【実施例】
【0053】
以下、実施例により本発明を具体的に説明する。ただし、本発明はこれらの実施例により何ら制限されるものではない。
【0054】
製造例で得られた積層樹脂の物性測定および実施例ならびに比較例で得られた合成樹脂積層体の評価は以下のように行った。
【0055】
<インデンテーション硬度(HIT硬度)>
超微小硬度計 HM2000(株式会社フィッシャー・インストルメンツ製)を使用し、押し圧3mN条件で熱可塑性樹脂(B)層に押し付け、HIT硬度(N/mm
2)を測定した。比較対象として、アクリル樹脂(b2)単体で形成した層(後述の比較例5または比較例8)についても同様にインデンテーション硬度を測定した。そして、熱可塑性樹脂(B)のインデンテーション硬度をHIT硬度{熱可塑性樹脂}とし、アクリル樹脂(b2)のインデンテーション硬度をHIT硬度{アクリル樹脂}として、下記のように評価した。その際、熱可塑性樹脂(B)層が共重合体(b1)とアクリル樹脂(b2)を含む層である場合は、用いたアクリル樹脂(B2−1またはB2−2)のインデンテーション硬度を用いて評価した。また、熱可塑性樹脂(B)層が共重合体(b1)のみからなる場合は、アクリル樹脂(B2−1)のインデンテーション硬度を用いて評価した。
○(合格):HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}≧1.01
×(不合格):上記の範囲以外
【0056】
<鉛筆引っかき硬度試験>
JIS K 5600−5−4に準拠し、表面に対して角度45度、荷重750gで熱可塑性樹脂(B)層またはアクリル樹脂(b2)単体で形成した層(後述の比較例5または比較例8)表面に次第に硬度を増して鉛筆を押し付け、傷跡を生じなかった最も硬い鉛筆の硬度を鉛筆硬度として評価した。鉛筆硬度は、ランクが低い順に、2B、B、HB、F、H、2H、3Hおよび4Hで示される。ここで、「熱可塑性樹脂(B)表面の鉛筆硬度がアクリル樹脂(b2)単体表面の鉛筆硬度と同等以上」とは、熱可塑性樹脂(B)表面の鉛筆硬度がアクリル樹脂(b2)単体表面の鉛筆硬度と同じランクかそれよりも高いランクであることをいう。例えば、アクリル樹脂(b2)単体表面の鉛筆硬度が2Hであった場合に、熱可塑性樹脂(B)表面の鉛筆硬度が2Hや3H以上であるような場合をいう。
○(合格):熱可塑性樹脂(B)表面の鉛筆硬度がアクリル樹脂(b2)単体表面の鉛筆硬度と同等以上
×(不合格):上記の範囲以外
【0057】
<高温高湿環境下の反り試験>
樹脂積層体の試験片を10cm×6cm四方に切り出した。試験片を2点支持型のホルダーにセットして温度23℃、相対湿度50%に設定した環境試験機に24時間以上投入して状態調整した後、反りを測定した。このときの値を処理前反り量の値とした。次に試験片をホルダーにセットして温度85℃、相対湿度85%に設定した環境試験機の中に投入し、その状態で120時間保持した。さらに温度23℃、相対湿度50%に設定した環境試験機の中にホルダーごと移動し、その状態で4時間保持後に再度反りを測定した。このときの値を処理後反り量の値とした。反りの測定には、電動ステージ具備の3次元形状測定機を使用し、取り出した試験片を上に凸の状態で水平に静置し、1mm間隔でスキャンし、中央部の盛り上がりを反りとして計測した。処理前後の反り量の差の絶対値、すなわち|(処理後反り量)−(処理前反り量)|を反り変化量として評価した。その際、反り変化量が700μmを超えると、肉眼でも反りが認識できるようになる場合があるため、下記の基準で反り試験の合否判定を行った。
○(合格):樹脂積層体の反り変化量≦700μm
×(不合格):上記の範囲以外
【0058】
<全光線透過率測定>
反射・透過率計HR−100型(株式会社村上色彩技術研究所製)を用いて樹脂積層体の全光線透過率をJIS K7361−1に準じて測定し、下記の基準で全光線透過率試験の合否判定を行った。
○(合格):樹脂積層体の全光線透過率≧75%
×(不合格):上記の範囲以外
【0059】
<Haze測定>
反射・透過率計HR−100型(株式会社村上色彩技術研究所製)を用いて樹脂積層体のHazeをJIS K7136に準じて測定し、下記の基準でHaze試験の合否判定を行った。
○(合格):樹脂積層体のHaze≦30%
×(不合格):上記の範囲以外
【0060】
<各種材料例>
ポリカーボネート系樹脂(A)、共重合体(b1)およびアクリル樹脂(b2)について、下記に示す材料を例示するが、これらに限定されるわけではない。
A−1:ポリカーボネート樹脂:三菱エンジニアリングプラスチックス株式会社製ユーピロンE−2000
b1−1:共重合体:デンカ株式会社製 KX−406
b1−2:共重合体:デンカ株式会社製 KX−407
b1−3:共重合体:デンカ株式会社製 KX−422
b1−4:共重合体:デンカ株式会社製 KX−435
b1−5:共重合体:デンカ株式会社製 R100
b1−6:共重合体:デンカ株式会社製 R200
b2−1:アクリル樹脂:株式会社クラレ製メチルメタクリレート樹脂 パラペットHR−L(HIT硬度{アクリル樹脂}=269N/mm
2であった。)
b2−2:アクリル樹脂:旭化成ケミカルズ株式会社製アクリル樹脂 デルペットPM120N(スチレン:N−フェニルマレイミド:MMAの質量比=4:15:81、HIT硬度{アクリル樹脂}=274N/mm
2であった。)
b2−3:アクリル樹脂:旭化成ケミカルズ株式会社製アクリル樹脂 デルペット980N(スチレン:無水マレイン酸:MMAの質量比=16:8:76、HIT硬度{アクリル樹脂}=266N/mm
2であった。)
b2−4:アクリル樹脂:ダイセル・エボニック株式会社製アクリル樹脂 PLEXIGLAS hw55(スチレン:無水マレイン酸:MMAの質量比=15:9:76、HIT硬度{アクリル樹脂}=266N/mm
2であった。)
【0061】
製造例1〔樹脂(B11)ペレットの製造〕
共重合体(b1)としてのKX−406(b1−1)(重量平均分子量:155,000、スチレン:無水マレイン酸:MMAの質量比=69:22:9)25質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR−L(b2−1)75質量部の合計100質量部に対して、リン系添加剤PEP−36(株式会社ADEKA製) 500ppm、およびステアリン酸モノグリセリド(製品名:H−100、理研ビタミン株式会社製) 0.2質量%を加え、ブレンダーで20分混合後、スクリュー径26mmの2軸押出機(東芝機械株式会社製、TEM−26SS、L/D≒40)を用い、シリンダー温度240℃で溶融混錬して、ストランド状に押出してペレタイザーでペレット化した。ペレットは安定して製造できた。
【0062】
製造例2〔樹脂(B12)ペレットの製造〕
共重合体(b1)としてのKX−406(b1−1)50質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR−L(b2−1)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0063】
製造例3〔樹脂(B13)ペレットの製造〕
共重合体(b1)としてのKX−406(b1−1)75質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR−L(b2−1)25質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0064】
製造例4〔樹脂(B14)ペレットの製造〕
共重合体(b1)としてのKX−406(b1−1)100質量部に対してリン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0065】
製造例5〔樹脂(B15)ペレットの製造〕
共重合体(b1)としてのKX−406(b1−1)25質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2−3)75質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0066】
製造例6〔樹脂(B16)ペレットの製造〕
共重合体(b1)としてのKX−406(b1−1)40質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2−3)60質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0067】
製造例7〔樹脂(B17)ペレットの製造〕
共重合体(b1)としてのKX−406(b1−1)50質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2−3)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0068】
製造例8〔樹脂(B18)ペレットの製造〕
共重合体(b1)としてのKX−406(b1−1)60質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2−3)40質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0069】
製造例9〔樹脂(B19)ペレットの製造〕
共重合体(b1)としてのKX−406(b1−1)25質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2−4)75質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0070】
製造例10〔樹脂(B20)ペレットの製造〕
共重合体(b1)としてのKX−406(b1−1)40質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2−4)60質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0071】
製造例11〔樹脂(B21)ペレットの製造〕
