(58)【調査した分野】(Int.Cl.,DB名)
前記共振器の前記品質係数を使用して判定される少なくとも1つの時間特性を有する補正信号を生成することは、前記共振器の前記品質係数を使用して判定される時間減衰率を有する補正信号を生成することを含む、請求項1に記載の方法。
前記共振周波数および前記品質係数を使用して判定される駆動信号で、前記共振器を駆動することは、前記品質係数に基づいて、前記駆動信号の平均を変化させることを含む、請求項3に記載の方法。
前記共振周波数および前記品質係数を使用して判定される駆動信号で、前記共振器を駆動することは、前記品質係数に基づいて、前記駆動信号のパルス密度を変化させることを含む、請求項3に記載の方法。
前記検知信号および前記補正信号を使用して、補正された検知信号を生成することは、前記検知信号に前記補正信号を乗算することにより、補正された検知信号を生成することを含む、請求項1に記載の方法。
前記制御回路は、少なくとも部分的に、前記共振器の前記品質係数を使用して判定される時間減衰率を有する補正信号を生成することにより、前記共振器の前記品質係数を使用して判定される時間特性を有する補正信号を生成するように構成される、請求項9に記載のMEMS装置。
前記制御回路は、少なくとも部分的に、前記品質係数に基づいて、前記駆動信号の平均を変化させることにより、前記共振周波数および前記品質係数を使用して判定される駆動信号で、前記共振器を駆動するように構成される、請求項11に記載のMEMS装置。
前記制御回路は、少なくとも部分的に、前記品質係数に基づいて、前記駆動信号のパルス密度を変化させることにより、前記共振周波数および前記品質係数を使用して判定される駆動信号で、前記共振器を駆動するように構成される、請求項11に記載のMEMS装置。
前記制御回路は、少なくとも部分的に、前記検知信号に前記補正信号を乗算することにより補正された検知信号を生成することにより、前記検知信号および前記補正信号を使用して、補正された検知信号を生成するように構成される、請求項9に記載のMEMS装置。
【発明を実施するための形態】
【0010】
本願発明者らは、ジャイロスコープが影響を受ける角運動の速度を正確に検出するジャイロスコープの機能は、ジャイロスコープの共振器の品質係数の不所望な変化により損なわれる可能性があることを認識し、理解している。品質係数は、本明細書においては、ジャイロスコープの共振器の共振周波数と帯域幅の比と称される。
【0011】
いくつかの状況では、公称値に対する品質係数の変化は、機械的損失が共振器内に生じると発生する可能性があり、機械的損失は、種々ある現象の中でもとりわけ、熱弾性減衰またはスクイーズフィルム減衰に起因する。このような機械的損失により、共振器のスペクトル応答が広がるので、または狭くなるので、品質係数の変化が生じる。品質係数の変化が生じる場合、ジャイロスコープの振幅応答は、角速度の絶対値が不変のままである場合でも経時的に変化する可能性がある。このような変化により、不所望なひずみが、ジャイロスコープの出力信号に生じる。
【0012】
本願発明者らは更に、品質係数の変化の影響を受けやすい従来のジャイロスコープを、ジャイロスコープの出力信号を品質係数変化に関して補正することにより改善することができることを認識し、理解している。いくつかの実施形態では、補正は、(1)ジャイロスコープの品質係数を、ジャイロスコープの共振器信号に基づいて判定し;(2)補正信号を、判定した品質係数を使用して生成し;(3)ジャイロスコープの検知信号に補正信号を乗算することにより行うことができる。いくつかの実施形態では、補正は、リアルタイムに行うことができる(例えば、角運動が検出されているときに)。いくつかの実施形態では、制御回路がジャイロスコープに接続され、共振器の品質係数の変化を判定して、補正信号を、これらの変化が生じると生成するように構成される。このように、品質係数の変化が継続的に監視され、ジャイロスコープの出力から差し引かれる。
【0013】
いくつかの実施形態では、開ループ共振器信号経路補正をジャイロスコープに適用することができる。いくつかの実施形態における粗補正技法であると考えられる開ループ共振器信号経路補正を使用して、品質係数の変化から生じるジャイロスコープ出力の主たる変化を制限することができる。いくつかの実施形態では、開ループ共振器信号経路補正は、ジャイロスコープの共振器を駆動する力を調整することにより行われる。力を変化させる程度は、品質係数が変化した程度によって異なる。例えば、品質係数が低下した程度がより大きくなると、共振器に加えることができる力がより大きくなる。
【0014】
