外周にはスリット22の数だけ隆起部23が形成される。
【0031】
ベーン30は、各スリット22に摺動自在に挿入される。ベーン30の先端部31はカムリング40の内周面40aに対向する。ベーン30の基端部32はスリット22内に位置し、スリット22とベーン30とによって背圧室24が形成される。
【0032】
ロータ20が回転すると、ベーン30に遠心力が生じる。この遠心力によって、ベーン30はスリット22から突出する方向に押圧される。ベーン30は、押圧された状態では、スリット22から突出し、ベーン30の先端部31がカムリング40の内周面40aに接する。
【0033】
カムリング40の内周面40aは、略長円形状に形成される。以下において、内周面40aを、「内周カム面40a」とも称する。
【0034】
内周カム面40aが略長円形状に形成されるので、ロータ20の回転に伴ってベーン30はロータ20に対して径方向に往復動する。ベーン30の往復動に伴って、ポンプ室41は拡張と収縮とを繰り返す。
【0035】
ベーンポンプ100では、ロータ20が1回転する間に、ベーン30は2往復しポンプ室41は拡張と収縮とを2回繰り返す。つまり、ベーンポンプ100は、ポンプ室41が拡張する2つの拡張領域42a,42cと、ポンプ室41が収縮する2つの収縮領域42b,42dと、を回転方向に交互に有する。
【0036】
再び
図1を参照する。ポンプボディ50には、ロータ20、カムリング40及び第1サイドプレート70を収容する収容窪み部51が形成される。第1サイドプレート70が収容窪み部51の底面51aに配置される。
【0037】
収容窪み部51の底面51aには環状溝52が形成される。環状溝52と第1サイドプレート70とにより、ポンプ室41から吐出された作動油が流入する高圧室53が形成される。高圧室53は油圧機器1に接続され、ポンプ室41から吐出された作動油は高圧室53を通じて油圧機器1に供給される。
【0038】
図3は、第1サイドプレート70をカムリング40の側から見た正面図である。
図1及び
図3に示すように、第1サイドプレート70は、孔71を有する環状に形成される。孔71には駆動シャフト10が挿通する。
【0039】
第1サイドプレート70には、ポンプ室41から吐出される作動油を高圧室53に導く2つの吐出ポート72が設けられる。吐出ポート72は、各収縮領域42b,42dに位置する。
【0040】
ポンプ室41(
図2参照)が収縮領域42b,42dを通過する間、ポンプ室41は収縮する。ポンプ室41の収縮に伴ってポンプ室41内の圧力が上昇し、ポンプ室41内の作動油が吐出ポート72から吐出される。つまり、ポンプ室41内の作動油は、ポンプ室41が収縮領域42b,42dを通過する間に吐出ポート72から吐出される。このように、収縮領域42b,42dでは作動油が吐出されるので、収縮領域42b,42dは「吐出領域」とも呼ばれる。
【0041】
ベーン30は、収縮領域42dから拡張領域42aへ移動するとき、及び収縮領域42bから拡張領域42cへ移動するときにスリット22内に最も押し込まれ、このときにポンプ室41の容積が最小となる。ポンプ室41の最小容量分の作動油は、ポンプ室41が収縮領域42d,42bを通過する間にポンプ室41から吐出されず、ポンプ室41に残る。このように、ポンプ室41の最小容積はポンプとして機能せず、「デッドボリューム」とも呼ばれる。
【0042】
第1サイドプレート70には、高圧室53から背圧室24(
図1及び
図2参照)へ作動油を導く2つの背圧通路73が形成される。背圧通路73は、孔71を中心とする円弧形状を有し、拡張領域42a,42cに位置する。そのため、拡張領域42a,42cを通過する背圧室24には高圧室53から作動油が導かれる。拡張領域42a,42cを通過するベーン30は、背圧室24内の圧力によりスリット22(
図3参照)から突出する方向に押圧される。
【0043】
このように、ベーンポンプ100では、ベーン30は、ロータ20の回転によって生じる遠心力だけでなく、背圧室24内の圧力によっても、スリット22から突出する方向に押圧される。
【0044】
再び
図1を参照する。ポンプボディ50の収容窪み部51はカムリング40と比較して大きい。カムリング40とポンプボディ50との間には、第2サイドプレート80の外周から第1サイドプレート70の外周まで延在する流体室54が形成される。
【0045】
収容窪み部51の開口部はポンプカバー60により封止される。ポンプカバー60は、ボルト(図示省略)によってポンプボディ50に締結される。ポンプカバー60とカムリング40との間に第2サイドプレート80が配置される。
