(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、大形側の低圧段ターボ過給機は、小形側の高圧段ターボ過給機よりもイナーシャが大きい。
そのため、このような多段式ターボ過給システムでは、高圧段コンプレッサの上流側の吸気圧が高圧段コンプレッサの下流側の吸気圧よりも小となる平常運転状態からエンジンが急減速、および、または、急負荷減少(遮断)した際に、イナーシャの大きい大形側の低圧段ターボ過給機がイナーシャの小さい低圧段ターボ過給機よりも減速されずに慣性回転し、高圧段コンプレッサの上流側の吸気圧が上昇して上流側の吸気圧と下流側の吸気圧との関係が逆転する場合がある。
そして、このように、高圧段コンプレッサの上流側の吸気圧と下流側の吸気圧との関係が逆転し、上流側の吸気圧が下流側の吸気圧よりも大となると、高圧段コンプレッサが必要以上に回されて、サージ(以下、高圧段側サージと言う。)が発生する虞がある。
【0005】
なお、特許文献1には、吸入空気量の減少などから高圧段側サージの発生が予測される場合に、高圧段コンプレッサの空気圧縮比(高圧段コンプレッサの出口/入口圧力比)を下げることが記載されているが、この技術は、高圧段コンプレッサの空気圧縮比が高すぎる場合に発生する高圧段側サージを回避しようとする技術であり、エンジンが急減速、および、または、急負荷減少(遮断)した際に、上述したイナーシャの差に起因して、高圧段コンプレッサの上流側の吸気圧(入口圧力)が下流側の吸気圧(出口圧力)よりも大となった場合に、高圧段コンプレッサが圧縮負荷のない空転状態で回されて発生する高圧段側サージは想定されていない。
【0006】
この実情に鑑み、本発明の主たる課題は、エンジンが急減速、および、または、急負荷減少(遮断)した際に、大形側の低圧段ターボ過給機が小形側の高圧段ターボ過給機よりもイナーシャが大きいことに起因して高圧段側サージが発生するのを回避することのできる多段式ターボ過給システムを提供する点にある。
【課題を解決するための手段】
【0007】
本発明の第1特徴構成は、エンジン本体側から小形側の高圧段ターボ過給機、大形側の低圧段ターボ過給機が直列に接続された多段式ターボ過給システムであって、
前記低圧段ターボ過給機の低圧段タービンをバイパスする低圧段排気パイパス路と、
前記低圧段排気パイパス路を開閉する低圧段ウェイストゲートバルブと、
前記高圧段ターボ過給機の高圧段コンプレッサの上流側の吸気圧が前記高圧段コンプレッサの下流側の吸気圧よりも大となる作動条件が成立する場合に、前記低圧段ウェイストゲートバルブを開弁する高圧段側サージ回避手段と、を備えて構成されている点にある。
【0008】
本構成によれば、エンジンが急減速、および、または、急負荷減少(遮断)した際に、大形側の低圧段ターボ過給機が小形側の高圧段ターボ過給機よりもイナーシャが大きいことに起因して高圧段コンプレッサの上流側の吸気圧と下流側の吸気圧との関係が逆転し、高圧段コンプレッサの上流側の吸気圧が下流側の吸気圧よりも大となって高圧段側サージの発生の虞のある吸気圧関係になると、高圧段側サージ回避手段の作動条件が成立し、高圧段側サージ回避手段が前記低圧段ウェイストゲートバルブを開弁する。この低圧段ウェイストゲートバルブの開弁により、排気パイパス通路を通じて排気ガスをバイパスさせる形態で低圧段タービンに流入する排気ガス量を低減することができ、高圧段ターボ過給機よりもイナーシャが大きい大形側の低圧段の慣性回転を減速させることができる。
【0009】
よって、エンジンが急減速、および、または、急負荷減少(遮断)した際に、高圧段コンプレッサの上流側の吸気圧と下流側の吸気圧との関係が逆転し、高圧段側サージの発生の虞のある吸気圧関係(高圧段コンプレッサの上流側の吸気圧が下流側の吸気圧よりも大となる関係)になった場合でも、高圧段側サージの発生の虞のない元の適正な吸気圧関係(上流側の吸気圧が下流側の吸気圧以下となる関係)に迅速に戻すことができる。
したがって、エンジンが急減速、および、または、急負荷減少(遮断)した際に、大形側の低圧段ターボ過給機が小形側の高圧段ターボ過給機よりもイナーシャが大きいことに起因して高圧段側サージが発生するのを回避することができる。