共重合体(b1)としてのKX−406(b1−1)50質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2−4)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0072】
製造例12〔樹脂(B22)ペレットの製造〕
共重合体(b1)としてのKX−406(b1−1)60質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2−4)40質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0073】
製造例13〔樹脂(B23)ペレットの製造〕
共重合体(b1)としてのKX−407(b1−2)(重量平均分子量:165,000、スチレン:無水マレイン酸:MMAの質量比=57:23:20)25質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR−L(b2−1)75質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0074】
製造例14〔樹脂(B24)ペレットの製造〕
共重合体(b1)としてのKX−407(b1−2)50質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR−L(b2−1)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0075】
製造例15〔樹脂(B25)ペレットの製造〕
共重合体(b1)としてのKX−407(b1−2)75質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR−L(b2−1)25質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0076】
製造例16〔樹脂(B26)ペレットの製造〕
共重合体(b1)としてのKX−407(b1−2)100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0077】
製造例17〔樹脂(B27)ペレットの製造〕
共重合体(b1)としてのKX−422(b1−3)(重量平均分子量:119,000、スチレン:無水マレイン酸:MMAの質量比=57:23:20)25質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR−L(b2−1)75質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0078】
製造例18〔樹脂(B28)ペレットの製造〕
共重合体(b1)としてのKX−422(b1−3)50質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR−L(b2−1)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0079】
製造例19〔樹脂(B29)ペレットの製造〕
共重合体(b1)としてのKX−422(b1−3)55質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR−L(b2−1)45質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0080】
製造例20〔樹脂(B30)ペレットの製造〕
共重合体(b1)としてのKX−422(b1−3)60質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR−L(b2−1)40質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0081】
製造例21〔樹脂(B31)ペレットの製造〕
共重合体(b1)としてのKX−422(b1−3)65質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR−L(b2−1)35質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0082】
製造例22〔樹脂(B32)ペレットの製造〕
共重合体(b1)としてのKX−422(b1−3)75質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR−L(b2−1)25質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0083】
製造例23〔樹脂(B33)ペレットの製造〕
共重合体(b1)としてのKX−422(b1−3)100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2%にし、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0084】
製造例24〔樹脂(B34)ペレットの製造〕
共重合体(b1)としてのKX−422(b1−3)50質量部と、アクリル樹脂(b2)であるデルペットPM120N(b2−2)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0085】
製造例25〔樹脂(B35)ペレットの製造〕
共重合体(b1)としてのKX−422(b1−3)55質量部と、アクリル樹脂(b2)であるデルペットPM120N(b2−2)45質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0086】
製造例26〔樹脂(B36)ペレットの製造〕
共重合体(b1)としてのKX−422(b1−3)60質量部と、アクリル樹脂(b2)であるデルペットPM120N(b2−2)40質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0087】
製造例27〔樹脂(B37)ペレットの製造〕
共重合体(b1)としてのKX−422(b1−3)55質量部と、アクリル樹脂(b2)であるデルペット980N(b2−3)45質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0088】
製造例28〔樹脂(B38)ペレットの製造〕
共重合体(b1)としてのKX−422(b1−3)60質量部と、アクリル樹脂(b2)であるデルペット980N(b2−3)40質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0089】
製造例29〔樹脂(B39)ペレットの製造〕
共重合体(b1)としてのKX−422(b1−3)60質量部と、アクリル樹脂(b2)であるPLEXIGLAS hw55(b2−4)40質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0090】
製造例30〔樹脂(B40)ペレットの製造〕
共重合体(b1)としてのKX−435(b1−4)(重量平均分子量:124,000、スチレン:無水マレイン酸:MMAの質量比=71:23:6)15質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2−3)85質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0091】
製造例31〔樹脂(B41)ペレットの製造〕
共重合体(b1)としてのKX−435(b1−4)25質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2−3)75質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0092】
製造例32〔樹脂(B42)ペレットの製造〕
共重合体(b1)としてのKX−435(b1−4)30質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2−3)70質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0093】
製造例33〔樹脂(B43)ペレットの製造〕
共重合体(b1)としてのKX−435(b1−4)40質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2−3)60質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0094】
製造例34〔樹脂(B44)ペレットの製造〕
共重合体(b1)としてのKX−435(b1−4)50質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2−3)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0095】
製造例35〔樹脂(B45)ペレットの製造〕
共重合体(b1)としてのKX−435(b1−4)60質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2−3)40質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0096】
製造例36〔樹脂(B46)ペレットの製造〕
共重合体(b1)としてのKX−435(b1−4)15質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2−4)85質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0097】
製造例37〔樹脂(B47)ペレットの製造〕
共重合体(b1)としてのKX−435(b1−4)25質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2−4)75質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0098】
製造例38〔樹脂(B48)ペレットの製造〕