しかしながら、本願発明者らは更に、品質係数の変化がジャイロスコープの感度に与える影響は、開ループ共振器信号経路補正の他に、検知信号経路補正を使用することにより更に小さくすることができることを認識し、理解している。したがって、いくつかの実施形態では、開ループ共振器信号経路補正は、ひずみをジャイロスコープの出力に導入する可能性があり、これにより、角速度の指標が不十分なものとなる。いくつかの実施形態における微細補正技法であると考えられる検知信号経路補正は、これらのひずみの形成を制限することを目的としている。例えば、いくつかの実施形態では、共振器の品質係数に基づいて判定される時間特性を有する補正信号を生成することができる。時間特性の1つの例が時間減衰率である。したがって、1つの特定の例では、品質係数に基づいて判定される時間減衰率を有する補正信号が生成される。時間減衰率は品質係数に関係しているので、開ループ共振器信号経路補正により生じる可能性のあるジャイロスコープの出力のひずみは、制限することができる、または完全に抑制することもできる。また、いくつかの実施形態では、ジャイロスコープの出力のひずみを更に制限するために、補正信号を特定期間中は強制的に実質的に一定の値とすることができる。本明細書において「ブランキング」と称されるこの技法により、この方法を適用しない場合には、ジャイロスコープの出力をひずませる可能性があるピークまたは他の特徴点を制限することができる。
【0015】
いくつかの状況では、検知信号経路補正は、開ループ共振器信号経路補正を使用する必要を伴うことなく使用することができることを理解されたい。これは、例えば品質係数の変化が小さいことが予測される場合に当てはまる。
【0016】
上に紹介され、以下に更に詳細に説明される技法は、これらの技法が、いずれの特定の実施態様にも制限されないので、非常に多くの方法のいずれの方法でも実行することができることを理解されたい。実施態様の細部の例が、例示目的のためにのみ本明細書において提供される。更に、本明細書において開示される技法は、本明細書において記載される技術の態様が、いずれの特定の技法の使用、または技法の組み合わせの使用にも限定されないので、個々に使用するか、または任意の好適な組み合わせで使用することができる。
【0017】
図1Aは、いくつかの実施形態によるジャイロスコープ10を示すブロック図である。ジャイロスコープ10は、共振器12およびセンサ14を備える。共振器12は、周波数f
Rを有する駆動信号により駆動されると振動するように構成される。センサ14(センサ14は、いくつかの実施形態における加速度計とすることができる)は、角速度を検知するように構成される。したがって、ジャイロスコープ10が角運動の影響を受けると(例えば、ジャイロスコープが軸線回りに回転すると)、角運動が生じるときの角度量(例えば、軸線回りの回転量)は、センサ14を使用して検知することができる。
【0018】
いくつかの実施形態では、ジャイロスコープ10は、角速度を、コリオリ効果により生じる加速度を検出することにより検知するように構成される。コリオリ効果、したがってコリオリ力は、1)共振器12が振動する場合;および2)ジャイロスコープが角運動の影響を受ける場合に生じる。これらの状況では、センサ14は、コリオリ効果により生じる加速度を検出することができる。角運動に関連する角度量は、加速度から推定することができ、例えばセンサ14に接続される検知回路を使用することにより推定することができる。
【0019】
共振器12およびセンサ14は、任意の好適な方法で配置することができる。いくつかの実施形態では、共振器12は、プルーフマスを含むことができ、センサ14は、別個のプルーフマスを含むことができる。他の実施形態では、共振器12およびセンサ14は、同じプルーフマスを共有することができる。
【0020】
いくつかの実施形態では、角運動を正確に検知するジャイロスコープの機能は、共振器12の品質係数が、機械系の損失に起因して経時的に変化することにより損なわれる可能性がある。係数が異なると、機械的減衰、熱弾性減衰、スクイーズフィルム減衰を含む損失が発生する可能性がある。損失は、周囲の温度および/または圧力によって異なる。
図1Bは、いくつかの実施形態による時刻t
1およびt
2(t
2はt
1の後の時点である)における共振器12のスペクトル応答を示すプロットである。具体的には、曲線20は、時刻t
1における共振器12のスペクトル応答を表しており、曲線22は、時刻t
2における共振器12のスペクトル応答を表しており、これらの曲線はともに、振幅と周波数の関係としてプロットされる。図示のように、両方の曲線は、最大値を共振器12の共振周波数である周波数f
Rに有している。しかしながら、曲線20が帯域幅Δf
1を示しているのに対し、曲線22は、Δf
1よりも広い帯域幅Δf
2を示している(帯域幅Δf
1およびΔf
2は、それぞれの3dB帯域幅を表すことができる)。帯域幅がt
1とt
2との間で広くなるのは、例えば温度上昇に起因し得る。その結果、共振器の品質係数(f
