【実施例】
【0070】
つぎに、本発明の実施例および参考例について説明する。ただし、本発明は、下記実施例および参考例により制限されない。市販の試薬は、特に示さない限り、それらのプロトコルに基づいて使用した。
【0071】
[実施例1]
水酸化ナトリウム(NaOH)を含む溶液と、二酸化炭素(CO
2)を含む気体とを接触させる第1の接触工程、および前記第1の接触工程後、前記溶液に、塩化カルシウム(CaCl
2)を添加する第2の接触工程により、二酸化炭素を固定できることを確認した。
【0072】
水酸化ナトリウムを含む溶液として、1Nの水酸化ナトリウム溶液(和光純薬工業社製)を用いた。また、1mol/Lの塩化カルシウム溶液(和光純薬工業社製)を、蒸留水で希釈し、0.1mol/Lの塩化カルシウム溶液を作製した。
【0073】
10mLの試験管に、5mlの1Nの前記水酸化ナトリウム溶液を入れ、前記溶液に、二酸化炭素(CO
2100%、小池工業社製)をバブリングすることにより、接触させた(第1の接触工程)。前記バブリングは、パスツールピペットの先端から、二酸化炭素を噴出させた。前記バブリングの条件は、2cm
3/秒、40秒間とした。前記バブリングにおけるバブルのサイズを、スケールと比較することにより目視で測定した結果、ミリメートル〜センチメートルのオーダーであった。
【0074】
つぎに、前記第1の接触後の前記溶液を、所定の濃度(0.1Nおよび0.05N)となるように蒸留水で希釈した。10mLの試験管に、3mLの前記希釈後の前記溶液を入れ、前記溶液に、3mlの0.1mol/Lの前記塩化カルシウム溶液を添加した(第2の接触工程)。前記接触後、前記添加後の混合液を3,000rpm、10分間の条件で遠心した。そして、前記接触前および後に、前記試験管の重量を測定し、前記接触前および後における前記重量の差を、沈殿量として算出した。
【0075】
また、二酸化炭素の吸収に対する水酸化ナトリウムの濃度効果をみるため、以下の実験を行った。1Nの前記水酸化ナトリウム溶液を、前記所定の濃度(0.1Nおよび0.05N)となるように、蒸留水で希釈した。10mLの試験管に、3mlの前記所定の濃度の水酸化ナトリウム溶液を入れ、前記溶液に、二酸化炭素をバブリングすることにより、接触させた(第1の接触工程)。前記バブリングの条件は、2cm
3/秒、20秒間とした。そして、前記溶液に、3mlの0.1mol/Lの前記塩化カルシウム溶液を添加した(第2の接触工程)。前記添加後、同様にして、沈殿量を算出した。
【0076】
これらの結果を、
図15に示す。
図15は、前記二酸化炭素との接触により、前記混合液において生じた沈殿の重さを示すグラフである。
図15において、縦軸は、試験管あたりの前記沈殿の重さ(g)を示し、横軸は、各実験条件を示し、左のグラフは、前記第1工程を1Nの前記水酸化ナトリウム溶液を用いて行った結果(「High Concentration」)を示し、右のグラフは、前記第1工程を前記希釈後の前記水酸化ナトリウム溶液を用いて行った結果(「Low Concentration」)を示す。なお、前記沈殿の重さの値は、4サンプルの測定値の平均値とした。
図15に示すように、前記第1の接触工程および前記第2の接触工程を行った結果、前記第1の接触工程をいずれの濃度で行った場合も、前記沈殿が生じた。また、前記第1の接触工程を高濃度で行った場合、前記沈殿の量がより多かった。
【0077】
さらに、前記第1工程で生成した炭酸水素ナトリウム(NaHCO
3)および炭酸ナトリウム(Na
2CO
3)が、前記第2工程において塩化カルシウムと反応し、沈殿を生じることを確認した。
【0078】
前述と同様にして、0.5mol/Lの塩化カルシウム溶液を作製した。10mLの試験管に、1mlの1Nの炭酸水素ナトリウム溶液(和光純薬工業社製)、1mlの蒸留水、2mlの0.5mol/Lの前記塩化カルシウム溶液を入れ、ボルテックスミキサーを用いて混合した。その後、生成した沈殿について、前述と同様にして、沈殿量を算出した。
【0079】
また、同様にして、2mlの0.5mol/Lの炭酸ナトリウム溶液(和光純薬工業製)、2mlの0.5mol/Lの前記塩化カルシウム溶液を混合し、生成した沈殿について、沈殿量を算出した。
【0080】
この結果を、
図16に示す。
図16は、前記二酸化炭素との接触により、前記混合液において生じた沈殿の重さを示すグラフである。
図16において、縦軸は、試験管あたりの前記沈殿の重さ(g)を示し、横軸は、各実験条件を示す。なお、前記沈殿の重さの値は、前記各サンプルについて、合計4サンプルの測定値の平均値とした。
図16に示すように、前記炭酸水素ナトリウム溶液および前記炭酸ナトリウム溶液は、それぞれ、前記塩化カルシウム溶液との反応により、沈殿を生じた。
【0081】
以上から、水酸化ナトリウムを含む溶液と、二酸化炭素を含む気体とを接触させる第1の接触工程、および前記第1の接触工程後、前記溶液に、塩化カルシウムを添加し、さらに、前記添加後の混合液と、前記二酸化炭素を含む気体とを接触させる第2の接触工程により、二酸化炭素を固定できることが確認できた。また、前記第1工程で生成した炭酸水素ナトリウムおよび炭酸ナトリウムが、前記第2工程において塩化カルシウムと反応し、沈殿を生じることが確認できた。
【0082】
[実施例2]
前記水酸化ナトリウム溶液および前記塩化カルシウム溶液の濃度を変えても、二酸化炭素を固定できることを確認した。
【0083】
実施例1と同様にして、1Nの水酸化ナトリウム溶液を用いた。さらに、前記水酸化ナトリウムを含む溶液として、5Nの水酸化ナトリウム溶液(和光純薬工業社製)を用いた。また、実施例1と同様にして、0.1mol/Lおよび0.5mol/Lの前記塩化カルシウム溶液を作製した。
【0084】