共重合体(b1)としてのKX−435(b1−4)30質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2−4)70質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0099】
製造例39〔樹脂(B49)ペレットの製造〕
共重合体(b1)としてのKX−435(b1−4)40質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2−4)60質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0100】
製造例40〔樹脂(B50)ペレットの製造〕
共重合体(b1)としてのKX−435(b1−4)50質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2−4)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0101】
製造例41〔樹脂(B51)ペレットの製造〕
共重合体(b1)としてのKX−435(b1−4)60質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2−4)40質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0102】
比較製造例1〔樹脂(D11)ペレットの製造〕
共重合体(b1)としてのR100(b1−5)(重量平均分子量:170,000、スチレン:無水マレイン酸:MMAの質量比=65:15:20)50質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR−L(b2−1)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0103】
比較製造例2〔樹脂(D12)ペレットの製造〕
共重合体(b1)としてのR100(b1−5)75質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR−L(b2−1)25質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0104】
比較製造例3〔樹脂(D13)ペレットの製造〕
共重合体(b1)としてのR100(b1−5)70質量部と、アクリル樹脂(b2)であるデルペットPM120N(b2−2)30質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0105】
比較製造例4〔樹脂(D14)ペレットの製造〕
共重合体(b1)としてのR100(b1−5)75質量部と、アクリル樹脂(b2)であるデルペットPM120N(b2−2)25質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0106】
比較製造例5〔樹脂(D15)ペレットの製造〕
共重合体(b1)としてのR100(b1−5)50質量部と、アクリル樹脂(b2)であるデルペット980N(b2−3)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0107】
比較製造例6〔樹脂(D16)ペレットの製造〕
共重合体(b1)としてのR100(b1−5)75質量部と、アクリル樹脂(b2)であるデルペット980N(b2−3)25質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0108】
比較製造例7〔樹脂(D17)ペレットの製造〕
共重合体(b1)としてのR100(b1−5)50質量部と、アクリル樹脂(b2)であるPLEXIGLAS hw55(b2−4)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0109】
比較製造例8〔樹脂(D18)ペレットの製造〕
共重合体(b1)としてのR100(b1−5)75質量部と、アクリル樹脂(b2)であるPLEXIGLAS hw55(b2−4)25質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0110】
比較製造例9〔樹脂(D19)ペレットの製造〕
共重合体(b1)としてのR200(b1−6)(重量平均分子量:185,000、スチレン:無水マレイン酸:MMAの質量比=55:20:25)50質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR−L(b2−1)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0111】
比較製造例10〔樹脂(D20)ペレットの製造〕
共重合体(b1)としてのR200(b1−6)75質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR−L(b2−1)25質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0112】
比較製造例11〔樹脂(D21)ペレットの製造〕
共重合体(b1)としてのR200(b1−6)20質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2−3)80質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0113】
比較製造例12〔樹脂(D22)ペレットの製造〕
共重合体(b1)としてのR200(b1−6)40質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2−3)60質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0114】
比較製造例13〔樹脂(D23)ペレットの製造〕
共重合体(b1)としてのR200(b1−6)60質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2−3)40質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0115】
比較製造例14〔樹脂(D24)ペレットの製造〕
共重合体(b1)としてのR200(b1−6)20質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2−4)80質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0116】
比較製造例15〔樹脂(D25)ペレットの製造〕
共重合体(b1)としてのR200(b1−6)40質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2−4)60質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0117】
比較製造例16〔樹脂(D26)ペレットの製造〕
共重合体(b1)としてのR200(b1−6)60質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2−4)40質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0118】
比較製造例17〔樹脂(D27)ペレットの製造〕
アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR−L(b2−1)100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0119】
比較製造例18〔樹脂(D28)ペレットの製造〕
アクリル樹脂(b2)であるデルペットPM120N(b2−2)100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0120】
比較製造例19〔樹脂(D29)ペレットの製造〕
アクリル樹脂(b2)であるデルペット980N(b2−3)100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0121】
比較製造例20〔樹脂(D30)ペレットの製造〕
アクリル樹脂(b2)であるPLEXIGLAS hw55(b2−4)100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
【0122】
実施例1
軸径32mmの単軸押出機と、軸径65mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出機に各押出機と連結したマルチマニホールドダイとを有する多層押出装置を用いて樹脂積層体を成形した。軸径32mmの単軸押出機に製造例1で得た樹脂(B11)を連続的に導入し、シリンダー温度240℃、吐出量を2.1kg/hの条件で押し出した。また軸径65mmの単軸押出機にポリカーボネート樹脂(A−1)(三菱エンジニアリングプラスチックス株式会社製、製品名:ユーピロンE−2000、重量平均分子量:34,000)を連続的に導入し、シリンダー温度280℃、吐出量を30.0kg/hで押し出した。全押出機に連結されたフィードブロックは2種2層の分配ピンを備え、温度270℃にして(B11)と(A−1)を導入し積層した。その先に連結された温度270℃のTダイでシート状に押し出し、上流側から温度130℃、140℃、180℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却し、(B11)と(A−1)の積層体(E11)を得た。得られた積層体(E11)の全体厚みは1000μm、B11から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B11)層のHIT硬度{熱可塑性樹脂}=275N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.022で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は472μmで合格であり、全光線透過率は91.3%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0123】