RとΔfの比として定義される)は、t
1とt
2との間で劣化する。本明細書において記載される技術のいくつかの態様は、MEMS ジャイロスコープを品質係数の変化に関して補正する回路および技法に関する。
【0022】
いくつかの実施形態によるジャイロスコープ10の1つの例示的な実施態様が
図2に示されている。この例では、ジャイロスコープ100は、x軸に平行な方向に共振し、y軸に平行な方向のコリオリ力を検出するように構成される。しかしながら、本明細書において記載される種類のジャイロスコープは、いずれの特定の共振方向または検出方向にも限定されないことを理解されたい。
【0023】
MEMSジャイロスコープ100は、プルーフマス101および102と、アンカー103と、フィンガ105、107、114、132、および133と、固定電極104、108、110、122、および123と、を含む。プルーフマス101および102は、いくつかの実施形態におけるシリコンにより作製することができる基板115の上方に宙吊りにすることができる。基板115、プルーフマス101および102、アンカー103、フィンガ105、107、114、132、および133、並びに固定電極104、108、110、122、および123は、MEMS技法を使用して製造することができる。例えば、プルーフマス101および102は、材料層を犠牲層の上に堆積させることにより形成することができる。続いて、犠牲層をエッチングすることにより、プルーフマスを基板115の上方に宙吊りにして残すことができる。1つの例では、プルーフマス101および102は、ポリシリコン(ドープトまたはアンドープト)により作製される。プルーフマス102および101は、共振器12およびセンサ14(
図1A参照)としてそれぞれ機能することができる。
【0024】
プルーフマス101は基板に、z軸に平行な方向に延在することができるアンカー103を介して接続される。また、プルーフマス101はアンカーにたわみ部111を介して接続される。たわみ部111により、プルーフマス101は、y軸に平行な方向に運動することができる。
【0025】
図示のように、プルーフマス102はプルーフマス101内にxy平面で取り囲まれている。しかしながら、全ての実施形態がこの配置に限定される訳ではない。プルーフマス101および102は、互いにたわみ部117を介して弾性結合される。たわみ部117により、プルーフマス102は、x軸に平行な方向に運動することができる。
【0026】
MEMSジャイロスコープ100の動作はコリオリ効果を利用している。
図2の例では、z軸回りのMEMSジャイロスコープの角運動は、y軸方向のプルーフマス101の加速度を、プルーフマス102が駆動されてx軸方向に振動するときに検出することにより検出することができる。このようなことから、x軸は、本明細書においては「resonator axis(共振器軸)」と称され、y軸は、本明細書においては「Coriolis axis(コリオリ軸)」と称される。しかしながら、本明細書において記載される種類のMEMSジャイロスコープは、図に示されるz軸回りの角運動の検出に限定されず、しかも任意の好適な軸回りの運動を検出するために使用することができる。更に、いくつかのMEMSジャイロスコープは、多軸ジャイロスコープとして構成することもできるので、2軸または3軸回りの角運動を単一のデバイス(例えば、1個の弾性結合プルーフマスペア)を使用して検出することができる。
【0027】
x軸方向のプルーフマスの振動は、ドライバ106および109を使用して開始することができる(任意の他の好適な数のドライバを使用することができるが)。ドライバ106は、固定電極104およびフィンガ105を含む。固定電極104は基板115に、z軸に沿って延在するアンカーを介して取り付けることができる。フィンガ105は、プルーフマス102に接続され、プルーフマス102から離間する方向に延在する。フィンガ105および固定電極104は、交互となるように配置され、複数のキャパシタを形成する。同様に、ドライバ109は、固定電極108およびフィンガ107を含む。x軸に沿ったプルーフマス102の運動は、信号を、固定電極とフィンガとの間に形成されるキャパシタに印加することにより起こすことができる。したがって、信号がキャパシタに印加されると、吸引静電力が生じて、プルーフマスの変位が、当該プルーフマスの初期位置からx軸方向に生じる。周期信号(例えば、正弦波信号)の印加により、プルーフマスが周期的に振動するようになる。ドライバ106および109は、互いに位相がずれている(例えば、約180°ずれている)信号で駆動することができる。
【0028】
以下に更に詳細に記載されるように、いくつかの実施形態では、プルーフマス102の運動を動作中に監視することが望ましい。運動の監視は、運動検出器151を使用して行うことができる。運動検出器151は、複数のキャパシタを形成する固定電極110およびフィンガ114を含む。簡潔性を期して、運動検出器151は、
