【実施例】
【0033】
本発明を実施例に基づいて説明するが、本発明は実施例のみに限定されるものではない。
【0034】
試験用植物の機能性成分増加剤の調製
原料として、純度80%のリノール酸(和光純薬工業株式会社製)2.8gを用い、これに炭酸カリウム(和光純薬工業株式会社製)7g、および、蒸留水300mlを加えて反応溶液を調製した。この時の反応溶液のpHは11であった。
【0035】
反応溶液にリポキシゲナーゼ(シグマアルドリッチ社製、Glycine max由来)を0.2mg添加し、30℃で24時間反応させたのち、反応混合物を90℃の湯浴中に5分間置いて、酵素を失活させた。
【0036】
酵素を失活させた反応溶液を室温に戻した後に、アルコール脱水素酵素(和光純薬工業株式会社製、Yeast由来)を0.2mg添加し、30℃にてさらに24時間反応させた。
【0037】
反応終了後の反応溶液中の生成物を、ケイマンケミカル社製の13−オキソ−9,11−オクタデカジエン酸を標準物質としてMS
2スペクトル解析を用いてLC−MSにて同定し、検出波長 UV 272nmで、絶対検量線法により定量を行った。
【0038】
(E,E体)、(E,Z体)などの異性体の合算収率として、3.5%の収率で13−オキソ−9,11−オクタデカジエン酸を得た。なお、収率(%)は以下の式に基づいて求めた。
収率(%)=
(生成した13−オキソ−9,11−オクタデカジエン酸のwt%)/ (使用した原料リノール酸の初期wt%)
【0039】
製造された13−オキソ−9,11−オクタデカジエン酸およびその異性体を用いて約300ppmのカリウム塩水溶液を調製し、試験用植物の機能性成分増加剤とし、下記の評価を行った。
【0040】
イチゴにおける機能性成分増加効果
・実施例1
イチゴ(品種:紅ほっぺ)を土耕栽培、一般肥料溶液灌注により7〜9株栽培した。開花結実が始まる直前に、上記試験用植物の機能性成分増加剤を水で4000倍希釈した希釈液を用いて、6日に一度の頻度で2回、1株あたり約100mlの割合で株元に灌注処理した。収穫は灌注処理直後に行い、収穫した果実から15個を無作為に選んで後の分析に供した。
・比較例1
試験用植物の機能性成分増加剤の代わりに、灌注する溶液を水とした以外は、実施例1と同様に試験を行った。
【0041】
ホウレンソウにおける機能性成分増加効果
・実施例2
ホウレンソウ(品種:弁天)をハウス土耕栽培により50株程度栽培した。本葉展開後に、上記試験用植物の機能性成分増加剤を水で4000倍希釈した希釈液を用い、1株あたり約20mlの割合で葉面に散布処理した。処理後15日間栽培し、収穫した。収穫した株から無作為に5株を選んで後の分析に供した。
・比較例2
試験用植物の機能性成分増加剤の代わりに、灌注する溶液を水とした以外は、実施例2と同様に試験を行った。
【0042】
ニンジンにおける機能性成分増加効果
・実施例3
ニンジン(品種:向陽2号)を土耕栽培により60株程度栽培した。本葉展開後に、上記試験用植物の機能性成分増加剤を水で4000倍希釈した希釈液を用いて、7日に一度の頻度で8回、1株あたり約50mlの割合で葉面に散布処理した。処理の開始から60日後に成長したニンジン根部を採取した。採取した株から無作為に6株を選んで後の分析に供した。
・比較例3
試験用植物の機能性成分増加剤の代わりに、灌注する溶液を水とした以外は、実施例3と同様に試験を行った。
【0043】
シソにおける機能性成分増加効果
・実施例4
シソ(大葉;品種:香り青大葉)を土耕栽培により20株程度栽培した。本葉展開後に、上記試験用植物の機能性成分増加剤を水で4000倍希釈した希釈液を用いて、7日に一度の頻度で4回、1株あたり約100mlの割合で葉面散布した。処理の開始から30日後に成長した葉部を採取し、採取した葉部から無作為に選んだ800g分を後の分析に供した。
・比較例4
試験用植物の機能性成分増加剤の代わりに散布する溶液を水とした以外は、実施例4と同様とした。
【0044】
ナスにおける機能性成分増加効果
・実施例5
ナス(品種:千両2号)を土耕栽培により5株栽培した。本葉展開後に、上記試験用植物の機能性成分増加剤を水で4000倍希釈した希釈液を用いて、7日に一度の頻度で4回、1株あたり約100mlの割合で株元灌注した。処理の開始から30日後に成長した果実部を採取し、採取した果実部から無作為に選んだ2kg分を後の分析に供した。
・比較例5
試験用植物の機能性成分増加剤の代わりに灌注する溶液を水とした以外は、実施例5と同様とした。
【0045】
トマトにおける機能性成分増加効果
・実施例6