【0046】
図4は、第2サイドプレート80をポンプカバー60の側から見た正面図である。
図1及び
図4に示すように、第2サイドプレート80は、孔81を有する環状に形成される。孔81には駆動シャフト10が挿通する。
【0047】
図1に示すように、ポンプカバー60には低圧室61が形成される。低圧室61はタンク2に接続される。ベーンポンプ100の作動時には、タンク2内の作動油が低圧室61に供給される。低圧室61は流体室54と連通しており、タンク2内の作動油は低圧室61を通じて流体室54に供給される。
【0048】
カムリング40及び第2サイドプレート80には、低圧室61内の作動油をポンプ室41に導く第2吸込ポートとしての第2サイドポート82が設けられる。また、カムリング40及び第1サイドプレート70には、流体室54内の作動油をポンプ室41に導く第1吸込ポートとしての第1サイドポート74が設けられる。第1サイドポート74及び第2サイドポート82は、各拡張領域42a,42cに位置する。
【0049】
ポンプ室41が拡張領域42a,42c(
図2参照)を通過する間、ポンプ室41は拡張する。ポンプ室41の拡張に伴ってポンプ室41内の圧力が低下し、第1サイドポート74及び第2サイドポート82からポンプ室41に作動油が吸い込まれる。つまり、作動油は、ポンプ室41が拡張領域42a,42cを通過する間に第1サイドポート74及び第2サイドポート82からポンプ室41に吸い込まれる。このように、拡張領域42a,42cでは作動油がポンプ室41に吸い込まれるので、拡張領域42a,42cは「吸込領域」とも呼ばれる。
【0050】
図5は、第1サイドプレート70及び第2サイドプレート80をカムリング40に組み付け径方向外側から見た側面図である。
図3及び
図5に示すように、第1サイドプレート70の側面70aには、2つの窪み部75が形成される。窪み部75は、第1サイドプレート70の外周面70bに開口する。
【0051】
図6は、カムリング40を第1サイドプレート70の側から見た背面図である。
図5及び
図6に示すように、第1サイドプレート70に接するカムリング40の端面40bには2つの切り欠き43が設けられる。切り欠き43は拡張領域42a,42cに位置し、カムリング40の外周面40dから内周カム面40aまで形成される。
【0052】
第1サイドプレート70をカムリング40に組み付けた状態では、第1サイドプレート70の窪み部75がカムリング40の切り欠き43に臨む。流体室54(
図1参照)内の作動油は、窪み部75と切り欠き43とによって形成されるポートを通じてポンプ室41に導かれる。つまり、ベーンポンプ100では、第1サイドプレート70の窪み部75とカムリング40の切り欠き43とによって第1サイドポート74が形成される。
【0053】
図4及び
図5に示すように、第2サイドプレート80の外周面80bには、2つの窪み部83が設けられる。窪み部83は、第2サイドプレート80の側面80aから、側面80aとは反対側の第2サイドプレート80の側面80cまで形成される。
【0054】
図2及び
図5に示すように、第2サイドプレート80に接するカムリング40の端面40cには2つの切り欠き44が設けられる。切り欠き44は拡張領域42a,42cに位置し、カムリング40の外周面40dから内周カム面40aまで形成される。
【0055】
第2サイドプレート80をカムリング40に組み付けた状態では、第2サイドプレート80の窪み部83がカムリング40の切り欠き44に臨む。低圧室61(
図1参照)内の作動油は、窪み部83と切り欠き44とによって形成されるポートを通じてポンプ室41に導かれる。このように、ベーンポンプ100では、第2サイドプレート80の窪み部83とカムリング40の切り欠き44とによって第2サイドポート82が形成される。
【0056】
図7は、ロータ20、ベーン30及びカムリング40の正面図であり、カムリング40に第1サイドプレート70を組み付けた状態を示す。
図5及び
図7に示すように、第2サイドポート82の始端82aは、第1サイドポート74の始端74aよりも回転方向前方に形成される。
図5に示すように、第2サイドポート82の終端82bと第1サイドポート74の終端74bとは、回転方向における略同じ位置に形成される。
【0057】