1Nおよび5Nの前記水酸化ナトリウム溶液、ならびに、0.1mol/Lおよび0.5mol/Lの前記塩化カルシウム溶液を用いて、実施例1と同様にして、前記第1の接触工程、および前記第2の接触工程を行った。ただし、5Nの前記水酸化ナトリウム溶液を用いた場合のみ、前記第1の接触工程における前記バブリング時間を、20秒間に代えて、50秒間とした。そして、実施例1と同様にして、沈殿量を算出した。
【0085】
この結果を、
図17に示す。
図17は、前記二酸化炭素との接触により、前記混合液において生じた沈殿の重さを示すグラフである。
図17において、縦軸は、試験管あたりの前記沈殿の重さ(g)を示し、横軸は、各実験条件を示し、左のグラフは、前記第1工程を1Nの前記水酸化ナトリウム溶液を用いて行った結果を示し、右のグラフは、前記第1工程を5Nの前記水酸化ナトリウム溶液を用いて行った結果を示し、それぞれにおいて、左は、0.1mol/L前記塩化カルシウム溶液を用いて行った結果、右は、0.5mol/Lの前記塩化カルシウム溶液を用いて行った結果を示す。なお、前記沈殿の重さの値は、前記各サンプルについて、合計5サンプルの測定値の平均値とした。
図17に示すように、前記水酸化ナトリウム溶液および前記塩化カルシウム溶液をいずれの濃度にした場合も、前記沈殿が生じた。前記水酸化ナトリウム溶液の濃度を、1Nおよび5Nにした結果、両者間でほぼ同じ値が得られた。前記塩化カルシウム溶液の濃度を、0.1mol/Lおよび0.5mol/Lにした結果、0.5mol/Lでは、0.1mol/Lにした場合と比較して、いずれの前記水酸化ナトリウム溶液の濃度においても、前記沈殿量が約半分の値であった。0.1mol/Lの前記塩化カルシウム溶液を用いることにより、より多くの二酸化炭素を固定できることが確認できた。
【0086】
以上から、前記水酸化ナトリウム溶液および前記塩化カルシウム溶液の濃度を変えても、二酸化炭素を固定できることが確認できた。
【0087】
[実施例3]
前記第1の接触工程における二酸化炭素を含む気体との接触時間を変えても、二酸化炭素を固定できることを確認した。また、前記第1の接触工程および前記第2の接触工程を行わずに、水酸化ナトリウムおよび塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを接触させ、結果を比較した。
【0088】
実施例1と同様にして、1Nの水酸化ナトリウム溶液を用いた。また、0.1mol/Lの前記塩化カルシウム溶液を作製した。
【0089】
前記バブリングの条件を、5、10、20、30、60秒間とした以外は実施例1と同様にして、前記第1の接触工程を行った。
【0090】
つぎに、前記第1の接触後の前記溶液に、濃度が約0.1N(初濃度を基準にした概算値)となるように、9mLの蒸留水を加えて希釈した。10mLの試験管に、3mLの前記希釈後の前記溶液を入れ、前記溶液に、3mlの0.1mol/Lの前記塩化カルシウム溶液を添加した(第2の接触工程)。前記接触後、実施例1と同様にして、前記混合液を遠心した。そして、実施例1と同様にして、沈殿量を算出した。
【0091】
また、比較例として、以下の実験を行った。1Nの前記水酸化ナトリウム溶液を、0.1Nとなるように、蒸留水で希釈した。10mLの試験管に、3mlの0.1Nの前記水酸化ナトリウム溶液と、3mlの0.1Nの前記塩化カルシウム溶液とを入れて混合し、前記混合液に、前述と同様にして、二酸化炭素をバブリングすることにより、接触させた。前記添加後、同様にして、沈殿量を算出した。
【0092】
これらの結果を、
図18に示す。
図18は、前記二酸化炭素との接触により、前記混合液において生じた沈殿の重さを示すグラフである。
図18において、縦軸は、試験管あたりの前記沈殿の重さ(g)を示し、横軸は、バブリング時間を示し、それぞれ、左のグラフは、前記第1の接触工程および前記第2の接触工程を行った結果を示し、右のグラフは、比較例の結果を示す。なお、前記沈殿の重さの値は、合計3回の測定値の平均値とした。
図18に示すように、前記第1の接触工程および前記第2の接触工程を行った結果、いずれのバブリング時間においても、前記沈殿が生じた。5秒〜30秒間のバブリングにおいて、ほぼ同程度の沈殿量が得られた。60秒間のバブリングを行っても、やや減少したものの、十分な量の沈殿量が得られた。前記比較例の場合、5秒〜10秒間のバブリングにおいて、前記沈殿が生じたが、前記第1の接触工程および前記第2の接触工程を行った結果と比較して、沈殿量は半分以下であった。さらに、20秒以上のバブリングを行うと、沈殿量は大きく減少した。
【0093】
以上から、前記第1の接触工程における二酸化炭素を含む気体との接触時間を変えても、二酸化炭素を固定できることを確認できた。また、前記第1の接触工程および前記第2の接触工程を行った場合、前記第1の接触工程および前記第2の接触工程を行わずに、水酸化ナトリウムおよび塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを接触させた場合と比較して、より効率よく二酸化炭素を固定できることが分かった。
【0094】
[参考例1]
容器内において、水酸化ナトリウム(NaOH)、および塩化カルシウム(CaCl
2)を含む混合液と、二酸化炭素(CO
2)を含む気体とを、前記気体を前記混合液中にバブリングすることにより接触させることにより、二酸化炭素を固定できることを確認した。
【0095】
1Nの水酸化ナトリウム溶液(和光純薬工業社製)を、それぞれ、0.01、0.02、0.1、0.2、および0.4Nとなるように蒸留水で希釈し、前記各濃度の水酸化ナトリウム溶液を作製した。また、1mol/Lの塩化カルシウム溶液(和光純薬工業社製)を、それぞれ、0.01、0.02、0.1、0.2、および1(無希釈)mol/Lとなるように蒸留水で希釈し、前記各濃度の塩化カルシウム溶液を作製した。
【0096】
10mLの試験管に、3mLの前記各濃度の水酸化ナトリウム溶液と、3mLの0.1mol/Lの前記塩化カルシウム溶液とを入れて混合し、前記混合液に、二酸化炭素(CO