図2の例示的な実施形態に1つだけ図示されているが、代替的な実施形態は、追加の運動検出器を有することができる。プルーフマスが駆動信号に応答して移動すると、フィンガ114および固定電極110が互いに重なり合う(フィンガの長手方向の運動に起因する)程度が変わって、キャパシタンスの容量が変化する。このようなことから、検知信号は、運動検出器151内で、プルーフマス102の運動に応じて生成することができる。例えば、プルーフマスの運動により、電流が運動検出器151のキャパシタに流れるようになり、この電流の振幅がプルーフマスの瞬時速度に比例する。
【0029】
MEMSジャイロスコープ100がz軸回りの角運動の影響を受けると(プルーフマス102は角運動が生じると振動していると仮定する)、加速度をy軸方向に発生させるコリオリ力が生成される。角運動が生じるときの速度は、コリオリ力で発生する加速度の振幅から推定することができる。いくつかの実施形態では、プルーフマス101を使用してこれらの加速度を検知することができる。詳細には、
図2の実施形態では、運動検出器112(運動検出器112は、固定電極122およびフィンガ132を含む)および運動検出器113(運動検出器113は、固定電極123およびフィンガ133を含む)を使用して、y軸方向のプルーフマス101の運動を検知することができる。したがって、y軸方向のプルーフマス101の運動により、電流が運動検出器112および113のキャパシタに流れるようになる。プルーフマス101が受ける加速度の絶対値、および結果的に生じるMEMSジャイロスコープ100の角速度は、運動検出器112および113により流れるようになる電流から推定することができる。
【0030】
MEMSジャイロスコープ10の動作に対する制御は、ジャイロスコープと同じ基板に、または別個の基板に一体に設けることができる制御回路を使用して行われる。制御回路は、共振器12を振動させる回路、共振器12の運動を監視する回路、センサ14の運動を検知する回路、および/またはセンサ14の運動を安定させる回路を含むことができる。
【0032】
共振器の品質係数の変化により、角速度を正確に検知するジャイロスコープの機能が低下する可能性がある。いくつかの実施形態では、品質係数の変化に関するジャイロスコープの補正は、1)制御回路を使用して、共振器の運動に応じて生成される信号を受信し、2)共振器の品質係数を、受信信号に基づいて判定するとともに、共振器が振動して3)品質係数を使用して判定される時間特性(例えば、時間減衰率)を有する補正信号を生成し、4)ジャイロスコープの角運動に応じて生成される検知信号を受信し、5)検知信号を補正信号と合成することにより行うことができる。
【0033】
いくつかの実施形態による1つの代表的な制御回路が
図3Aに図示されている。
図3Aは、MEMSジャイロスコープ10(MEMSジャイロスコープ10の例が
図2に図示されている)として機能することができるMEMSジャイロスコープ300、および制御回路302を示すブロック図である。本明細書において「gyro(ジャイロ)」とも称されるMEMSジャイロスコープ300は、共振器軸(すなわち、軸に沿って共振器が振動するときの当該軸)およびコリオリ軸(すなわち、センサがコリオリ力に応じて軸に沿って移動するときの当該軸)により特徴付けられる。更に、MEMSジャイロスコープ300は、駆動電極306と、運動検出器電極351と、検知電極312と、フィードバック電極314と、を含む。駆動電極306は、ジャイロの共振器を駆動するドライバの電極とすることができ、この電極の例が固定電極104およびフィンガ105(
図2参照)である。運動検出器電極351は、ジャイロの共振器の運動を検知する運動検出器の電極とすることができ、この電極の例が固定電極110およびフィンガ114である。検知電極312は、ジャイロのセンサの運動を検知する運動検出器の電極とすることができ、この電極の例が固定電極123およびフィンガ133である。フィードバック電極314は、ジャイロのセンサの運動を制御するために使用することができる。例えば、フィードバック電極は駆動されて、コリオリ軸におけるセンサの運動を制限することができる。フィードバックを使用してセンサの運動を制限することにより、温度変化または周囲応力に対するセンサの感度を下げることができる。フィードバック電極は、検知電極と同じ電極を使用して、または別個の電極を使用して実現することができる。同じ物理電極が共有される実施形態では、この物理電極は、第1時間区間中では検知電極として機能することができ、第2時間区間中ではフィードバック電極として機能することができる。
【0034】