【0010】
本発明の第2特徴構成は、前記上流側の吸気圧を駆動力として前記低圧段ウェイストゲートバルブに前記上流側の吸気圧に応じた開弁操作力を付与する圧力式弁操作機構が備えられ、
前記高圧段側サージ回避手段は、電力を駆動力として前記低圧段ウェイストゲートバルブに開弁操作力を付与する電動式弁操作機構を備え、前記作動条件が成立する場合に、前記圧力式弁操作機構の開弁操作力に前記電動式弁操作機構の開弁操作力を追加して前記低圧段ウェイストゲートバルブを開弁可能に構成されている点にある。
【0011】
本構成によれば、高圧段側サージ回避手段は、前記作動条件が成立する場合に、圧力式弁操作機構の開弁操作力を利用して低圧段ウェイストゲートバルブを開弁することができる。よって、電動式弁操作機構にて低圧段ウェイストゲートバルブに開弁操作力を付与するための駆動電力を低く抑えることができ、電動式弁操作機構に電力を供給する電源の小型化等を図ることができる。
【0012】
本発明の第3特徴構成は、前記低圧段ウェイストゲートバルブに操作力を伝達して前記低圧段ウェイストゲートバルブを開閉する揺動レバーが備えられ、
前記圧力式弁操作機構は、圧力式側リンクを介して前記揺動レバーを開弁方向に揺動操作可能な圧力式アクチュエータを備えて構成され、
前記電動式弁操作機構は、電動式側リンクを介して前記揺動レバーを開弁方向に揺動操作可能な電動式アクチュエータを備えて構成されている点にある。
【0013】
本構成によれば、圧力式アクチュエータにて圧力式側リンクを介して揺動レバーを開弁方向に揺動操作することにより、圧力式弁操作機構の開弁操作力を低圧段ウェイストゲートバルブに適切に作用させることができる。また、電動式アクチュエータにて電動式側リンクを介して同一の揺動レバーを開弁方向に揺動操作することにより、電動式弁操作機構の開弁操作力を低圧段ウェイストゲートバルブに適切に作用させることができる。
よって、前記作動条件が成立する場合に、低圧段側の圧力式弁操作機構の開弁作動力と電動式弁操作機構の開弁作動力の協働により、低圧段ウェイストゲートバルブを効率良く開弁することができる。
【発明を実施するための形態】
【0015】
本発明に係る多段式ターボ過給システムの実施形態を図面に基づいて説明する。
図1、
図2は、本発明に係る多段式ターボ過給システムを有するエンジンのブロック図であり、図中のブロック状の矢印は吸排気の流れを示している。また、
図1は平常運転状態を示し、
図2は平常運転状態から急減速、および、または、急負荷減少(遮断)した状態を示している。
【0016】
(エンジンの全体構成)
図1に示すように、エンジン1は、例えば、ディーゼルエンジンとして構成することができ、燃焼室(図示省略)を有するエンジン本体10、燃焼室に新気を導入する吸気路20、燃焼室から排気ガスを排出する排気路30、エンジン1の運転状態を制御するECU(エンジンコントロールユニット)40等を備えて構成されている。
また、このエンジン1は、エンジン本体10側から小形側の高圧段ターボ過給機50、大形側の低圧段ターボ過給機60を直列に接続して構成されている。大形側の低圧段ターボ過給機60にて空気を圧縮し、小形側の高圧段ターボ過給機50にて更に空気を圧縮してエンジン本体10に過給することができる。
【0017】
低圧段ターボ過給機60は、低圧段タービン61と、低圧段コンプレッサ62と、これらを同期回転自在に接続するシャフト63とを備えて構成されている。
低圧段タービン61は、排気路30の下流側に配置され、排気ガスのエネルギを利用して回転するように構成されている。低圧段コンプレッサ62は、吸気路20の内部の上流側に配置され、低圧段タービン61の回転に伴って回転し、外部側から空気を吸入して圧縮するように構成されている。
【0018】
高圧段ターボ過給機50は、高圧段タービン51と、高圧段コンプレッサ52と、これらを同期回転自在に接続するシャフト53とを備えて構成されている。