2100%、小池工業社製)をバブリングすることにより、接触させた。前記バブリングは、パスツールピペットの先端から、二酸化炭素を噴出させた。前記バブリングの条件は、10秒間(約20cm
3)とした。前記接触後、前記混合液を3,000rpm、10分間の条件で遠心した。そして、前記接触前および後に、前記試験管の重量を測定し、前記接触前および後における前記重量の差を、沈殿量として算出した。なお、後述するように、前記二酸化炭素との接触を行うよりも前に沈殿が生じた場合は、前記沈殿を除去した後、前記接触を行った。
【0097】
この結果を、
図1および
図2に示す。
図1は、前記二酸化炭素との接触前および接触後における、0.05Nの水酸化ナトリウムと0.05mol/Lの塩化カルシウムとを含む混合液の写真であり、図中、左が、前記接触前、右が、前記接触後の試験管の様子を示す。
図1に示すように、二酸化炭素を接触させることにより、前記混合液において、炭酸カルシウム(CaCO
3)の白色沈殿が生じた。なお、前記混合液において、10秒間の前記バブリングが終了するよりも前に、白濁が生じていた。
【0098】
図2は、前記二酸化炭素との接触により、前記混合液において生じた沈殿の重さを示すグラフである。
図2において、縦軸は、試験管あたりの前記沈殿の重さ(g)を示し、横軸は、前記混合液における水酸化ナトリウム濃度(N)を示す。なお、前記沈殿の重さの値は、前記各混合液のサンプルについて、合計5サンプルの測定値の平均値とした。
図2に示すように、水酸化ナトリウム濃度が0.01N以上において、二酸化炭素を接触させた結果、前記沈殿が生じた。そして、前記濃度が0.05Nにおいて、前記沈殿の量が大きく増加し、0.1Nにおいて、前記沈殿の量が最大であった。一方、前記濃度が0.2Nにおいて、前記0.1Nにおける値と比較して、前記沈殿の量が減少した。前記濃度が0.05〜0.2N、および0.05〜0.1Nにおいて、より多くの二酸化炭素を固定できることが確認できた。
【0099】
なお、水酸化ナトリウム濃度が0.2Nの場合、二酸化炭素との前記接触前において、前記混合液中に白色沈殿の形成がみられた。この白色沈殿は、塩化カルシウムと高濃度の水酸化ナトリウムとの反応により生じた、水酸化カルシウム(Ca(OH)
2)であると考えられる。このため、前記濃度が0.2Nにおいて、前記沈殿の量が減少した理由としては、塩化カルシウムと高濃度の水酸化ナトリウムとの反応により水酸化カルシウムが生じたことで、前記接触による炭酸カルシウムの合成量が減少したためと考えられる。
【0100】
つぎに、3mLの0.1Nの前記水酸化ナトリウム溶液と、3mLの前記各濃度の前記塩化カルシウム溶液とを入れて混合し、前記混合液を作製した以外は同様にして、前記接触を行った。
【0101】
この結果を、
図3に示す。
図3は、前記二酸化炭素との接触により、前記混合液において生じた沈殿の重さを示すグラフである。
図3において、縦軸は、試験管あたりの前記沈殿の重さ(g)を示し、横軸は、前記混合液における塩化カルシウム濃度(mol/L)を示す。なお、前記沈殿の重さの値は、前記各混合液のサンプルについて、合計5サンプルの測定値の平均値とした。
図3に示すように、全ての塩化カルシウム濃度において、二酸化炭素を接触させた結果、前記沈殿が生じた。そして、前記濃度が0.05mol/Lにおいて、前記沈殿の量が大きく増加し、0.1mol/Lにおいて、前記沈殿の量が最大であった。前記塩化カルシウム濃度が0.05〜0.5mol/Lにおいて、より多くの二酸化炭素を固定できることが確認できた。
【0102】
なお、前記塩化カルシウム濃度が0.2〜0.5mol/Lの場合、二酸化炭素との前記接触前において、前記混合液中に白色沈殿の形成がみられた。そして、この白色沈殿は、前記接触において、二酸化炭素を添加することにより、消失した。一方、前記塩化カルシウム濃度が、0.1mol/Lおよび0.05mol/Lの場合、前記混合液中に沈殿の形成がみられ、且つ、前記接触を行っても、前記沈殿は消失しなかった。
【0103】
以上のように、容器内において、水酸化ナトリウム、および塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを、前記気体を前記混合液中にバブリングすることにより接触させることにより、二酸化炭素を固定できることが確認できた。
【0104】
[参考例2]
容器内において、水酸化ナトリウム、および塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを、前記混合液を静置または振とうさせた状態で接触させることにより、二酸化炭素を固定できることを確認した。
【0105】
等量の0.1Nの前記水酸化ナトリウム溶液と、0.1mol/Lの前記塩化カルシウム溶液とを混合し、混合液を作製した。容積2Lの一般的な形状のペットボトル(市販のもの)内を大気と平衡にした後、前記ペットボトルに、10mLの前記混合液を入れた。前記ペットボトルを、底面が下になるようにして立てて静置し、前記混合液と二酸化炭素とを接触させた。前記接触後、0分(前記接触直後)、15分、30分、および60分後、ならびにオーバーナイトでの接触後に、二酸化炭素モニター(RI-85、RIKEN KEIKI製)を用いて、前記ペットボトル内の二酸化炭素濃度を測定した。
【0106】
この結果を、
図4に示す。
図4は、前記接触後の前記ペットボトル内の二酸化炭素濃度を示すグラフである。
図4において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、前記接触後の経過時間(分)を示す。なお、前記二酸化炭素濃度の値は、前記接触後、0分(前記接触直後)、15分、30分、および60分後については、合計4サンプルの測定値の平均値とした。なお、前記オーバーナイトでの接触後においては、合計6サンプルの測定値が、いずれも0PPMであった。