制御回路302は、共振器信号経路コントローラ320と、コリオリフィードバックループ348と、品質係数(Q)測定回路330と、補正回路340と、合成器344と、を含む。共振器信号経路コントローラ320は、受信器(RX)319と、フェーズドロックループ(PLL)321と、駆動回路323と、を含む。RX319は、ジャイロの共振器の運動に応じて生成される共振器信号を受信し、電圧アンプ、電流アンプ、トランスインピーダンスアンプ、フィルタ、および/または他の好適な回路構成要素を含むことができる。PLL321は、ジャイロの共振器の共振周波数を、RX319により受信される共振器信号に基づいて判定するように構成することができる。例えば、PLL321は、共振器信号の基本周波数にロックするように構成することができる。代替的に、または更に、PLL321を使用して、ジャイロの共振器が確実に、共振器の共振周波数で駆動されるようにする。ジャイロの共振器は、駆動回路323を介して駆動されるようにしてもよく、駆動回路は、アンプ、電流発生器、トランスコンダクタンスアンプ、および/または他の好適な回路構成要素を含むことができる。運動検出器電極351と駆動電極306との間の信号経路は、「open−loop resonator signal path(開ループ共振器信号経路)」と称される。この経路は、当該経路で共振器信号の振幅を調整して振幅を強制的に一定値とすることがないので、振幅を調整しない場合には、当該経路が閉ループ配置に当てはまることになるので、開ループ経路として定義される。
図3Aの例では、開ループ共振器信号経路は、RX319、PLL321、および駆動回路323を含むが、より多くの、またはより少ない構成要素を他の実施形態に含めるようにしてもよい。
【0035】
コリオリフィードバックループ348は、ジャイロのセンサの動作を制御する回路を含むことができる。例えば、コリオリフィードバックループ348は、コリオリ軸におけるセンサの運動を制限することができるので、温度変化の影響を受けやすいセンサの感度を低下させることができる。コリオリフィードバックループ348は、センスアンプ(SA)のようなアンプと、フィードバック電極314を駆動してセンサの運動を制限するアナログ回路および/またはデジタル回路と、を含むことができる。コリオイフィードバック回路の出力は、増幅された、および/またはデジタル化された検知信号、もしくは複製された検知信号とすることができる。ジャイロの共振器が品質係数の変化を受ける環境では、このような変化は、検知信号に反映されるので、角速度検出値がゆがみの影響を受ける可能性がある。検知電極312と制御回路302の出力(すなわち、補正された検知信号)との間の経路は、本明細書においては、「sense signal path(検知信号経路)」と称される。
【0036】
品質係数測定回路330は、ジャイロの共振器の品質係数を共振器信号に基づいて判定するように構成される。1つの例では、品質係数測定回路330は、共振器信号をRX319から受信し、品質係数が閾値を下回ったかどうかを、または品質係数が低下する低下率が、低下率閾値よりも大きいかどうかを判断する。一旦、品質係数が閾値を下回って低下した、または閾値率を上回る率で変化したと判断されると、補正を、補正回路340を使用して行うことができる。しかしながら、全ての実施形態が、補正を開始する閾値の使用に限定される訳ではないことを理解されたい。例えば、いくつかの実施形態では、補正は、自由に実行できるように行われるので、補正は、品質係数の変化が最小限に抑えられる場合でも、継続的に行われる。
【0037】
ジャイロスコープの補正は、非常に多くの方法で、補正回路340を使用して行うことができる。いくつかの実施形態では、補正は、駆動信号の特性を、判定した品質係数に基づいて変化させることにより行うことができる(「open−loop resonator path compensation(開ループ共振器経路補正)」と称される)。このようなことから、補正回路340は、駆動回路323の制御端子に接続される出力端子を有することができる。駆動回路323を制御するために使用される信号は、制御信号と称される。更に、または代替的に、補正は、検知信号を、品質係数を使用して判定される1つ以上の時間特性を有する補正信号と合成することにより(例えば、乗算する、または除算することにより)行うことができる(「sense signal path compensation(検知信号経路補正)」と称される)。このようなことから、補正回路340は、合成器344に接続される出力端子を有することができる。合成器344は、閉ループ検知経路に接続される第2端子を有することができる。
【0038】
いくつかの実施形態によるジャイロスコープを補正する例示的な方法が、
図3Bに図示されている。補正方法350は処理352から始まり、処理352では、共振器信号をMEMSジャイロスコープの共振器から受信する。例えば、共振器信号は、