実施例2
樹脂(B11)の代わりに樹脂(B12)を使用した以外は、実施例1と同様にして(B12)と(A−1)の積層体(E12)を得た。得られた積層体(E12)の全体厚みは1000μm、B12から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B12)層のHIT硬度{熱可塑性樹脂}=280N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.041で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は34μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0124】
実施例3
樹脂(B11)の代わりに樹脂(B13)を使用した以外は、実施例1と同様にして(B13)と(A−1)の積層体(E13)を得た。得られた積層体(E13)の全体厚みは1000μm、B13から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B13)層のHIT硬度{熱可塑性樹脂}=282N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.048で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は307μmで合格であり、全光線透過率は90.9%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0125】
実施例4
樹脂(B11)の代わりに樹脂(B14)を使用した以外は、実施例1と同様にして(B14)と(A−1)の積層体(E14)を得た。得られた積層体(E14)の全体厚みは1000μm、B14から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B14)層のHIT硬度{熱可塑性樹脂}=276N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.026で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は445μmで合格であり、全光線透過率は90.7%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0126】
実施例5
樹脂(B11)の代わりに樹脂(B15)を使用した以外は、実施例1と同様にして(B15)と(A−1)の積層体(E15)を得た。得られた積層体(E15)の全体厚みは1000μm、B15から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B15)層のHIT硬度{熱可塑性樹脂}=280N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.053で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は155μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
【0127】
実施例6
樹脂(B11)の代わりに樹脂(B16)を使用した以外は、実施例1と同様にして(B16)と(A−1)の積層体(E16)を得た。得られた積層体(E16)の全体厚みは1000μm、B16から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B16)層のHIT硬度{熱可塑性樹脂}=282N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.060で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は352μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
【0128】
実施例7
樹脂(B11)の代わりに樹脂(B17)を使用した以外は、実施例1と同様にして(B17)と(A−1)の積層体(E17)を得た。得られた積層体(E17)の全体厚みは1000μm、B17から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B17)層のHIT硬度{熱可塑性樹脂}=283N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.064で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は493μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
【0129】
実施例8
樹脂(B11)の代わりに樹脂(B18)を使用した以外は、実施例1と同様にして(B18)と(A−1)の積層体(E18)を得た。得られた積層体(E18)の全体厚みは1000μm、B18から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B18)層のHIT硬度{熱可塑性樹脂}=285N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.071で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は630μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
【0130】
実施例9
樹脂(B11)の代わりに樹脂(B19)を使用した以外は、実施例1と同様にして(B19)と(A−1)の積層体(E19)を得た。得られた積層体(E19)の全体厚みは1000μm、B19から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B19)層のHIT硬度{熱可塑性樹脂}=278N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.041で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は183μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
【0131】
実施例10
樹脂(B11)の代わりに樹脂(B20)を使用した以外は、実施例1と同様にして(B20)と(A−1)の積層体(E20)を得た。得られた積層体(E20)の全体厚みは1000μm、B20から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B20)層のHIT硬度{熱可塑性樹脂}=280N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.049で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は397μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
【0132】
実施例11
樹脂(B11)の代わりに樹脂(B21)を使用した以外は、実施例1と同様にして(B21)と(A−1)の積層体(E21)を得た。得られた積層体(E21)の全体厚みは1000μm、B21から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B21)層のHIT硬度{熱可塑性樹脂}=282N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.056で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は501μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
【0133】
実施例12
樹脂(B11)の代わりに樹脂(B22)を使用した以外は、実施例1と同様にして(B22)と(A−1)の積層体(E22)を得た。得られた積層体(E22)の全体厚みは1000μm、B22から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B22)層のHIT硬度{熱可塑性樹脂}=282N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.056で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は635μmで合格であり、全光線透過率は90.9%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
【0134】
実施例13
樹脂(B11)の代わりに樹脂(B23)を使用した以外は、実施例1と同様にして(B23)と(A−1)の積層体(E23)を得た。得られた積層体(E23)の全体厚みは1000μm、B23から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B23)層のHIT硬度{熱可塑性樹脂}=275N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.022で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は649μmで合格であり、全光線透過率は91.4%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
【0135】
実施例14