第2サイドポート82の「始端」とは、第2サイドポート82の端部のうち、回転方向後方に位置する端部82aを意味する。また、第2サイドポート82の「終端」とは、第2サイドポート82の端部のうち、回転方向前方に位置する端部82bを意味する。つまり、ベーンポンプ100の作動時には、拡張領域42a,42c内に移動したポンプ室41が始端82aに達することにより当該ポンプ室41と第2サイドポート82が連通する。ポンプ室41が第2サイドポート82の終端82bを通過することにより、当該ポンプ室41と第2サイドポート82との連通が遮断される。
【0058】
同様に、第1サイドポート74の「始端」とは、第1サイドポート74の端部のうち、回転方向後方に位置する端部74aを意味する。第1サイドポート74の「終端」とは、第1サイドポート74の端部のうち、回転方向前方に位置する端部74bを意味する。
【0059】
ところで、ポンプ室41は、収縮領域42dから拡張領域42aに移動するとき、及び収縮領域42bから拡張領域42cに移動するときに最も収縮する。このとき、ポンプ室41内の圧力が最も高くなる。
【0060】
吐出ポート72から吐出されずにポンプ室41に残った作動油の圧力は、ポンプ室41が拡張領域42a,42c内に移動しても、作動油の慣性及び圧縮性により、低下しないことがある。この状態でポンプ室41がポートに達すると、当該ポートから作動油が吐出される。
【0061】
ベーンポンプ100では、第2サイドポート82の始端82aが第1サイドポート74の始端74aよりも回転方向前方に形成されるので、ポンプ室41は、第2サイドポート82に達する前に第1サイドポート74に達する。そのため、ポンプ室41内の作動油の圧力が高い状態でポンプ室41が第1サイドポート74に達しても、ポンプ室41内の作動油は第1サイドポート74のみから吐出され、第2サイドポート82では吐出方向の流れが形成されない。
【0062】
第1サイドポート74からポンプ室41内の作動油が吐出されるとともにロータ20の回転に伴ってポンプ室41が拡張領域42a,42c内で移動しポンプ室41が拡張すると、ポンプ室41内の圧力が低下する。ロータ20が更に回転してポンプ室41が第2サイドポート82に達した際には、ポンプ室41内の圧力は低下している。
【0063】
第1サイドポート74では吐出方向の流れが形成されているので、作動流体の慣性のために、吸込方向の流れが第1サイドポート74で形成されるまでに時間がかかることがある。第2サイドポート82では吐出方向の流れが形成されていないので、ポンプ室41が第2サイドポート82に達した際には第2サイドポート82においてすぐに吸込方向の流れが形成される。したがって、第2サイドポート82からポンプ室41に吸込まれる作動油の量が減少するのを防ぐことができ、ベーンポンプ100の吸込特性を向上させることができる。
【0064】
図8は、ポンプ室41の最大容積に対するポンプ室41の最小容積の割合αと、ポンプ室41における圧力低下の遅れと、の関係を示すグラフである。
【0065】
最大容積は、ベーン30がスリット22から最も押し出されたときのポンプ室41の容積である。ポンプ室41が拡張領域42aから収縮領域42bへ移動するとき、及び拡張領域42cから収縮領域42dに移動するときに、ベーン30がスリット22から最も押し出され、このときにポンプ室41の容積が最大となる。いわゆる有効容積は、ポンプ室41の最大容積から最小容積を引くことによって得られる値である。有効容積が、ポンプとして機能するポンプ室41の容積に相当する。
【0066】
圧力低下の遅れは、ポンプ室41が第1サイドポート74の始端74aに到達してから圧力が低下するまでにロータ20が回転する角度[deg]として表される。空気の圧縮性の影響により、作動油中に含まれる空気量が多いほど、圧力低下は遅れ、角度が大きくなることが分かっている。
【0067】
図8において、プロットは、シミュレーションにより得られた結果の一例を示す。直線は、複数のシミュレーション結果に基づいた近似線を示し、近似式は、次の式(1)により表される。シミュレーションでは、作動油の空気含有率のパラメータとして、実機において一般的に用いられる作動油の空気含有率を用いた。
【0068】
θ1[deg]=7α+10 ・・・(1)
図8に示すように、ポンプ室41内の圧力は、ポンプ室41が第1サイドポート74の始端74aに達してからロータ20が式(1)により求められる角度θ1だけさらに回転すれば、十分に低下することがシミュレーションによりわかった。また、ロータ20が角度θ1からさらに回転しても、ポンプ室41内の圧力はほとんど低下しないことがシミュレーションによりわかった。
【0069】
ベーンポンプ100では、