高圧段タービン51は、排気路30における低圧段タービン61の上流側に配置され、低圧段タービン61の上流側にて排気ガスのエネルギを利用して回転するように構成されている。高圧段コンプレッサ52は、吸気路20おける低圧段コンプレッサ62の下流側に配置され、高圧段タービン51の回転に伴って回転し、低圧段コンプレッサ62で圧縮された空気を更に圧縮するように構成されている。
【0019】
前記吸気路20は、外部側から低圧段コンプレッサ62、高圧段コンプレッサ52、給気マニホールド20Aを順番に通る風路として構成されている。
前記排気路30は、エンジン本体10側から排気マニホールド30A、高圧段タービン51、低圧段タービン61を順番に通る主排気路31と、高圧段コンプレッサ52をバイパスする高圧段排気バイパス路32と、低圧段コンプレッサ62をバイパスする低圧段排気バイパス路33とを備えて構成されている。
【0020】
高圧段排気バイパス路32は、主排気路31における排気マニホールド30Aと高圧段タービン51の間の部位と、主排気路31における高圧段タービン51と低圧段タービン61の間の部位とを連通する。
低圧段排気バイパス路33は、主排気路31における高圧段タービン51と低圧段タービン61の間の部位と、主排気路31における低圧段タービン61の下流側の部位とを連通する。
【0021】
高圧段排気バイパス路32には、当該高圧段排気バイパス路32を開閉する高圧段ウェイストゲートバルブWG1が備えられている。また、この高圧段ウェイストゲートバルブWG1に開弁操作力を付与する高圧段側の圧力式弁操作機構70が備えられている。
【0022】
高圧段側の圧力式弁操作機構70は、電力を利用しない機械式に構成されており、高圧段コンプレッサ52の下流側の吸気圧P2(高圧段コンプレッサ52の吐出圧)を駆動力として高圧段ウェイストゲートバルブWG1に対して高圧段コンプレッサ52の下流側の吸気圧P2に応じた開弁操作力を付与するように構成されている。高圧段側の圧力式弁操作機構70は、高圧段コンプレッサ52の下流側の吸気圧P2が設定吸気圧を超える場合に自動的に高圧段ウェイストゲートバルブWG1を開弁する。
【0023】
例えば、高圧段側の圧力式弁操作機構70は、エンジン1の平常運転状態において、高圧段コンプレッサ52の下流側の吸気圧P2が設定吸気圧を超えたときに高圧段ウェイストゲートバルブWG1を自動的に開弁し、高圧段排気バイパス路32に排気ガスの一部を通流させる形態で高圧段タービン51の回転を抑え、高圧段コンプレッサ52の下流側の吸気圧P2を設定範囲に戻す。
【0024】
なお、高圧段側の圧力式弁操作機構70は、図示は省略するが、例えば、高圧段ウェイストゲートバルブWG1に操作力を伝達して高圧段ウェイストゲートバルブWG1を開閉する揺動レバーを開弁方向に揺動操作可能なダイアフラム式アクチュエータ等の圧力式アクチュエータ等を備えて構成することができる。
【0025】
低圧段排気バイパス路33には、当該低圧段排気バイパス路33を開閉する低圧段ウェイストゲートバルブWG2が備えられている。また、この低圧段ウェイストゲートバルブWG2に開弁操作力を付与する低圧段側の圧力式弁操作機構80が備えられている。
【0026】
低圧段側の圧力式弁操作機構80は、電力を利用しない機械式に構成されており、低圧段コンプレッサ62の下流側(高圧段コンプレッサ52の上流側)の吸気圧P1(低圧段コンプレッサ62の吐出圧)を駆動力として低圧段ウェイストゲートバルブWG2に低圧段コンプレッサ62の下流側の吸気圧P1に応じた開弁操作力を付与するように構成されている。低圧段側の圧力式弁操作機構80は、低圧段コンプレッサ62の下流側の吸気圧P1が設定吸気圧を超える場合に自動的に低圧段ウェイストゲートバルブWG2を開弁する。
【0027】
例えば、低圧段側の圧力式弁操作機構80は、エンジン1の平常運転状態において、低圧段コンプレッサ62の下流側の吸気圧P1が設定吸気圧を超えたときに低圧段ウェイストゲートバルブWG2を自動的に開弁し、低圧段排気バイパス路33に排気ガスの一部を通流させる形態で低圧段タービン61の回転を抑え、低圧段コンプレッサ62の下流側吸気圧を設定範囲に戻す。なお、低圧段側の圧力式弁操作機構80の具体的構成等は後述する。