樹脂(B11)の代わりに樹脂(B24)を使用した以外は、実施例1と同様にして(B24)と(A−1)の積層体(E24)を得た。得られた積層体(E24)の全体厚みは1000μm、B16から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B24)層のHIT硬度{熱可塑性樹脂}=282N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.048で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は69μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
【0136】
実施例15
樹脂(B11)の代わりに樹脂(B25)を使用した以外は、実施例1と同様にして(B25)と(A−1)の積層体(E25)を得た。得られた積層体(E25)の全体厚みは1000μm、B25から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B25)層のHIT硬度{熱可塑性樹脂}=291N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.082で合格であり、鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下の反り変化量は643μmで合格であり、全光線透過率は90.9%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0137】
実施例16
樹脂(B11)の代わりに樹脂(B26)を使用した以外は、実施例1と同様にして(B26)と(A−1)の積層体(E26)を得た。得られた積層体(E26)の全体厚みは1000μm、B26から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B26)層のHIT硬度{熱可塑性樹脂}=286N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.063で合格であり、鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下の反り変化量は686μmで合格であり、全光線透過率は90.7%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0138】
実施例17
樹脂(B11)の代わりに樹脂(B27)を使用した以外は、実施例1と同様にして(B27)と(A−1)の積層体(E27)を得た。得られた積層体(E27)の全体厚みは1000μm、B27から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B27)層のHIT硬度{熱可塑性樹脂}=275N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.022で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は524μmで合格であり、全光線透過率は91.3%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
【0139】
実施例18
樹脂(B11)の代わりに樹脂(B28)を使用した以外は、実施例1と同様にして(B28)と(A−1)の積層体(E28)を得た。得られた積層体(E28)の全体厚みは1000μm、B28から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B20)層のHIT硬度{熱可塑性樹脂}=281N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.045で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は117μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
【0140】
実施例19
樹脂(B11)の代わりに樹脂(B29)を使用した以外は、実施例1と同様にして(B29)と(A−1)の積層体(E29)を得た。得られた積層体(E29)の全体厚みは1000μm、B29から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B21)層のHIT硬度{熱可塑性樹脂}=287N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.067で合格であり、鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下の反り変化量は104μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0141】
実施例20
樹脂(B11)の代わりに樹脂(B30)を使用した以外は、実施例1と同様にして(B30)と(A−1)の積層体(E30)を得た。得られた積層体(E30)の全体厚みは1000μm、B30から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B30)層のHIT硬度{熱可塑性樹脂}=289N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.074で合格であり、鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下の反り変化量は29μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0142】
実施例21
樹脂(B11)の代わりに樹脂(B31)を使用した以外は、実施例1と同様にして(B31)と(A−1)の積層体(E31)を得た。得られた積層体(E31)の全体厚みは1000μm、B31から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B31)層のHIT硬度{熱可塑性樹脂}=289N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.074で合格であり、鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下の反り変化量は264μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0143】
実施例22
樹脂(B11)の代わりに樹脂(B32)を使用した以外は、実施例1と同様にして(B32)と(A−1)の積層体(E32)を得た。得られた積層体(E32)の全体厚みは1000μm、B32から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B32)層のHIT硬度{熱可塑性樹脂}=289N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.074で合格であり、鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下の反り変化量は360μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0144】
実施例23
樹脂(B11)の代わりに樹脂(B33)を使用した以外は、実施例1と同様にして(B33)と(A−1)の積層体(E33)を得た。得られた積層体(E33)の全体厚みは1000μm、B33から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B33)層のHIT硬度{熱可塑性樹脂}=295N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.097で合格であり、鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下の反り変化量は695μmで合格であり、全光線透過率は90.8%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
【0145】
実施例24
樹脂(B11)の代わりに樹脂(B34)を使用した以外は、実施例1と同様にして(B34)と(A−1)の積層体(E34)を得た。得られた積層体(E34)の全体厚みは1000μm、B34から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B34)層のHIT硬度{熱可塑性樹脂}=290N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.058で合格であり、鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下の反り変化量は151μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0146】
実施例25
樹脂(B11)の代わりに樹脂(B35)を使用した以外は、実施例1と同様にして(B35)と(A−1)の積層体(E35)を得た。得られた積層体(E35)の全体厚みは1000μm、B35から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B27)層のHIT硬度{熱可塑性樹脂}=292N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.066で合格であり、鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下の反り変化量は68μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0147】
実施例26
樹脂(B11)の代わりに樹脂(B36)を使用した以外は、実施例1と同様にして(B36)と(A−1)の積層体(E36)を得た。得られた積層体(E36)の全体厚みは1000μm、B36から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B36)層のHIT硬度{熱可塑性樹脂}=291N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.062で合格であり、鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下の反り変化量は7μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0148】