図7に示すように、第1サイドポート74の始端74aと第2サイドポート82の始端82aとは、ロータ20の回転軸を中心とした所定の角度θ、離れている。所定の角度θは、次の式(2)の範囲内に設定される。
【0070】
0<θ[deg]≦7α+10 ・・・(2)
シミュレーションによれば、ポンプ室41が第1サイドポート74の始端74aに達した直後からポンプ室41内の圧力が低下し始める。ベーンポンプ100では所定の角度θが0(零)よりも大きいため、ポンプ室41が第2サイドポート82に達したときにはポンプ室41内の圧力は低下している。したがって、第2サイドポート82に吐出方向の流れが形成されるのを防ぐことができ、ベーンポンプ100の吸込特性を向上させることができる。
【0071】
カムリング40、第1サイドプレート70及び第2サイドプレート80の加工精度を考慮して、所定の角度θを0(零)よりも公差分、大きく設定することが好ましい。これによって、歩留まりの低下を防ぐことができ、ベーンポンプ100の製造コストの増加を防止することができる。
【0072】
また、所定の角度θは、前述の式(1)により求められる角度θ1以下である。前述のように、ロータ20が角度θ1からさらに回転しても、ポンプ室41内の圧力はほとんど変化しない。つまり、所定の角度θを角度θ1よりも大きくする必要がない。所定の角度θが角度θ1以下であるため、第2サイドポート82の始端82aは、第1サイドポート74の始端82aよりも、想定される圧力低下の遅れを超えては回転方向前方に形成されない。したがって、第2サイドポート82が小さくなり過ぎて第2サイドポート82からポンプ室41に吸い込まれる作動油の量が低下するのを防ぐことができ、ベーンポンプ100の吸込特性をより確実に向上させることができる。
【0073】
一般的に用いられる作動油の空気含有率の1〜15倍の値を空気含有率のパラメータとして用いてシミュレーションを行った場合であっても、ベーンポンプ100が製品の仕様範囲内の性能を発揮することが導き出された。つまり、作動油が多量の空気を含む場合においても、所定の角度θを、式(2)の範囲内に設定することによって、第2サイドポート82に吐出方向の流れが形成されるのを防ぐことができ、ベーンポンプ100の吸込特性を向上させることができる。
【0074】
次に、ベーンポンプ100の動作を、
図1から
図4を参照して説明する。
【0075】
駆動シャフト10にエンジン又は電動モータ(図示省略)の動力が伝わると、駆動シャフト10の回転駆動に伴ってロータ20が回転する。ロータ20の回転に伴ってベーン30はロータ20に対して往復動し、ポンプ室41が膨張と収縮とを繰り返す。
【0076】
拡張領域42a,42cを通過するポンプ室41には、タンク2内の作動油が、低圧室61及び第2サイドポート82を通じて、又は低圧室61、流体室54及び第1サイドポート74を通じて導かれる。収縮領域42b,42dを通過するポンプ室41内の作動油は、吐出ポート72から吐出される。
【0077】
収縮領域42b,42dから拡張領域42a,42cに移動するポンプ室41には、デッドボリューム分の作動油が高い圧力を保った状態で残っている。この状態でロータ20が回転すると、ポンプ室41は第1サイドポート74に達し、第1サイドポート74からポンプ室41に残った作動油が吐出される。ポンプ室41は第2サイドポート82には達していないので、第2サイドポート82には吐出方向の流れが形成されない。
【0078】
ロータ20が更に回転してポンプ室41が第2サイドポート82に達したときには、ポンプ室41内の圧力は低下している。第2サイドポート82では吐出方向の流れが形成されていないので、ポンプ室41が第2サイドポート82に達した際には第2サイドポート82においてすぐに吸込方向の流れが形成される。したがって、第2サイドポート82からポンプ室41に吸込まれる作動油の量が低下するのを防ぐことができ、ベーンポンプ100の吸込特性を向上させることができる。
【0079】
以上のベーンポンプ100では、第2サイドポート82の始端82aが第1サイドポート74の始端74aよりも回転方向前方に形成されているが、第1サイドポート74の始端74aがサイドポート82の始端82aよりも回転方向前方に形成されていてもよい。
【0080】