図4に示すように、前記接触により、前記接触後の経過時間に応じて、前記ペットボトル内の二酸化炭素濃度が減少した。また、前記オーバーナイトでの接触後、前記二酸化炭素濃度の値が、0PPMとなったことから、本発明によれば、低濃度の二酸化炭素であっても、固定できることがわかった。
【0107】
つぎに、前記ペットボトルに代えて、
図5に示す形状の八角柱プラスチックボトルを用いた点、および、前記八角柱プラスチックボトルを、側面が下になるようにして横倒しにして静置した、または、前記八角柱プラスチックボトルを前記横倒しにした状態で振とうした点以外は同様にして、5分間、前記接触を行った。
図5(A)は、前記八角柱プラスチックボトルを側面から見た図であり、(B)は、前記八角柱プラスチックボトルを底面から見た図である。前記振とうは、シェイカー(BR-21UM、TAITEK製)を用いて、120rpmの条件で振とうした。
【0108】
この結果を、
図6に示す。
図6は、前記接触後の前記八角柱プラスチックボトル内の二酸化炭素濃度を示すグラフである。
図6において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、左から、前記接触直後(0分)、前記静置による接触後、前記振とうによる接触後を示す。なお、前記二酸化炭素濃度の値は、合計4サンプルの測定値の平均値とした。
図6に示すように、前記振とうによる接触により、前記接触直後と比較して、前記八角柱プラスチックボトル内の二酸化炭素濃度が減少した。特に、前記振とうによる接触により、前記接触直後と比較して、前記八角柱プラスチックボトル内の二酸化炭素濃度が1/6程度まで大きく減少しており、より多くの二酸化炭素を固定できることが確認できた。
【0109】
なお、前述のように、前記振とうによる接触により、前記静置による接触を行った場合と比較して、前記二酸化炭素濃度がより大きく減少した。この理由としては、前記振とうにより、前記混合液の表面積が増加し、より多くの前記二酸化炭素を含む気体と接触できるようになったためと考えられる。また、前記八角柱プラスチックボトルは、一般的な形状のペットボトルとの比較において、底部がより平面的であり、且つ短寸であるため、より前記混合液の表面積が増加したと考えられる。
【0110】
つぎに、前記振とうの条件を変えて、前記接触を行った。前記八角柱プラスチックボトルに代えて、容積2Lの前記一般的な形状のペットボトルを用いた。前記接触の12時間前に、前記ペットボトルのふたを開け、前記ぺットボトルの口部にパスツールピぺットの先端を挿入し、前記先端から二酸化炭素を注入した。そして、前記ペットボトルに、50mLの前記混合液を入れた後、30秒間の振とうを1回として、1〜6回、成人男性の手で、激しく振とうした。なお、前記1回目の前記振とうによる接触は、前記接触直後に行い、前記2〜6回目の前記振とうによる接触は、それぞれ、前記接触直後から2分経過後、5分経過後、15分経過後、30分経過後、および60分経過後に行った。そして、前記1〜6回の前記接触後に、それぞれ、二酸化炭素検出器(XP-3140、COSMO製)を用いて、二酸化炭素濃度を測定した。
【0111】
また、前記6回目の接触後、さらに、50mLの前記混合液を加え、30秒間激しく振とうした後、二酸化炭素の濃度を測定した。その後、さらに、24時間静置した後、二酸化炭素の濃度を測定した。また、前記24時間静置後、さらに、50mLの前記混合液を加え、30秒間激しく振とうした後、二酸化炭素の濃度を測定した。
【0112】
この結果を、
図7に示す。
図7は、前記接触後の前記ペットボトル内の二酸化炭素濃度を示すグラフである。
図7において、縦軸は、二酸化炭素濃度(%)を示し、横軸は、左から、前記接触直後(0分)、1回目の前記振とうによる接触後(30秒)、2回目の前記振とうによる接触後(2分)、3回目の前記振とうによる接触後(5分)、4回目の前記振とうによる接触後(15分)、5回目の前記振とう後(30分)、6回目の前記振とう後(60分)、混合液追加後、24時間静置後、混合液再追加後を示す。なお、前記二酸化炭素濃度の値は、合計5サンプルの測定値の平均値とした。
図7に示すように、1回目の前記接触後(30秒)において、前記接触直後(0分)と比較して、二酸化炭素の濃度は大きく減少した。その後、2〜6回目の前記接触後において、二酸化炭素の濃度は緩やかに減少した。一方、前記混合液の追加により、急激な更なる二酸化炭素濃度の減少を引き起こした。前記混合液の再追加においても、二酸化炭素濃度の顕著な減少が見られた。このように、高濃度の二酸化炭素濃度の状態であっても、前記混合液を再度添加することにより、二酸化炭素濃度の減少を引き起こすことが確認された。
【0113】
さらに、前記振とうの条件を変えて、前記接触を行った。前記ペットボトルに代えて、
図19に示す、容積1.85Lのプラスチックボックス(市販のもの)を用いた。なお、
図19において、前記プラスチックボックスの内部を透視的に図示している。前記プラスチックボックスに、500mLの0.1Nの前記水酸化ナトリウム溶液と、500mLの0.1mol/Lの前記塩化カルシウム溶液とを入れた後、ハンドミキサー(HM-20,60W、TOSHIBA製)を用いて、フル回転(数字3、「あわだてる−卵白をきめこまかくあわだてる」モード)させることにより、前記接触を行った。そして、前記プラスチックボックス内の二酸化炭素濃度を、前記二酸化炭素モニターを用いて測定した。前記接触開始から約2分後に、二酸化炭素濃度がほぼ一定になったことを確認し、前記接触を終了した。前記接触終了時の二酸化炭素濃度の測定値を取得した。また、コントロールとして、前記プラスチックボックス外の空気の二酸化炭素濃度を測定した。
【0114】
この結果を、
図20に示す。
図20は、前記接触後の前記プラスチックボックス内の二酸化炭素濃度を示すグラフである。