【0028】
このように構成されたエンジン1では、高圧段コンプレッサ52の上流側の吸気圧P1が高圧段コンプレッサ52の下流側の吸気圧P2以下となる平常運転状態から急減速、および、または、急負荷減少(遮断)した際に、イナーシャの大きい大形側の低圧段ターボ過給機60がイナーシャの小さい高圧段ターボ過給機50よりも慣性回転して高圧段コンプレッサ52の上流側の吸気圧P1が上昇し、高圧段コンプレッサ52の上流側の吸気圧P1と下流側の吸気圧P2との関係が逆転する場合がある。そして、このように高圧段コンプレッサ52の上流側の吸気圧P1と下流側の吸気圧P2との関係が逆転し、上流側の吸気圧P1が下流側の吸気圧P2よりも大となると、高圧段コンプレッサ52が必要以上に回されて高圧段側サージが発生する虞がある。
【0029】
そこで、このエンジン1では、平常運転状態から急減速、および、または、急負荷減少(遮断)した際に高圧段側サージが発生する虞のある条件である、高圧段コンプレッサ52の下流側の吸気圧P2が上流側の吸気圧P1よりも大となる作動条件が成立する場合に、
図2に示すように、低圧段ウェイストゲートバルブWG2を開弁して、高圧段側サージが発生するのを回避する高圧段側サージ回避手段90が備えられている。以下、高圧段側サージ回避手段90について説明を加える。
【0030】
(高圧段側サージ回避手段の作動タイミング)
図3は、エンジン1が平常時の運転状態から急減速、および、または、急負荷減少(遮断)した場合の状態の変遷を示す図であり、図中の上段にはエンジン回転数を示し、図中の中段には高圧段コンプレッサ52の下流側の吸気圧P2と上流側の吸気圧P1の関係(P2−P1)を示し、図中の下段には低圧段ウェイストゲートバルブWG2の開閉状態を示している。
【0031】
この
図3に示すように、高圧段側サージ回避手段90は、高圧段コンプレッサ52の上流側の吸気圧P1が下流側の吸気圧P2以下(
図3中で正(+)側の位置)となる平常運転状態からエンジン1が急減速、および、または、急負荷減少(遮断)し、高圧段コンプレッサ52の上流側の吸気圧P1が下流側の吸気圧P2よりも大(
図3中で負(−)側の位置)となる吸気圧関係の逆転が生じて作動条件が成立すると、低圧段ウェイストゲートバルブWG2を自動的に開弁する。
【0032】
この低圧段ウェイストゲートバルブWG2の開弁により、低圧段排気バイパス路33にて排気ガスの一部をバイパスさせる形態で低圧段タービン61に流入する排気ガス量を低減し、高圧段側サージの発生の虞のない元の適正な吸気圧関係(上流側の吸気圧P1が下流側の吸気圧P2以下となる関係)に戻す。そして、高圧段側サージ回避手段90は、高圧段側サージの発生の虞のない元の吸気圧関係に戻ると、低圧段ウェイストゲートバルブWG2を自動的に閉弁する。
【0033】
(高圧段側サージ回避手段の構成)
図2に示すように、高圧段側サージ回避手段90は、電力を駆動力として低圧段ウェイストゲートバルブWG2に開弁操作力を付与する電動式弁操作機構91、当該電動式弁操作機構の作動を制御するECU40等から構成されている。高圧段側サージ回避手段90は、前記作動条件が成立する場合にECU40から電動式弁操作機構91に作動指令を出力して電動式弁操作機構91を作動させることで、低圧段ウェイストゲートバルブWG2を開弁する。
【0034】
吸気路20において、高圧段コンプレッサ52の上流側の吸気圧P1を検出する第1吸気圧センサS1、及び、高圧段コンプレッサ52の下流側の吸気圧P2を検出する第2吸気圧センサS2が備えられている。これらの第1吸気圧センサS1及び第2吸気圧センサS2にて検出した吸気圧P1,P2がECU40に入力されるように構成されている。
【0035】
第1吸気圧センサS1は、吸気路20における低圧段コンプレッサ62と高圧段コンプレッサ52の間の部位、具体的には、低圧段コンプレッサ62の下流側で低圧段コンプレッサ62の近傍の部位に備えられ、当該部位の圧力を高圧段コンプレッサ52の上流側の吸気圧P1として検出する。
【0036】