また、ベーンポンプ100では、第1サイドポート74が、第1サイドプレート70の窪み部75とカムリング40の切り欠き43とによって形成されているが、第1サイドポート74はこの形態に限られない。例えば、カムリング40に切り欠き43が形成されておらず、第1サイドポート74が、第1サイドプレート70の窪み部75と、カムリング40の平面状の端面40bと、によって形成されていてもよい。第1サイドプレート70に窪み部75が形成されておらず、第1サイドポート74が第1サイドプレート70の平面状の側面70aと、カムリング40の切り欠き43とによって形成されていてもよい。さらに、第1サイドポート74は、第1サイドプレート70を貫通する孔により形成されていてもよい。
【0081】
同様に、ベーンポンプ100では、第2サイドポート82が、第2サイドプレート80の窪み部83とカムリング40の切り欠き44とによって形成されているが、第2サイドポート82はこの形態に限られない。例えば、カムリング40に切り欠き44が形成されておらず、第2サイドポート82が、第2サイドプレート80の窪み部83と、カムリング40の平面状の端面40cと、によって形成されていてもよい。第2サイドプレート80に切り欠き44が形成されておらず、第2サイドポート82が第2サイドプレート80の平面状の側面80aと、カムリング40の切り欠き44とによって形成されていてもよい。さらに、第2サイドポート82は、第2サイドプレート80を貫通する孔により形成されていてもよい。
【0082】
<第2実施形態>
次に、
図9及び
図10を参照して、本発明の第2実施形態に係るベーンポンプ200について説明する。第1実施形態における構成と同じ構成については同一の符号を付し、その説明を省略する。
【0083】
図9は、ベーンポンプ200の断面図である。ベーンポンプ200は、ロータ20及びベーン30を収容するカムリング240と、ロータ20及びカムリング240を軸方向に挟んで配置される第1サイドプレート270及び第2サイドプレート280と、を備える。
【0084】
図10は、カムリング240、第1サイドプレート270及び第2サイドプレート280の側面図であり、第1サイドプレート270及び第2サイドプレート280をカムリング240に組み付けた状態を示す。
【0085】
図9及び
図10に示すように、カムリング240及び第1サイドプレート270には、流体室54内の作動油をポンプ室41に導く第1吸込ポートとしての第1サイドポート274が設けられる。第1サイドポート274は、第1サイドプレート270の窪み部275とカムリング240の切り欠き243とによって形成される。
【0086】
カムリング240及び第2サイドプレート280には、低圧室61内の作動油をポンプ室41に導く第1吸込ポートとしての第2サイドポート282が設けられる。第2サイドポート282は、第2サイドプレート280の窪み部283とカムリング240の切り欠き244とによって形成されている。
【0087】
また、カムリング240には、低圧室61内の作動油を、流体室54を通じてポンプ室41に導く第2吸込ポートとしてのセンターポート245が設けられる。つまり、低圧室61は、第1サイドポート274、第2サイドポート282及びセンターポート245のそれぞれを通じてポンプ室41に連通する。
【0088】
センターポート245は、カムリング240の外周面240dと内周カム面240aとの間を貫通する孔246によって形成される。センターポート245から吸い込まれる作動油は、軸方向におけるポンプ室41の中央部に流入する。
【0089】
センターポート245の始端245aは、第1サイドポート274の始端274a及び第2サイドポート282の始端282aよりも回転方向前方に形成される。センターポート245の終端245bは、第1サイドポート274の終端274a及び第2サイドポート282の終端282aよりも回転方向後方に形成される。
【0090】
センターポート245の「始端」とは、センターポート245の端部のうち、回転方向後方に位置する端部245aを意味する。また、センターポート245の「終端」とは、センターポート245の端部のうち、回転方向前方に位置する端部245bを意味する。つまり、ベーンポンプ200の作動時には、拡張領域42a,42c内に移動したポンプ室41が始端245aに達することにより当該ポンプ室41とセンターポート245が連通する。ポンプ室41がセンターポート245の終端245bを通過することにより、当該ポンプ室41とセンターポート245との連通が遮断される。
【0091】