ハウス内栽培のミニトマト2株を水耕栽培した。定植約2カ月後以降より上記試験用植物の機能性成分増加剤を1〜2ml、7日に一度の頻度で株元に添加した。処理以降収穫されるミニトマトから無作為に選んだ3〜5個を分析に供し、9週間分の値を平均し分析値とした。
・比較例6
試験用植物の機能性成分増加剤の代わりに添加する溶液を水とした以外は、実施例6と同様とした。
【0046】
実施例1〜6および比較例1〜6で得られた各野菜の可食部(すなわちイチゴは果実、ホウレンソウは地上部、ニンジンは根部、大葉は葉部、ナスとトマトは果実部)に含まれる機能性成分の量および機能性を評価した。具体的にはイチゴはミキサーですりつぶした試料1gをエタノール10mlにて抽出した。トマトはミキサーですりつぶした試料1gを水7mlにて抽出(GABAの分析用)、残った残渣をアセトン8mlで抽出(リコピンの分析用)した。残りの各野菜についてはデザイナーフーズ株式会社に野菜を送付し、分析委託を行った。
【0047】
可食部中の機能性成分としては、各野菜に一般的に含まれることが知られている機能性成分を評価した。具体的には、イチゴではフォーリン・チオカルト法により総ポリフェノール量を測定し、また、ホウレンソウではルテインを、ニンジンではβカロテン、トマトではリコピン、GABAをHPLC法で、総アントシアニン量は紫外可視分光法で、ビタミンCはRQflex(登録商標)(メルク社製)リフレクトメーターを用いて測定した。得られた結果を表1に示す。
【0048】
【表1】
【0049】
可食部の機能性指標としては、各試料の抗酸化性を評価した。具体的には、各試料の抗酸化力として、代表的な活性酸素であるスーパーオキシドアニオン、ヒドロキシラジカルおよび一重項酸素に対する試料のスーパーオキシド消去能、ヒドロキシラジカル消去能および一重項酸素消去能を電子スピン共鳴装置(ESR)により、ならびに、試料のDPPH(1,1−ジフェニル−2−ピクリルヒドラジル)ラジカル消去能を吸光光度法により、測定して、各試料の抗酸化性を調べた(デザイナーフーズ株式会社に分析委託)。結果を表2に示す。なお、表中、ヒドロキシラジカル消去能は、DMSO相当量(μmolDMSO)であり、一重項酸素消去能は、His相当量(μmolHis)であり、DPPHラジカル消去能は、標準物質にTroloxを用いたTrolox相当量(mgTE)であり、スーパーオキシド消去能の値は、1gの試料が相当するスーパーオキシドジムスターゼ(SOD)のユニット数である。
【0050】
【表2】
【0051】
表1に示されるように、試験用植物の機能性成分増加剤で処理された実施例の野菜に含有される機能性成分量は、比較例に比べて1.1倍〜1.5倍に増加していた。またそれに伴い、表2に示されるように、実施例の野菜の抗酸化性も1.1倍〜1.4倍程度上昇していた。なお、実施例4のシソについては、上記抗酸化指標の測定による抗酸化性の評価は行わなかった。これは、表1に示されるように実施例4のシソでは、抗酸化機能の評価においてポジティブコントロールとしても使用されるビタミンCの量が30%も上昇したという実験結果から、試験用植物の機能性成分増加剤で処理されたシソではビタミンCの増加によって抗酸化性が上昇していることは明らかであると推察されたためである。また、実施例6のトマトについても抗酸化性の評価は行っていない。これは表1に示されるようにリコピンの増加により抗酸化性の増加が自明であると考えられたからである。リコピンは一般的に知られている脂溶性の抗酸化成分であるビタミンEの抗酸化力をはるかにしのぎ、βカロテンやルテインなどの他のカロテノイド類のなかでも群を抜いた強力な抗酸化作用を持っていることが広く認知されている。また、表1にあるようにトマトにおいて増加したもう一つの機能性成分であるGABAはγ−アミノ酪酸とも呼ばれるアミノ酸類の一種で、抗酸化作用は弱いもののヒトの体内では抑制系の神経伝達物資として作用する機能性成分であることが分かっており、そのリラックス作用、抗ストレス作用で多くのサプリなど栄養強化食品に使用されている。これらの結果から、本発明の植物の機能性成分増加剤が植物に含まれる機能性成分量を増大させていること、さらに、抗酸化活性がある機能性成分量を増大させることによって抗酸化性などの機能性指標を明らかに向上させていることがわかる。
【0052】
上記の結果より、本発明の植物の機能性成分増加剤が、顕著な植物機能性成分生成促進および/または植物機能性成分分解抑制効果を有するものであり、植物体内の機能性成分の増加効果に優れた植物の機能性成分増加剤であることがわかる。