図3Aの運動検出器電極351から受信することができる。共振器信号は、共振器の運動に応じて生成される。処理354では、共振器の品質係数は、共振器信号を使用して、例えば品質係数測定回路330を使用して判定することができる。品質係数は、時間領域で、または周波数領域で判定することができる。時間領域で判定される場合、品質係数は、共振器信号(または、共振器信号の包絡線)が経時的に変化する変化率に基づいて推定することができる。周波数領域で判定される場合、品質係数は、共振器信号の最大周波数に対する共振器信号の帯域幅に基づいて推定することができる。
【0039】
任意に、処理356では、駆動信号(信号で共振器が駆動されるときの当該信号)の1つ以上の特性は、制御信号を使用して、処理354で判定された品質係数に基づいて調整することができる。駆動信号の特性(複数の特性)は、制御信号を介して変化すると、共振器に加わる静電力に変化が生じるような特性とすることができる。いくつかの実施形態では、品質係数に依存して変化する特性は、駆動信号の平均、駆動信号のパルス密度またはデューティサイクル、および/または駆動信号の振幅である。したがって、本願発明者は、駆動信号の平均、パルス密度、デューティサイクル、および/または振幅を大きくすると、共振器を駆動する静電力が大きくなるという認識に至った。静電力が平均変調、パルス密度変調、デューティサイクル変調、および/または振幅変調により変化する程度は、品質係数の変化に依存するように設定することができる。いくつかの実施形態では、補正回路340は、品質係数が低下すると、駆動信号の平均、パルス密度、デューティサイクル、および/または振幅を大きくするように配置することができる。
【0040】
処理358では、処理354で取得される品質係数を使用して判定される1つ以上の時間特性を有する補正信号を生成することができる。時間特性の1つの特定の例が、補正信号が経時的に減衰する率である。この例では、補正信号は、高レベルから低レベルに変化することができ、この変化が生じる変化率は、品質係数に基づいて制御することができる。例えば、いくつかの実施形態では、減衰率は、品質係数に比例するように設定することができる。別の例では、減衰率は、共振器の帯域幅の逆数に等しくなるように設定することができる。補正信号の例が、以下に更に例示される。
【0041】
処理360では、コリオリ力がジャイロスコープの角運動により生じると生成される検知信号を受信する。例えば、検知信号は、検知電極312から受信することができる。任意に、ジャイロスコープのセンサの運動の安定化は、コリオリフィードバックループ348を使用して行うことができる。
【0042】
処理362では、補正された検知信号を、処理360で受信した検知信号、および処理358で生成された補正信号を使用して取得することができる。検知信号および補正信号は、乗算、混合演算、または除算を含む任意の好適な方法で合成することができる。補正された検知信号は、制御回路302から出力することができ、ジャイロスコープが受ける角運動の速度を表すことができる。
【0043】
いくつかの実施形態では、品質係数が変化する場合のジャイロスコープの補正は、共振器を駆動する静電力を変化させることにより、少なくとも部分的に行うことができる。静電力の増加は、駆動信号の時間平均を大きくすることにより実現することができる。次に、信号平均の増加は、信号のパルス密度、デューティサイクル、および/または振幅を大きくすることにより実現することができる。
【0044】
図4A〜
図4Fは、いくつかの実施形態による駆動信号の特性の変化が共振器信号に影響する過程を示すプロットである。具体的には、
図4Aは、
図4Dの駆動信号が印加される結果として生じる共振器信号を示しており、
図4Bは、
図4Eの駆動信号が印加される結果として生じる共振器信号を示しており、
図4Cは、
図4Fの駆動信号が印加される結果として生じる共振器信号を示している。
図4A、
図4B、および
図4Cのプロットは、共振器信号の電圧Vと時間の関係を表すために示される。
図4D、
図4E、および
図4Fのプロットは、駆動信号の振幅(例えば、駆動信号の電圧)と時間の関係を表すために示される。
【0045】
この例では、パルス密度は、
図4Dの駆動信号から
図4Eの駆動信号になると増加し、
図4Fの駆動信号になると再び増加する。すなわち、信号の各期間に含まれるパルスの数(1/f
Mが信号の周期である)が
図4Dから
図4Fになると増加する。その結果、共振器の振幅は、
図4Aから
図4Bになると大きくなり、
図4Cになると再び大きくなる。図示のように、共振器信号の包絡線は、
図4AのV
1とV
2との間にあり、
図4BのV
3とV
4との間にあり、
図4CのV
5とV
6との間にある(V
5>V
3>V