センターポート245の始端245aが第1サイドポート274の始端274a及び第2サイドポート282の始端282aよりも回転方向前方に形成されるので、ポンプ室41は、センターポート245に達する前に第1サイドポート274及び第2サイドポート282に達する。そのため、ポンプ室41内の作動油の圧力が高い状態でポンプ室41が第1サイドポート274及び第2サイドポート282に達しても、ポンプ室41内の作動油は第1サイドポート274及び第2サイドポート282のみから吐出され、センターポート245では吐出方向の流れが形成されない。
【0092】
ロータ20が回転してポンプ室41が拡張するとともに第1サイドポート274及び第2サイドポート282からポンプ室41内の作動油が吐出されると、ポンプ室41内の圧力が低下する。ロータ20が更に回転してポンプ室41がセンターポート245に達した際には、ポンプ室41内の圧力は十分に低下している。
【0093】
第1サイドポート274及び第2サイドポート282では吐出方向の流れが形成されているので、作動流体の慣性のために、吸込方向の流れが第1サイドポート274及び第2サイドポート282で形成されるまでに時間がかかることがある。センターポート245では吐出方向の流れが形成されていないので、ポンプ室41がセンターポート245に達した際にはセンターポート245においてすぐに吸込方向の流れが形成される。したがって、センターポート245からポンプ室41に吸込まれる作動油の量が低下するのを防ぐことができ、ベーンポンプ200の吸込特性を向上させることができる。
【0094】
センターポート245から吸い込まれる作動油は、軸方向におけるポンプ室41の中央部に流入するので、ポンプ室41の中央部に作動油を行き渡らせることができ、ベーンポンプ200の吸込特性をより向上させることができる。
【0095】
本明細書において、「中央」は、カムリング240の端面240b,240cから等距離の位置を意味する厳密な中央に限られず、厳密な中央から、ある程度(例えば、端面240bと端面240cとの間の寸法の30%程度)、端面240b,240cのどちらかに偏った位置を含む。
【0096】
ベーンポンプ200では、第1サイドポート274は、流体室54を介して低圧室61とポンプ室41とを連通する一方で、第2サイドポート282は、低圧室61とポンプ室41とを直接連通する。つまり、低圧室61から第1サイドポート274を通じてポンプ室41へ至る第1通路276は、低圧室から第2サイドポート282を通じてポンプ室41へ至る第2通路284よりも長い。また、第2通路284は略直線状に形成される一方で、第1通路276には湾曲部が形成されている。
【0097】
通路を通る流体に付与される抵抗は、通路の長さ、通路の断面積、及び通路の形状等に依存することが知られている。また、通路を通る流体の流量は通路の抵抗に依存することが知られている。
【0098】
ベーンポンプ200では、第1通路276は、第2通路284よりも長く、湾曲部を有する。そのため、第1通路276の抵抗は第2通路284の抵抗よりも大きく、第1通路276における作動油の流量は、第2通路284における作動油の流量よりも少ない。第1サイドポート274からポンプ室41に吸い込まれる作動油の流量が第2サイドポート282から吸い込まれる作動油の流量よりも少ないので、ポンプ室41の厳密な中央よりも第1サイドポート274の側に位置する部分において作動油が不足しやすい。
【0099】
このようなベーンポンプ200では、センターポート245は、カムリング240における第1サイドポート274に偏った位置に形成されることが好ましい。具体的には、センターポート245は、カムリング240の厳密な中央よりも第1サイドポート274の側に形成されることが好ましい。センターポート245を偏らせることによって、センターポート245から吸い込まれる作動油は、ポンプ室41における第1サイドポート274に偏った部分に流入する。その結果、ポンプ室41の全体に作動油が行き渡り、ベーンポンプ200の吸込特性をより向上させることができる。
【0100】
第1通路276の抵抗と第2通路284の抵抗とが等しくポンプ室41の中央部において作動油が不足しやすい場合には、センターポート245は、カムリング240の中央に形成されることが好ましく、カムリング240の厳密な中央に形成されることがより好ましい。センターポート245をカムリング240の中央に形成することによって、センターポート245から吸い込まれる作動油は、ポンプ室41の中央部に流入する。ポンプ室41の全体に作動油が行き渡り、ベーンポンプ200の吸込特性をより向上させることができる。
【0101】
第1サイドポート274の始端274aとセンターポート245の始端245aとは、ロータ20の回転軸を中心とした所定の角度θ、離れている。所定の角度θは、前述の式(2)の範囲内に設定される。センターポート245に吐出方向の流れが形成されるのを防ぐことができ、ベーンポンプ200の吸込特性をより確実に向上させることができる。