第2吸気圧センサS2は、吸気路20における高圧段コンプレッサ52の下流側の部位、具体的には、給気マニホールド20Aに備えられ、給気マニホールド20Aの圧力を高圧段コンプレッサ52の下流側の吸気圧P2として検出する。
【0037】
そして、ECU40は、第1吸気圧センサS1及び第2吸気圧センサS2から入力された上流側の吸気圧P1と下流側の吸気圧P2を比較し、上流側の吸気圧P1が下流側の吸気圧P2よりも大となる前記作動条件が成立すると、低圧段ウェイストゲートバルブWG2に開弁操作力を付与する作動指令を電動式弁操作機構91に出力する。このECU40からの作動指令により電動式弁操作機構91が作動し、低圧段ウェイストゲートバルブWG2が開弁される。
上流側の吸気圧P1が下流側の吸気圧P2以下となり作動条件が成立しなくなると、ECU40から作動指令が出力されなくなり、電動式弁操作機構91が停止して低圧段ウェイストゲートバルブWG2が閉弁される。
【0038】
また、この高圧段側サージ回避手段90は、前記作動条件が成立した場合に、低圧段側の圧力式弁操作機構80の開弁操作力に電動式弁操作機構91の開弁操作力を追加して低圧段ウェイストゲートバルブWG2を開弁可能に構成されている。
このように構成することで、電動式弁操作機構91にて低圧段ウェイストゲートバルブWG2に開弁操作力を付与するための駆動電力を低く抑えることができ、電動式弁操作機構91に駆動電力を供給する電源の小型化を図ることができる。
【0039】
図4は、低圧段側の圧力式弁操作機構80及び電動式弁操作機構91を示す図であり、
低圧段ウェイストゲートバルブWG2(
図1参照)を閉弁した状態から低圧段側の圧力式弁操作機構80及び電動式弁操作機構91が図中の点線矢印のように作動して低圧段ウェイストゲートバルブWG2を開弁(全開)した状態を示している。
【0040】
図4に示すように、低圧段ウェイストゲートバルブWG2に操作力を伝達して低圧段ウェイストゲートバルブWG2を開閉する揺動レバー81が備えられている。揺動レバー81は、それの中央側において低圧段ウェイストゲートバルブWG2の作動軸Aに接続されている。
低圧段側の圧力式弁操作機構80は、例えば、揺動レバー81の一端側(
図4中の下端側)に配置された圧力式側リンク82を介して、前記揺動レバー81を開弁方向に揺動操作可能なダイアフラム式アクチュエータ等の圧力式アクチュエータ83を備えて構成されている。
【0041】
このように構成された低圧段側の圧力式弁操作機構80は、低圧段ウェイストゲートバルブWG2を閉弁した状態から、高圧段コンプレッサ52の上流側の吸気圧P1を利用して圧力式アクチュエータ83のロッドで揺動レバー81の一端側を圧力式アクチュエータ83とは反対側(図中点線矢印で示す右側)に押し込むことで、揺動レバー81を図中Rに示す開弁方向に揺動操作し、揺動レバーに接続された作動軸Aを図中Rに示す開弁方向に回転させる。
【0042】
これに対して、電動式弁操作機構91は、例えば、作動軸Aを基準に圧力式側リンク82とは反対側となる揺動レバー81の他端側(
図4中の上端側)に配置された電動式側リンク92を介して前記揺動レバー81を開弁方向に揺動操作可能な電動式アクチュエータ93を備えて構成されている。
【0043】
このように構成された電動式弁操作機構91は、前記作動条件が成立する場合のECU40からの作動指令により、低圧段ウェイストゲートバルブWG2を閉弁した状態から、電動式アクチュエータ93のロッドで揺動レバー81の他端側を電動式アクチュエータ93側(図中点線矢印で示す左側)に引き寄せることで、低圧段側の圧力式弁操作機構80と同じく、揺動レバー81を図中Rに示す開弁方向に揺動操作し、揺動レバーに接続された作動軸Aを図中Rに示す開弁方向に回転させる。
なお、低圧段ウェイストゲートバルブWG2を全開させた
図4に示す状態において、電動式弁操作機構91の開弁操作力(電動式リンク92の引き寄せ力)が、作動軸Aと電動式リンク92とを結ぶ線分に対して直角に作用して最大となるように、電動式アクチュエータ93と作動軸Aと電動式リンク92の相対位置が設定されている。
【0044】