図20において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、左から、コントロール、および前記接触終了時を示す。なお、前記二酸化炭素濃度の値は、合計3サンプルの測定値の平均値とした。
図20に示すように、前記接触後において、コントロールと比較して、二酸化炭素の濃度は大きく減少した。
【0115】
以上のように、容器内において、水酸化ナトリウム、および塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを、前記混合液を静置または振とうさせた状態で接触させることにより、二酸化炭素を固定できることが確認できた。
【0116】
[参考例3]
容器内において、水酸化ナトリウム、および塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを、前記混合液を霧状にした状態で接触させることにより、二酸化炭素を固定できることを確認した。
【0117】
参考例2と同様にして、前記水酸化ナトリウムと前記塩化カルシウムとを含む混合液を作製した。前記容積2Lの一般的な形状のペットボトルを用い、参考例2と同様にして、前記ペットボトル内を大気と平衡にした。その後、前記ペットボトルに、約4mLの前記混合液を、噴霧器(市販のもの)を用いて、5秒間隔で10回噴霧することにより、前記混合液と二酸化炭素とを接触させた。前記接触は、
図8に示すように、前記ペットボトルを、側面が下になるようにして横向きにして使用し、水平方向に前記噴霧を行った。前記接触後直ちに、参考例2と同様にして、前記ペットボトル内の二酸化炭素濃度を測定した。
【0118】
この結果を、
図9に示す。
図9は、前記接触後の前記ペットボトル内の二酸化炭素濃度を示すグラフである。
図9において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、左から、前記接触直後(0分)、前記噴霧による接触後を示す。なお、前記二酸化炭素濃度の値は、合計4サンプルの測定値の平均値とした。
図9に示すように、前記噴霧による接触により、前記接触直後と比較して、前記ペットボトル内の二酸化炭素濃度が1/6程度まで大きく減少した。
【0119】
このように、前記噴霧による接触により、短時間で、前記二酸化炭素濃度が大きく減少した。この理由としては、前記混合液を霧状にした状態で接触させることにより、前記混合液の表面積が大きく増加し、より多くの前記二酸化炭素を含む気体と接触できるようになったためと考えられる。
【0120】
つぎに、前記噴霧の条件を変えて、前記接触を行った。前記接触を行うための接触手段は、以下のようにして作製した。
図10に示すように、牛乳パックである箱(市販のもの)2個をL字型に連結し、下部の前記箱の側面の2箇所に、部分的に切取ることにより孔を開け、前記孔からシリコンチューブを挿入することにより、空気注入部、および二酸化炭素注入部をそれぞれ設けた。また、下部の前記箱の上面に、同様にして孔を開け、前記噴霧器から、前記箱の内部に前記混合液を噴霧できるようにした。上部および下部の前記箱の連結部は、それぞれ、大きな切り口を開けることで、下部の箱から上部の箱に二酸化炭素が上昇できるようにした。前記連結部には、4重のガーゼ(市販のもの)により、ガーゼ層を設けた。上部の前記箱の上面は、開放させた。また、上部の前記箱の側面に、同様にして孔を開け、二酸化炭素濃度検出器(XP-3140、COSMO製)のノズルを設置した。
【0121】
前記空気注入部からの空気の流量を、約100cm
3/秒、前記二酸化炭素注入部からの二酸化炭素の流量を、10cm
3/秒として、二酸化炭素濃度の測定値が一定になるまで、注入を行った。その後、前記噴霧器から、前記混合液を、10回連続で噴霧した。前記混合液の噴霧量は、10回で合計約4mLであった。前記噴霧後、約20秒後に、二酸化炭素濃度の測定値が最低値となった。
【0122】
この結果を、
図11に示す。
図11は、前記接触後約20秒後に、前記二酸化炭素の測定値が最低値となった時の、前記箱内の二酸化炭素濃度を示すグラフである。
図11において、縦軸は、二酸化炭素濃度(%)を示し、横軸は、左から、前記接触前、前記噴霧による接触後を示す。なお、前記二酸化炭素濃度の値は、合計10サンプルの測定値の平均値とした。
図11に示すように、前記噴霧による接触により、前記接触直後と比較して、前記箱内の二酸化炭素濃度が減少した。
【0123】
このように、前記接触手段が開放系である場合においても、前記混合液により、二酸化炭素を吸収できることが確認できた。さらに、噴霧した前記混合液の量が、約4mLという少量であったことから、前記混合液の量が少量であっても、高濃度の二酸化炭素濃度を十分に下げることができることがわかった。このことから、本発明の反応系は、反応効率が極めて優れているといえる。
【0124】
以上のように、容器内において、水酸化ナトリウム、および塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを、前記混合液を霧状にした状態で接触させることにより、二酸化炭素を固定できることが確認できた。
【0125】
[参考例4]
水酸化ナトリウム、および塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを、前記気体を前記混合液中にバブリングすることにより接触させることにより、二酸化炭素を固定できることを確認した。
【0126】
参考例2と同様にして、0.05Nの前記水酸化ナトリウムと0.05mol/Lの前記塩化カルシウムとを含む混合液を作製した。500mlの前記混合液を、プラスチックボトル(市販のもの、幅7.5cm、奥行7.5cm、高さ12cm)に入れ、