【0102】
センターポート245は、拡張領域42a,42cの前半に設けられることが好ましい。ポンプ室41が拡張領域42a,42cの前半を通過する間にポンプ室41の中央部に作動油が行き渡り、ベーンポンプ200の吸込特性をより向上させることができる。
【0103】
カムリング240の内周カム面240aに形成される孔246の開口は、カムリング240の外周面240dに形成される孔246の開口と比較して大きく、孔246の流路面積は、カムリング240の内周から外周に向かうほど大きい。孔246の外周開口が大きいので、流体室54から孔246に作動油が導かれやすく、ベーンポンプ200の吸込特性をより向上させることができる。
【0104】
ベーンポンプ200の動作については、ベーンポンプ100の動作と略同じであるため、ここではその説明を省略する。
【0105】
以上のベーンポンプ200では、センターポート245の始端245aが第1サイドポート274及び第2サイドポート282の始端274a,282aよりも回転方向前方に形成されているが、この形態に限られない。第1サイドポート274及び第2サイドポート282並びにセンターポート245の始端274a,282a,245aのいずれか1つが、他の始端よりも回転方向前方に形成されていればよい。
【0106】
また、ベーンポンプ200では、第1サイドポート274が、第1サイドプレート270の窪み部275とカムリング40の切り欠き243とによって形成されているが、この形態に限られない。同様に、第2サイドポート282が、第2サイドプレート280の窪み部283とカムリング240の切り欠き244とによって形成されているが、この形態に限られない。
【0107】
以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。
【0108】
本実施形態では、ベーンポンプ100,200は、回転駆動されるロータ20と、ロータ20の径方向に往復動自在にロータ20に設けられる複数のベーン30と、ロータ20の回転に伴って複数のベーン30の先端部31が摺接する内周カム面40a,240aを有するカムリング40,240と、ロータ20及びカムリング40,240を挟んで配置される第1サイドプレート70,270及び第2サイドプレート80,280と、ロータ20、カムリング40,240、及び隣り合うベーン30によって画定されるポンプ室41と、カムリング40,240、第1サイドプレート70,270及び第2サイドプレート80,280の少なくとも1つに形成され、ポンプ室41に作動油を導く第1サイドポート74,274、第2サイドポート82,282、センターポート245と、を備え、第2サイドポート82、センターポート245の始端82a,245aは、第1サイドポート74,274、第2サイドポート282の始端74a,274a,282aよりもロータ20の回転方向前方に形成される。
【0109】
この構成では、第2サイドポート82、センターポート245の始端82a,245aが第1サイドポート74,274、第2サイドポート282の始端74a,274a,282aよりも回転方向前方に形成されるので、ポンプ室41は、第2サイドポート82、センターポート245に達する前に第1サイドポート74,274、第2サイドポート282に達する。そのため、収縮領域において吐出ポート72から吐出されずにポンプ室41に残った作動油の圧力が低下することなくポンプ室41が第1サイドポート74,274、第2サイドポート282に達しても、ポンプ室41内の作動油は第1サイドポート74,274、第2サイドポート282のみから吐出され、第2サイドポート82、センターポート245では吐出方向の流れが形成されない。ポンプ室41が第2サイドポート82、センターポート245に達した際には、第2サイドポート82、センターポート245においてすぐに吸込方向の流れが形成される。したがって、ベーンポンプ100,200の吸込特性を向上させることができる。
【0110】
また、本実施形態では、第1サイドポート74,274、第2サイドポート282は、第1サイドプレート270とカムリング240とによって形成される第1サイドポート274と、第2サイドプレート280とカムリング240とによって形成される第2サイドポート282と、を備え、第2サイドポート82、センターポート245は、カムリング240の外周面240dと内周カム面240aとの間を貫通する孔246によって形成されるセンターポート245である。