実施例27
樹脂(B11)の代わりに樹脂(B37)を使用した以外は、実施例1と同様にして(B37)と(A−1)の積層体(E37)を得た。得られた積層体(E37)の全体厚みは1000μm、B37から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B37)層のHIT硬度{熱可塑性樹脂}=284N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.068で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は529μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0149】
実施例28
樹脂(B11)の代わりに樹脂(B38)を使用した以外は、実施例1と同様にして(B38)と(A−1)の積層体(E38)を得た。得られた積層体(E38)の全体厚みは1000μm、B38から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B38)層のHIT硬度{熱可塑性樹脂}=284N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.068で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は605μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0150】
実施例29
樹脂(B11)の代わりに樹脂(B39)を使用した以外は、実施例1と同様にして(B39)と(A−1)の積層体(E39)を得た。得られた積層体(E39)の全体厚みは1000μm、B39から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B39)層のHIT硬度{熱可塑性樹脂}=281N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.052で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は679μmで合格であり、全光線透過率は90.9%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0151】
実施例30
樹脂(B11)の代わりに樹脂(B40)を使用した以外は、実施例1と同様にして(B40)と(A−1)の積層体(E40)を得た。得られた積層体(E40)の全体厚みは1000μm、B40から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B40)層のHIT硬度{熱可塑性樹脂}=272N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.023で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は13μmで合格であり、全光線透過率は91.3%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0152】
実施例31
樹脂(B11)の代わりに樹脂(B41)を使用した以外は、実施例1と同様にして(B41)と(A−1)の積層体(E41)を得た。得られた積層体(E41)の全体厚みは1000μm、B41から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B41)層のHIT硬度{熱可塑性樹脂}=274N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.030で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は126μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0153】
実施例32
樹脂(B11)の代わりに樹脂(B42)を使用した以外は、実施例1と同様にして(B42)と(A−1)の積層体(E42)を得た。得られた積層体(E42)の全体厚みは1000μm、B42から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B42)層のHIT硬度{熱可塑性樹脂}=274N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.030で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は171μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0154】
実施例33
樹脂(B11)の代わりに樹脂(B43)を使用した以外は、実施例1と同様にして(B43)と(A−1)の積層体(E43)を得た。得られた積層体(E43)の全体厚みは1000μm、B43から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B43)層のHIT硬度{熱可塑性樹脂}=275N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.034で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は296μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0155】
実施例34
樹脂(B11)の代わりに樹脂(B44)を使用した以外は、実施例1と同様にして(B44)と(A−1)の積層体(E44)を得た。得られた積層体(E44)の全体厚みは1000μm、B44から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B44)層のHIT硬度{熱可塑性樹脂}=277N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.041で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は458μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0156】
実施例35
樹脂(B11)の代わりに樹脂(B45)を使用した以外は、実施例1と同様にして(B45)と(A−1)の積層体(E45)を得た。得られた積層体(E45)の全体厚みは1000μm、B45から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B45)層のHIT硬度{熱可塑性樹脂}=277N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.041で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は508μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0157】
実施例36
樹脂(B11)の代わりに樹脂(B46)を使用した以外は、実施例1と同様にして(B46)と(A−1)の積層体(E46)を得た。得られた積層体(E46)の全体厚みは1000μm、B46から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B46)層のHIT硬度{熱可塑性樹脂}=271N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.015で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は25μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0158】
実施例37
樹脂(B11)の代わりに樹脂(B47)を使用した以外は、実施例1と同様にして(B47)と(A−1)の積層体(E47)を得た。得られた積層体(E47)の全体厚みは1000μm、B47から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B47)層のHIT硬度{熱可塑性樹脂}=272N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.019で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は106μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0159】
実施例38
樹脂(B11)の代わりに樹脂(B48)を使用した以外は、実施例1と同様にして(B48)と(A−1)の積層体(E48)を得た。得られた積層体(E48)の全体厚みは1000μm、B48から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B48)層のHIT硬度{熱可塑性樹脂}=273N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.022で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は175μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0160】
実施例39