図21に示すように、前記混合液に、水槽生物用のバブリング装置(製品名:ブクブク(セットに含まれるエアポンプ、ホース、およびエアストーンを組立てたもの)、コトブキ工芸株式会社製)を用いて、空気をバブリングすることにより接触させた。なお、
図21において、前記プラスチックボトルの内部を透視的に図示している。前記バブリングは、20cm
3/秒の条件で、9時間、および12時間行った。前記バブリングにおけるバブルのサイズを、スケールと比較することにより目視で測定した結果、マイクロメートル〜ミリメートルのオーダーであった。前記接触後、5mLの前記混合液を取得し、3,000rpm、10分間の条件で遠心した後、沈殿物を秤量した。また、前記空気に代えて、前記空気に前記二酸化炭素を混合することにより二酸化炭素濃度を15%にした混合空気を用い、前記バブリングを1.5時間行った以外は同様にして、実験を行った。
【0127】
この結果を、
図22に示す。
図22は、前記二酸化炭素との接触により、前記混合液において生じた沈殿の重さを示すグラフである。
図22において、縦軸は、前記沈殿の重さ(g)を示し、横軸は、各実験条件を示す。なお、前記沈殿の重さの値は、前記各混合液のサンプルについて、合計4サンプルの測定値の平均値とした。
図22に示すように、前記空気、および前記混合空気のバブリングにより、沈殿が生じた。前記空気のバブリングにおいて、時間経過に応じて、沈殿量が増加していた。
【0128】
つぎに、容器の形態を変えて、実験を行った。前記容器として、前記プラスチックボトルに代えて、直径40mm、高さ50cmの塩化ビニル製のパイプ(市販のもの)を用いた。前記パイプは、底部となる一端にパイプキャップ(市販のもの)を取付けた。
図23は、前記パイプの形態を説明する概略図である。なお、
図23において、前記パイプの内部を透視的に図示している。また、参考例1と同様にして、0.1Nの前記水酸化ナトリウム溶液および0.1mol/Lの前記塩化カルシウム溶液を作製した。250mlの前記水酸化ナトリウム溶液および250mlの前記塩化カルシウム溶液を、前記パイプに入れ、前記混合液に、前述と同様にして、約1分間、空気をバブリングすることにより接触させた。前記接触後、前記パイプの上部空間(高さ約14cm)における気体について、参考例2と同様にして、二酸化炭素濃度を測定した。また、前記空気の二酸化炭素濃度を、同様にして測定した。
【0129】
この結果を、
図24に示す。
図24は、前記接触後の前記パイプ内の二酸化炭素濃度を示すグラフである。
図24において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、左から、前記空気(Air)、および前記パイプの上部空間における気体(Inner Pipe)を示す。なお、前記二酸化炭素濃度の値は、合計9サンプルの測定値の平均値とした。
図24に示すように、前記接触により、前記パイプ内の二酸化炭素濃度が大きく減少した。
【0130】
つぎに、前記空気に代えて、前記空気に前記二酸化炭素を混合することにより二酸化炭素濃度を10%にした混合空気を用いた以外は同様にして、実験を行った。
【0131】
この結果を、
図25に示す。
図25は、前記接触後の前記パイプ内の二酸化炭素濃度を示すグラフである。
図25において、縦軸は、二酸化炭素濃度(%)を示し、横軸は、左から、各実験条件を示す。なお、前記二酸化炭素濃度の値は、合計3サンプルの測定値の平均値とした。
図25に示すように、前記接触により、前記パイプ内の二酸化炭素濃度が減少した。
【0132】
つぎに、前記混合液の量を変えて、実験を行った。参考例2と同様にして、0.05Nの前記水酸化ナトリウムと0.05mol/Lの前記塩化カルシウムとを含む混合液を作製した。前記パイプに、100、200、300、400、および500mlの前記混合液を入れ、前記混合液に、前述と同様にして、1〜2分間、空気をバブリングすることにより接触させた。なお、前記各条件において、前記パイプの底面からの前記混合液の液面の高さは、それぞれ、7、14、22、29、36cmであった。前記接触後、前記パイプの上部空間(前記パイプの上端から約10cmの位置)における気体について、参考例2と同様にして、二酸化炭素濃度を測定した。また、前記空気の二酸化炭素濃度を、同様にして測定した。
【0133】
この結果を、
図26に示す。
図26は、前記接触後の前記パイプ内の二酸化炭素濃度を示すグラフである。
図26において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、左から、前記空気(Control)、および前記液面の高さを示す。なお、前記二酸化炭素濃度の値は、合計3サンプルの測定値の平均値とした。
図26に示すように、前記接触により、前記液面の高さが、7cmであっても、前記パイプ内の二酸化炭素濃度が大きく減少した。また、前記液面の高さ(前記混合液の量)が大きくなるに従って、二酸化炭素濃度はより減少した。
【0134】
つぎに、前記接触の形態を変えて、実験を行った。参考例2と同様にして、0.05Nの前記水酸化ナトリウムと0.05mol/Lの前記塩化カルシウムとを含む混合液を作製した。前記パイプに、500mlの前記混合液を入れ、前述と同様にして、1〜2分間、空気をバブリングすることにより接触させた。一方、前記接触において、前記バブリング装置の前記ホースの先端に接続した前記エアストーンを取り外して、前記ホース(直径約5mm、シリコン製)から直接空気をバブリングすることにより接触させた以外は同様にして、実験を行った。前記バブリングにおけるバブルのサイズを、スケールと比較することにより目視で測定した結果、ミリメートル〜センチメートルのオーダーであった。前記接触後、前述と同様にして、二酸化炭素濃度を測定した。また、前記空気の二酸化炭素濃度を、同様にして測定した。
【0135】
この結果を、
図27に示す。
図27は、前記接触後の前記パイプ内の二酸化炭素濃度を示すグラフである。