1およびV
6>V
4>V
2の関係がある)。駆動信号のパルス密度(または、より広い意味では、駆動信号の平均)は、品質係数測定回路330により判定される品質係数が低下すると
図4D〜
図4Fに示すように増加する。
【0046】
補正が共振器を駆動する静電力を調整することにより(しかしながら、補正信号の調整を品質係数に基づいて行うことなく)行われる場合の制御回路302の代表的な動作を
図6Aに示す。
図6Aは、以下の6種類のプロットを含む:1)共振器の品質係数、2)駆動信号のパルス密度、3)共振器信号の平均振幅、4)品質係数測定回路330によって提供される出力Q
meas、5)補正信号、および6)補正された検知信号。このような全ての量が、時間の関数としてプロットされる。プロット1に示すように、共振器の品質係数は、例えば熱可塑性減衰またはスクイーズフィルム減衰により導入される機械的損失に起因して、または温度上昇に起因して経時的に低下する。品質係数が低下すると、信号Q
measは、プロット1の勾配に類似する下向きの勾配(これらの勾配は、互いに比例する同じ勾配とすることができる)を示すようになる(プロット4)。プロット2に更に図示されるように、Q
measの変化により、駆動信号の特性が変化し始める(この例におけるパルス密度であるが、平均、デューティサイクル、および/または振幅のような他の特性が変化する可能性がある)。詳細には、パルス密度は、「パルス密度1」から「パルス密度2」に増加する。パルス密度が増加するので、共振器信号の平均振幅も大きくなる(プロット3)。共振器は有限の品質係数を有するので、共振器の平均振幅は、パルス密度が変化すると、非ステップ関数に従って大きくなることを理解されたい。プロット3は、共振器信号の瞬時振幅(ピークツーピーク振幅がΔVに等しい)が経時的に変化する過程を示す差し込み図を含む。パルス密度の変化の副作用として、Q
measは、不所望な特徴点610(この例における三角形ピーク)を示す。プロット5の補正信号は、この実施形態では、補正信号が利用されないので一定である。プロット6に示すように、補正された検知信号は、品質係数の低下により、下向きの勾配を示す。しかしながら、品質係数とは異なり、補正された検知信号は、パルス密度の変化から生じる増加612を示す。増加612は、遅延t
Dがパルス密度の変化に対して生じることにより生じることを理解されたい。増加612により、品質係数の変化を、少なくとも特定期間中に補正することができる。
【0047】
補正を更に向上させるために、いくつかの実施形態では、処理354で取得される品質係数を使用して判定される時間特性を有する補正信号を使用することができる。補正信号の生成は、補正回路340(
図3A)を使用して行うことができる。
図5A〜
図5Cは、いくつかの実施形態による補正回路340の代替的な可能な実施態様を示している。図示のように、各実施形態は、信号Q
measの形式の品質係数を表す情報を品質係数測定ユニット330から受信する。また、各実施形態は、補正信号、および任意に、駆動回路323を制御する制御信号を出力する。
【0048】
図5Aの実施形態は、ルックアップテーブル(LUT)を含み、ルックアップテーブルは、駆動信号と一致する特性(例えば、平均、振幅、デューティサイクル、およびパルス密度)を表すデータを当該ルックアップテーブル内に含む。これらの特性は、LUT内で品質係数によって変わるようにマッピングすることができる。すなわち、品質係数の各値は、特性の適切な値に対応させることができる。品質係数と特性の関係のマッピングは、校正ルーチンの一部として行うことができ、校正ルーチンでは、共振器を異なる品質係数に基づいて適切に駆動する過程が把握される。
【0049】
更に、この実施形態は、遅延ユニットt
D、乗算器512、除算器514、および基準発生器「Ref」を含む。遅延ユニットt
Dは、例えば
図6Aのプロット6に示す遅延t
Dに実質的に一致する遅延を導入し得る。いくつかの実施形態では、除算器514は、補正信号を生成して、補正信号が比Ref/Q
measに比例するように構成することができる。例えば、補正信号は、Ref/(Q
meas*pulse_density(t−t
D))により与えられ、式中、pulse_density(パルス密度)は、駆動信号のリアルタイムパルス密度である。
【0050】
図5Aの実施形態の動作は、
図6Bの6つのプロットに例示されている。
図6Aとは異なり、
図6Bの補正信号は、信号Q
meas(
図6Bのプロット5)が変化すると変化する。詳細には、この状況において、補正信号は、品質係数の低下により上向きの勾配を示す。プロット5に更に示すように、補正信号は、特徴点610に応じて生じる不所望な特徴点614を示す。更に、補正信号は、パルス密度の変化に応じて不連続性616を示す。プロット6に示すように、補正された検知信号は、補正信号の上向きの勾配により、実質的にフラットになっている(下向きの勾配を有する