つまり、前記作動条件が成立する場合に、低圧段ウェイストゲートバルブWG2を閉弁した状態から、低圧段側の圧力式弁操作機構80の圧力式アクチュエータ83で揺動レバー81の一端側を圧力式アクチュエータ83とは反対側に押し込むのに加えて、電動式弁操作機構91の電動式アクチュエータ93で揺動レバー81の他端側を電動式アクチュエータ93側に引き寄せることで、低圧段側の圧力式弁操作機構80の開弁作動力と電動式弁操作機構91の開弁作動力の協働により、揺動レバー81に接続された作動軸Aを図中Rに示す開弁方向に回転させて
図4に示す状態にすることができ、低圧段ウェイストゲートバルブWG2を効率良く開弁することができる。
また、この協働時には、揺動レバー81の一端側に押し込み力が作用し、揺動レバー81の他端側に引き寄せ力が作用するので、揺動レバー81の中央側に接続された作動軸Aに負荷される倒れ方向の曲げモーメントが小さくなり、作動軸Aの作動をスムーズにすることができる。
なお、揺動レバー81、圧力式側リンク82、電動側リンク92は、低圧段側の圧力式弁操作機構80と電動式弁操作機構91を連携させる連携機構を構成する。
【0045】
次に、
図5を参照して、圧力式弁操作機構80と電動式弁操作機構91による低圧段ウェイストゲートバルブWG2の開弁作動について説明する。
図5は、低圧段ウェイストゲートバルブWG2の作動特性を示す図であり、縦軸に低圧段ウェイストゲートバルブWG2に作用する圧力式弁操作機構80の開弁操作力(吸気圧P1による開弁操作圧力)を示し、横軸に低圧段ウェイストゲートバルブWG2のリフト量(開弁作動量)を示している。
図5中、Paは定格運転時の吸気圧P1により低圧段ウェイストゲートバルブWG2に作用する圧力式弁操作機構80の開弁操作力を示し、Pbは低圧段ウェイストゲートバルブWG2の開弁開始時の圧力式弁操作機構80の開弁操作力を示し、Pcは低圧段ウェイストゲートバルブWG2の全開時の圧力式弁操作機構80の開弁操作力を示している。
【0046】
図5中の太実線部分に示すとおり、エンジン1の平常時の運転状態等において、低圧段コンプレッサ62の下流側の吸気圧P1が設定吸気圧を超えた場合等には、その吸気圧P1よる圧力式弁操作機構80の開弁操作力が低圧段ウェイストゲートバルブWG2の開弁開始時の開弁操作力Pbよりも大となり、圧力式弁操作機構80の開弁操作力のみで低圧段ウェイストゲートバルブWG2が開弁される。
一方、前記作動条件が成立した場合には、電動式弁操作機構91が作動することにより、
図5中の太破線矢印に示すように、圧力式弁操作機構80の開弁操作力が如何なる値であっても、低圧段ウェイストゲートバルブWG2を全開にすることが可能となる。
【0047】
〔別実施形態〕
(1)前述の実施形態では、エンジン本体10側から二段のターボ過給機50、60を直列に接続して構成されている場合を例に示したが、エンジン本体10側から三段以上のターボ過給機を直列に接続して構成してもよい。
【0048】
(2)前述の実施形態では、共通の揺動レバー81を介して、低圧段側の圧力式弁操作機構80の開弁作動力と電動式弁操作機構91の開弁作動力を低圧段ウェイストゲートバルブWG2の作動軸Aに作用させる場合を例に示したが、別々の揺動レバー等を介して、低圧段側の圧力式弁操作機構80の開弁作動力と電動式弁操作機構91の開弁作動力を低圧段ウェイストゲートバルブWG2の作動軸Aに作用させるように構成してもよく、低圧段側の圧力式弁操作機構80と電動式弁操作機構91を連携させる連携機構の具体的構成は適宜に変更することができる。
【0049】
(3)前述の実施形態では、高圧段側サージ回避手段が、電動式弁操作機構91を備えて構成され、前記作動条件が成立する場合に、低圧段の圧力式弁操作機構80の開弁操作力に電動式弁操作機構91の開弁操作力を追加して低圧段ウェイストゲートバルブWG2を開弁可能に構成されている場合を例に示したが、電動式弁操作機構91の開弁操作力単独で低圧段ウェイストゲートバルブWG2を開弁可能に構成されていてもよい。また、高圧段側サージ回避手段は、電動式弁操作機構91に代えて別の方式の弁操作機構を備えて構成されていてもよい。