図27において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、左から、前記空気(Control)、前記エアストーンからバブリングした場合(Ball)、および前記ホースからバブリングした場合(Tube)を示す。なお、前記二酸化炭素濃度の値は、合計4サンプルの測定値の平均値とした。
図27に示すように、前記エアストーンからバブリングすることにより、前記パイプ内の二酸化炭素濃度が大きく減少した(4.27%まで減少)。一方、前記ホースからバブリングした場合、二酸化炭素濃度は減少した(69.49%まで減少)が、前記エアストーンからバブリングした場合と比較して、減少量は少なかった。このことから、前記バブリングにおけるバブルのサイズが小さいことが、二酸化炭素の吸収において重要であることがわかった。
【0136】
以上のように、水酸化ナトリウム、および塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを、前記気体を前記混合液中にバブリングすることにより接触させることにより、二酸化炭素を固定できることを確認できた。
【0137】
[参考例5]
水酸化ナトリウムを含む溶液と二酸化炭素を含む気体とを接触させることにより、二酸化炭素を吸収できることを確認した。
【0138】
参考例1と同様にして、0.05Nの前記水酸化ナトリウム溶液を作製した。前記容積2Lの一般的な形状のペットボトルを用い、参考例2と同様にして、前記ペットボトル内を大気と平衡にした。その後、前記ペットボトルに、10mLの前記水酸化ナトリウム溶液を入れ、静置することにより、前記溶液と大気中の二酸化炭素とを接触させた。前記接触後、0分(接触直後)、15分、30分、60分後に、参考例2と同様にして、前記ペットボトル内の二酸化炭素濃度を測定した。
【0139】
この結果を、
図28に示す。
図28は、前記接触後の前記ペットボトル内の二酸化炭素濃度を示すグラフである。
図28において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、前記接触後の経過時間(分)を示す。なお、前記二酸化炭素濃度の値は、合計3サンプルの測定値の平均値とした。
図28に示すように、前記接触により、前記接触直後と比較して、15分、30分、60分後に、前記ペットボトル内の二酸化炭素濃度が減少した。
【0140】
つぎに、前記接触の形態を変えて、前記接触を行った。前記ペットボトルに代えて、
図29に示す、容積2Lのプラスチックボックス(市販のもの)を用いた。なお、
図29において、前記プラスチックボックスの内部を透視的に図示している。前記プラスチックボックスに、500mLの0.1Nの前記水酸化ナトリウム溶液を入れた後、
図29に示すように、前記プラスチックボックスの上面をプラスチック製のプレートで覆った。前記溶液に、バブリング装置(製品名:Micro bubbler(F-1056-002)、フロント工業株式会社製)を用いて、空気をバブリングすることにより接触させた。前記バブリングは、20cm
3/秒の条件で行った。前記バブリングにおけるバブルのサイズを、スケールと比較することにより目視で測定した結果、マイクロメートル〜ミリメートルのオーダーであった。そして、前記接触開始直後(0分)、5分後、10分後、および15分後に、前記プラスチックボックス内の上部空間の二酸化炭素濃度を、前記二酸化炭素モニターを用いて測定した。
【0141】
この結果を、
図30に示す。
図30は、前記接触後の前記プラスチックボックス内の二酸化炭素濃度を示すグラフである。
図30において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、左から、前記接触開始直後(0 time)、5分後(5 min)、10分後(10 min)、および15分後(15 min)を示す。
図30に示すように、前記接触開始から5分後には、前記プラスチックボックス内の二酸化炭素濃度が大きく減少した。その後、前記接触後の経過時間に応じて、二酸化炭素濃度は徐々に減少した。
【0142】
つぎに、容器の形態を変えて、実験を行った。前記容器として、前記プラスチックボトルに代えて、参考例4に記載の前記パイプを用いた。前記パイプに、200mlの0.1Nの前記水酸化ナトリウム溶液を入れ、前記溶液に、前述と同様にして、二酸化炭素濃度を10%にした前記混合空気をバブリングすることにより接触させた。そして、前記接触開始から5分後まで継続して、前記パイプ内の上部空間の二酸化炭素濃度を、前記二酸化炭素モニターを用いて測定した。また、1Nの前記水酸化ナトリウム溶液を用いた以外は同様にして、2分後まで二酸化炭素濃度を測定した。
【0143】
この結果を、
図31に示す。
図31は、前記接触開始から2分後の前記パイプ内の二酸化炭素濃度を示すグラフである。
図31において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、前記水酸化ナトリウム溶液の濃度を示す。
図31に示すように、0.1Nの前記水酸化ナトリウム溶液を用いた場合、前記パイプ内の二酸化炭素濃度が、前記接触開始直後から急速に減少し、2分後において、前記接触開始直後の値と比較して、7.5%まで減少した。その後、前記接触開始から5分後まで、前記濃度はほぼ一定の値であった。また、1Nの前記水酸化ナトリウム溶液を用いた場合、同様に、前記パイプ内の二酸化炭素濃度が、前記接触開始直後から急速に減少し、2分後において、「0」になった。
【0144】
以上のように、水酸化ナトリウムを含む溶液と二酸化炭素を含む気体とを接触させることにより、二酸化炭素を吸収できることを確認できた。
【0145】
[参考例6]
水酸化ナトリウムを含み、さらに、第2族元素の塩化物、および2価の金属元素の塩化物を含む混合液と、二酸化炭素を含む気体とを接触させることにより、二酸化炭素を固定できることを確認した。