図6Aの補正された検知信号とは異なり)。しかしながら、補正された検知信号は更に、特徴点624(特徴点614に応じた)およびスパイク626(不連続性616に応じた)を含む。
【0051】
図5Bの実施形態は、駆動信号のパルス密度(または他の特性)が1つの値から別の値に変化すると生じる、補正された検知信号のスパイク626または他の急激な変化を制限または排除するように構成することができる一時補正回路550を含む。いくつかの実施形態では、
図5A〜
図5Cの構成要素は、デジタル回路として実現することができる。しかしながら、これらの構成要素のうちの少なくともいくつかの構成要素のアナログ形式も可能であることを理解されたい。
【0052】
一時補正回路550は、
図6Bのプロット5に示す不連続性をなだらかにする回路を含むことができる。いくつかの実施形態では、一時補正回路550は、処理354で判定される品質係数に依存する時間減衰率τのインパルス応答を有することができる。1つの例では、一時補正回路550の時間減衰率τは品質係数に比例する。別の例では、時間減衰率τは、共振器の帯域幅Δfの逆数に等しい。一時補正回路550は、ディジタルフィルタ(例えば、1次フィルタ、2次フィルタ、または任意の種類のより高い次数のフィルタ)を含む非常に多くの形態のいずれの形態でも実現することができる。アナログ回路として実現される場合、フィルタは、損失が大きい素子(例えば、抵抗素子)を含むことができ、この素子の損失は、品質係数に依存して変化して異なる減衰率を生じる)。
図5Bの実施形態の動作を
図6Cの6つのプロットに示す。詳細には、プロット5に示すように、不連続性616が、徐々に減衰する変化618(例えば、指数的に減衰する応答)に置き換わっており、この変化は、時間減衰率τを有する。
図5Aおよび
図6Bの実施形態とは異なり、このようにして生成される補正された検知信号は、スパイク626を示さない(
図6Cのプロット6参照)ので、信号ひずみを小さくすることができる。
【0053】
図5Cの実施形態は、品質係数出力無効化回路560を含み、品質係数出力無効化回路560は、補正された検知信号の特徴点624を制限または排除することにより、ジャイロスコープの感度を実質的に一定に維持するように構成することができる。いくつかの実施形態では、Q出力無効化回路は、補正信号を所定期間に渡って(例えば、特徴点610の時間長に渡って、またはτと20τとの間の時間長、5τと20τとの間の時間長、10τと20τとの間の時間長、15τと20τとの間の時間長、τと10τとの間の時間長、5τと10τとの間の時間長、またはこのような範囲に収まる任意の好適な範囲内の時間長に渡って)強制的に実質的に一定の値にするように構成することができる。所定期間の時間長は、品質係数に関連付けることができる。いくつかの実施形態では、Qブランキング回路560は、1つ以上のキャパシタを使用して、または1つ以上のレジスタをデジタル的に使用して実現される。
図5Cの実施形態の動作を
図6Dに示す。詳細には、プロット5は、補正信号が一定値に、Q
measピークの時間長全体に渡って維持される(
図6Cの補正信号とは異なり)ので特徴点614を除去することができる過程を示している。その結果、補正された検知信号(
図6Dのプロット6)は、実質的に一定に、Q
measピークの期間全体に渡って保たれるので特徴点624を除去することができる。その結果、品質係数の変化の影響を受けやすい補正された信号の感度は、不所望なひずみを導入することなく、実質的に制限される。
【0055】
本明細書において記載される技術の態様は、1つ以上の利点を提供することができ、これらの利点のうちいくつかの利点は既に説明されている。次に記載されるのは、利点の非限定的な例である。全ての態様および実施形態が必ずしも、記載される利点を提供する訳ではないことを理解されたい。更に、本明細書において記載される技術の態様は、追加の利点を、次に説明される利点に提供することができることを理解されたい。本明細書において記載される技術のいくつかの態様は、ジャイロスコープの共振器内で生じる品質係数の変化の影響を受けやすい感度を実質的に小さくしたMEMSジャイロスコープを提供する。
【0056】
「approximately(ほぼ)」、「substantially(実質的に)」、および「about(約)」という用語は、いくつかの実施形態における目標値の±20%以内、いくつかの実施形態における目標値の±10%以内、いくつかの実施形態における目標値の±5%以内、およびいくつかの実施形態における目標値の±2%以内を意味するために使用することができる。「approximately(ほぼ)」および「about(約)」という用語は目標値を含むことができる。