【0111】
この構成では、センターポート245の始端245aが第1サイドポート274及び第2サイドポート282の始端274a,282aよりも回転方向前方に形成されるので、ポンプ室41がセンターポート245に達した際には、センターポート245においてすぐに吸込方向の流れが形成される。したがって、ポンプ室41の中央部に作動油を行き渡らせることができ、ベーンポンプ200の吸込特性をより向上させることができる。
【0112】
また、本実施形態では、ベーンポンプ200は、第1サイドポート274及び第2サイドポート282のそれぞれを通じてポンプ室41に連通する低圧室61を更に備え、低圧室61から第1サイドポート274を通じてポンプ室41へ至る第1通路276の抵抗と、低圧室61から第2サイドポート282を通じてポンプ室41へ至る第2通路284の抵抗と、が等しく、センターポート245は、軸方向におけるカムリング240の中央に形成される。
【0113】
この構成では、センターポート245が軸方向におけるカムリング240の中央に形成されるので、ポンプ室41の中央部に作動油が行き渡る。したがって、ベーンポンプ200の吸込特性をより確実に向上させることができる。
【0114】
また、本実施形態では、ベーンポンプ200は、第1サイドポート274及び第2サイドポート282のそれぞれを通じてポンプ室41に連通する低圧室61を更に備え、低圧室61から第1サイドポート274を通じてポンプ室41へ至る第1通路276の抵抗が、低圧室61から第2サイドポート282を通じてポンプ室41へ至る第2通路284の抵抗よりも大きく、センターポート245は、第1サイドポート274に偏って形成される。
【0115】
この構成では、センターポート245が第1サイドポート274に偏って形成されるので、ポンプ室41における第1サイドポート274に偏った部分に作動油が行き渡る。したがって、ベーンポンプ200の吸込特性をより確実に向上させることができる。
【0116】
また、本実施形態では、第1サイドポート74,274、第2サイドポート282の始端74a,274a,282aと第2サイドポート82、センターポート245の始端82a,245aとは、ロータ20の回転軸を中心とした所定の角度θ、離れており、所定の角度θは、ポンプ室41が第1サイドポート74,274、第2サイドポート282の始端74a,274a,282aに到達してからポンプ室41の圧力が低下するまでにロータ20が回転する角度である。
【0117】
この構成では、第1サイドポート74,274、第2サイドポート282の始端74a,274a,282aと第2サイドポート82、センターポート245の始端82a,245aとがロータ20の回転軸を中心とした前述の所定の角度θ、離れている。そのため、ポンプ室41が第2サイドポート82、センターポート245に達したときにはポンプ室41内の圧力は十分に低下する。したがって、第2サイドポート82、センターポート245に吐出方向の流れが形成されるのをより確実に防ぐことができ、ベーンポンプ100,200の吸込特性をより確実に向上させることができる。
【0118】
また、本実施形態では、所定の角度をθとしたときに、所定の角度θは、次式により求められる範囲内である。
【0119】
0<θ[deg]≦7α+10
ただし、α:ポンプ室41の最大容積に対するポンプ室41の最小容積の割合
【0120】
この構成では、所定の角度θが0(零)よりも大きいため、ポンプ室41が第2サイドポート82、センターポート245に達したときにはポンプ室41内の圧力は十分に低下する。したがって、第2サイドポート82、センターポート245に吐出方向の流れが形成されるのを防ぐことができる。また、所定の角度θが、7α+10により求められる角度以下であるため、第2サイドポート82、センターポート245の始端82a,245aは、第1サイドポート74,274、第2サイドポート282の始端74a,274a,282aよりも、想定される圧力低下の遅れを超えては回転方向前方に形成されない。第2サイドポート82、センターポート245が小さくなり過ぎて第2サイドポート82、センターポート245からポンプ室41に吸い込まれる作動油の量が低下するのを防ぐことができる。したがって、ベーンポンプ100,200の吸込特性をより確実に向上させることができる。
【0121】
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。