【0146】
第2族元素の塩化物、および2価の金属元素の塩化物として、塩化マグネシウム(MgCl
2、和光純薬工業社製)、塩化亜鉛(ZnCl
2、和光純薬工業社製)、塩化ストロンチウム(SrCl
2、和光純薬工業社製)、塩化バリウム(BaCl
2、和光純薬工業社製)を用いた。前記塩化物を、それぞれ、蒸留水で希釈し、0.1mol/Lの各金属塩化物溶液を作製した。また、参考例1と同様にして、0.1Nの前記水酸化ナトリウム溶液を作製した。
【0147】
2mLの前記各金属塩化物溶液と、1mLの前記水酸化ナトリウム溶液を混合した。前記混合液に、参考例1と同様にして、二酸化炭素をバブリングすることにより、接触させた。前記混合後、および前記二酸化炭素との接触後、参考例1と同様にして、沈殿量を算出した。
【0148】
この結果を、
図32に示す。
図32は、前記二酸化炭素との接触により、前記混合液において生じた沈殿の重さを示すグラフである。
図32において、縦軸は、試験管あたりの前記沈殿の重さ(g)を示し、横軸は、前記混合液に含まれる各金属塩化物を示し、それぞれ、左のグラフが前記混合後、右のグラフが前記二酸化炭素との接触後を示す。なお、前記沈殿の重さの値は、前記各混合液のサンプルについて、合計4サンプルの測定値の平均値とした。
図32に示すように、前記塩化マグネシウム溶液および前記塩化亜鉛溶液を用いた場合、前記混合後、沈殿量が大きく増加し、前記二酸化炭素との接触後、沈殿量が減少した。また、前記塩化ストロンチウム溶液および前記塩化バリウム溶液を用いた場合、前記混合後、沈殿量が増加し、前記二酸化炭素との接触後、沈殿量がさらに増加した。
【0149】
つぎに、前記第2族元素の塩化物、および前記2価の金属元素の塩化物を用いて、前記接触後の二酸化炭素濃度を測定した。
【0150】
前記容器として、参考例4に記載の前記パイプを使用した。50mlの0.1Nの前記水酸化ナトリウム溶液および50mlの0.1mol/Lの各金属塩化物溶液を、前記パイプに入れ、前記混合液に、前記参考例4と同様にして、空気をバブリングすることにより接触させた。前記接触後、前記パイプの上部空間(高さ約14cm)における気体について、参考例2と同様にして、二酸化炭素濃度を測定した。前記測定において、前記接触から2〜3分後に、二酸化炭素濃度の値がほぼ一定になったことを確認し、この値を測定値とした。また、コントロールとして、前記空気の二酸化炭素濃度を、同様にして測定した。
【0151】
この結果を、
図33に示す。
図33は、前記接触後の前記パイプ内の二酸化炭素濃度を示すグラフである。
図33において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、各金属塩化物を示す。なお、前記二酸化炭素濃度の値は、合計3サンプルの測定値の平均値とした。
図33に示すように、前記接触により、いずれの金属塩化物を用いた場合においても、コントロールの値と比較して、前記パイプ内の二酸化炭素濃度が減少した。特に、前記塩化ストロンチウム溶液および前記塩化バリウム溶液を用いた場合、前記二酸化炭素濃度が大きく減少した。
【0152】
以上のように、水酸化ナトリウムを含み、さらに、第2族元素の塩化物、および2価の金属元素の塩化物を含む混合液と、二酸化炭素を含む気体とを接触させることにより、二酸化炭素を固定できることを確認できた。
【0153】
[参考例7]
水酸化ナトリウム、および塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを、所定の温度条件下で接触させることにより、二酸化炭素を固定できることを確認した。
【0154】
参考例2と同様にして、0.05Nの前記水酸化ナトリウムと0.05mol/Lの前記塩化カルシウムとを含む混合液を作製した。10mLの試験管に、3mLの前記各濃度の水酸化ナトリウム溶液と、3mLの0.1mol/Lの前記塩化カルシウム溶液とを入れて混合し、前記混合液に、参考例1と同様にして、二酸化炭素をバブリングすることにより接触させた。前記バブリングは、2cm
3/秒の条件で、10秒間行った。前記接触において、前記混合液の温度を、Unithermo Shaker NTS-120, EYLEA, (Tokyo Rikakikai Co., Ltd.)を用いて、それぞれ、5℃、20℃、30℃、40℃、50℃、60℃、70℃、80℃に保持した。前記接触後、参考例1と同様にして、沈殿量を算出した。
【0155】
この結果を、
図34に示す。
図34は、前記二酸化炭素との接触により、前記混合液において生じた沈殿の重さを示すグラフである。
図34において、縦軸は、試験管あたりの前記沈殿の重さ(g)を示し、横軸は、温度を示す。なお、前記沈殿の重さの値は、前記温度ごとに、実験を3〜5回行い、各実験において4〜8サンプルの測定値を取得し、これらの測定値の平均値とした。
図34に示すように、いずれの温度条件下においても、前記二酸化炭素との接触後、沈殿が生成した。前記沈殿量は、前記混合液の温度が5℃から60℃の間では、ほぼ一定の値であり、70℃において大きく増加した。前記混合液の温度が80℃においても、5℃から60℃の間における前記一定の値よりも大きい値が得られた。
【0156】
以上のように、水酸化ナトリウム、および塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを、所定の温度条件下で接触させることにより、二酸化炭素を固定できることを確認できた。特に、前記二酸化炭素の固定が、高温での処理に適していることを確認できた。
【0157】
以上、実施形態および実施例を参照して本発明を説明したが、本発明は、上記実施形態および実施例に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。