樹脂(B11)の代わりに樹脂(B49)を使用した以外は、実施例1と同様にして(B49)と(A−1)の積層体(E49)を得た。得られた積層体(E49)の全体厚みは1000μm、B49から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B49)層のHIT硬度{熱可塑性樹脂}=274N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.026で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は313μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0161】
実施例40
樹脂(B11)の代わりに樹脂(B50)を使用した以外は、実施例1と同様にして(B50)と(A−1)の積層体(E50)を得た。得られた積層体(E50)の全体厚みは1000μm、B50から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B48)層のHIT硬度{熱可塑性樹脂}=275N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.030で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は464μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0162】
実施例41
樹脂(B11)の代わりに樹脂(B51)を使用した以外は、実施例1と同様にして(B51)と(A−1)の積層体(E51)を得た。得られた積層体(E51)の全体厚みは1000μm、B51から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B51)層のHIT硬度{熱可塑性樹脂}=275N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.030で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は534μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
【0163】
比較例1
樹脂(B11)の代わりに樹脂(D11)を使用した以外は、実施例1と同様にして(D11)と(A−1)の積層体(F11)を得た。得られた積層体(F11)の全体厚みは1000μm、D11から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D11)層のHIT硬度{熱可塑性樹脂}=255N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.948で不合格であり、鉛筆引っかき硬度試験の結果はFで不合格であり、高温高湿環境下の反り変化量は359μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
【0164】
比較例2
樹脂(B11)の代わりに樹脂(D12)を使用した以外は、実施例1と同様にして(D12)と(A−1)の積層体(F12)を得た。得られた積層体(F12)の全体厚みは1000μm、D12から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D12)層のHIT硬度{熱可塑性樹脂}=253N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.941で不合格であり、鉛筆引っかき硬度試験の結果はFで不合格であり、高温高湿環境下の反り変化量は121μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
【0165】
比較例3
樹脂(B11)の代わりに樹脂(D13)を使用した以外は、実施例1と同様にして(D13)と(A−1)の積層体(F13)を得た。得られた積層体(F13)の全体厚みは1000μm、D13から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D13)層のHIT硬度{熱可塑性樹脂}=264N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.964で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は43μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
【0166】
比較例4
樹脂(B11)の代わりに樹脂(D14)を使用した以外は、実施例1と同様にして(D14)と(A−1)の積層体(F14)を得た。得られた積層体(F14)の全体厚みは1000μm、D14から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D14)層のHIT硬度{熱可塑性樹脂}=264N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.964で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は65μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.1%で合格であり、総合判定で不合格であった。
【0167】
比較例5
樹脂(B11)の代わりに樹脂(D15)を使用した以外は、実施例1と同様にして(D15)と(A−1)の積層体(F15)を得た。得られた積層体(F15)の全体厚みは1000μm、D15から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D15)層のHIT硬度{熱可塑性樹脂}=263N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.989で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は238μmで合格であり、全光線透過率は89.9%で合格であり、Hazeは2.1%で合格であり、総合判定で不合格であった。
【0168】
比較例6
樹脂(B11)の代わりに樹脂(D16)を使用した以外は、実施例1と同様にして(D16)と(A−1)の積層体(F16)を得た。得られた積層体(F16)の全体厚みは1000μm、D16から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D16)層のHIT硬度{熱可塑性樹脂}=261N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.981で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は286μmで合格であり、全光線透過率は89.4%で合格であり、Hazeは0.9%で合格であり、総合判定で不合格であった。
【0169】
比較例7
樹脂(B11)の代わりに樹脂(D17)を使用した以外は、実施例1と同様にして(D17)と(A−1)の積層体(F17)を得た。得られた積層体(F17)の全体厚みは1000μm、D17から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D17)層のHIT硬度{熱可塑性樹脂}=262N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.981で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は164μmで合格であり、全光線透過率は89.0%で合格であり、Hazeは2.3%で合格であり、総合判定で不合格であった。
【0170】
比較例8
樹脂(B11)の代わりに樹脂(D18)を使用した以外は、実施例1と同様にして(D18)と(A−1)の積層体(F18)を得た。得られた積層体(F18)の全体厚みは1000μm、D18から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D18)層のHIT硬度{熱可塑性樹脂}=261N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.978で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は207μmで合格であり、全光線透過率は88.6%で合格であり、Hazeは1.9%で合格であり、総合判定で不合格であった。
【0171】
比較例9
樹脂(B11)の代わりに樹脂(D19)を使用した以外は、実施例1と同様にして(D19)と(A−1)の積層体(F19)を得た。得られた積層体(F19)の全体厚みは1000μm、D19から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D19)層のHIT硬度{熱可塑性樹脂}=265N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.985で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は159μmで合格であり、全光線透過率は91.4%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
【0172】
比較例10
樹脂(B11)の代わりに樹脂(D20)を使用した以外は、実施例1と同様にして(D20)と(A−1)の積層体(F20)を得た。得られた積層体(F20)の全体厚みは1000μm、D20から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D20)層のHIT硬度{熱可塑性樹脂}=264N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.981で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は275μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
【0173】
比較例11
樹脂(B11)の代わりに樹脂(D21)を使用した以外は、実施例1と同様にして(D21)と(A−1)の積層体(F21)を得た。得られた積層体(F21)の全体厚みは1000μm、D21から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D21)層のHIT硬度{熱可塑性樹脂}=265N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.996で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は1μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
【0174】
比較例12
樹脂(B11)の代わりに樹脂(D22)を使用した以外は、実施例1と同様にして(D22)と(A−1)の積層体(F22)を得た。得られた積層体(F22)の全体厚みは1000μm、D22から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D22)層のHIT硬度{熱可塑性樹脂}=264N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.992で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は167μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
【0175】
比較例13
樹脂(B11)の代わりに樹脂(D23)を使用した以外は、実施例1と同様にして(D23)と(A−1)の積層体(F23)を得た。得られた積層体(F23)の全体厚みは1000μm、D23から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D23)層のHIT硬度{熱可塑性樹脂}=264N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.992で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は309μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
【0176】
比較例14
樹脂(B11)の代わりに樹脂(D24)を使用した以外は、実施例1と同様にして(D24)と(A−1)の積層体(F24)を得た。得られた積層体(F24)の全体厚みは1000μm、D24から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D24)層のHIT硬度{熱可塑性樹脂}=265N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.993で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は35μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
【0177】
比較例15
樹脂(B11)の代わりに樹脂(D25)を使用した以外は、実施例1と同様にして(D25)と(A−1)の積層体(F25)を得た。得られた積層体(F25)の全体厚みは1000μm、D25から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D25)層のHIT硬度{熱可塑性樹脂}=264N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.989で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は24μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
【0178】
比較例16
樹脂(B11)の代わりに樹脂(D26)を使用した以外は、実施例1と同様にして(D26)と(A−1)の積層体(F26)を得た。得られた積層体(F26)の全体厚みは1000μm、D26から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D26)層のHIT硬度{熱可塑性樹脂}=263N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.985で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は422μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
【0179】
比較例17
樹脂(B11)の代わりに樹脂(D27)を使用した以外は、実施例1と同様にして(D27)と(A−1)の積層体(F27)を得た。得られた積層体(F27)の全体厚みは1000μm、D27から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D27)層のHIT硬度{熱可塑性樹脂}=269N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.000で不合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は952μmで不合格であり、全光線透過率は91.6%で合格であり、Hazeは0.1%で合格であり、総合判定で不合格であった。
【0180】
比較例18
樹脂(B11)の代わりに樹脂(D28)を使用した以外は、実施例1と同様にして(D28)と(A−1)の積層体(F28)を得た。得られた積層体(F28)の全体厚みは1000μm、D28から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D28)層のHIT硬度{熱可塑性樹脂}=274N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.000で不合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は552μmで合格であり、全光線透過率は91.3%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
【0181】
比較例19
樹脂(B11)の代わりに樹脂(D29)を使用した以外は、実施例1と同様にして(D29)と(A−1)の積層体(F29)を得た。得られた積層体(F29)の全体厚みは1000μm、D29から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D29)層のHIT硬度{熱可塑性樹脂}=266N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.000で不合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は378μmで合格であり、全光線透過率は91.4%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
【0182】
比較例20
樹脂(B11)の代わりに樹脂(D30)を使用した以外は、実施例1と同様にして(D30)と(A−1)の積層体(F30)を得た。得られた積層体(F30)の全体厚みは1000μm、D30から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D30)層のHIT硬度{熱可塑性樹脂}=267N/mm
2で、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.000で不合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は356μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.3%で合格であり、総合判定で不合格であった。
【表2-1】
【表2-2】
【表2-3】
【表3-1】
【表3-2】
【表3-3】
【0183】
以上のように、本発明による樹脂積層体はポリカーボネート系樹脂層に熱可塑性樹脂が積層されていて、この熱可塑性樹脂に芳香族ビニル単量体単位、不飽和ジカルボン酸無水物単量体単位およびアクリル化合物単量体単位を所定の比率で含み、且つ、不飽和ジカルボン酸無水物単量体単位の質量%がアクリル化合物単量体単位の質量%よりも大きい共重合体を含むか、または該共重合体とアクリル化合物単量体単位を主成分として含むアクリル樹脂とを含む熱可塑性樹脂を使用することで、アクリル樹脂単体よりも表面硬度に優れ、且つ高温高湿下に曝されても耐反り変形性に優れる特徴を有する。
例えば、不飽和ジカルボン酸無水物単量体単位の質量%がアクリル化合物単量体単位の質量%よりも小さい共重合体を含む積層体(比較例1〜16)のHIT硬度{熱可塑性樹脂}は、アクリル樹脂単体を熱可塑性樹脂に用いた積層体(比較例17〜20)のHIT硬度{アクリル樹脂}よりも低く、鉛筆硬度が十分ではない。また、アクリル樹脂単体を熱可塑性樹脂に用いた積層体(比較例17)は、高温高湿環境下の反り変化量の抑制ができていない。
これと比較し、不飽和ジカルボン酸無水物単量体単位の質量%がアクリル化合物単量体単位の質量%よりも大きい共重合体を含む積層体(実施例1〜41)は、アクリル樹脂単体を熱可塑性樹脂に用いた積層体(比較例17〜20)よりHIT硬度{熱可塑性樹脂}が高く、高温高湿環境下の反り変化量も抑制している。
このように本発明による積層体は、従来のアクリル樹脂とポリカーボネートの積層体の高温高湿環境下の反り変化量を抑制しつつ、表面硬度を向上させることができる。
【0184】
以上のように、表面硬度を向上させ、且つ、高温高湿環境下の反り変化量を抑制する本発明による樹脂積層体は、ガラスの代替品として、透明基材材料や透明保護材料などとして好適に用いられ、特にタッチパネル前面保護板、OA機器用または携帯電子機器用の前面板として好適に用いられることができる。