(58)【調査した分野】(Int.Cl.,DB名)
【技術分野】
【0001】
関連出願の相互参照
本出願は、2015年5月15日に出願されたU.S. Provisional Patent Application Serial No. 62/162,298の利益及び優先権を主張し、その全体が参照により本明細書に組み込まれる。
【0002】
著作権
本特許文献の開示の一部分は、著作権保護の対象内容を含む。著作権者は、特許商標庁の特許ファイル又は記録内に表される通りの特許文献又は特許開示の複写に異議を唱えないが、それ以外は何であれすべての著作権を留保する。以下の表示は、以下に説明されるようなソフトウェア及びデータに並びに本文献の一部を形成する図面に適用される:Copyright Bayer Healthcare 2015, All Rights Reserved。
【0003】
発明の背景
バイオセンサシステムは、血液、血清、血漿、尿、唾液、間質液、又は細胞内液などの、生物学的流体試料の分析を提供する。通常は、システムは、試験センサ(試験片又はセンサ片とも呼ばれる)中に存在する試料を分析する測定装置(計器とも呼ばれる)を含む。試料は、通常、生物学的流体であるが、抽出物、希釈物、濾液、又は再構成沈殿物などの派生物であってもよい(これ以降使用される際、用語「生物学的流体」は、その派生物を含む)。バイオセンサシステムによって実行される分析は、生物学的流体中の、アルコール、糖、尿酸、乳酸、コレステロール、ビリルビン、遊離脂肪酸、トリグリセリド、タンパク質、ケトン体、フェニルアラニン、又は酵素などの、1つ以上の検体の存在及び/又は濃度を決定することができ、ある状態の診断及び/又は処置において有用であり得る。
【0004】
例えば、糖尿病を有する人は、食事及び/又は薬物の調整のために、バイオセンサシステムを使用して血液中のA1c(糖化ヘモグロビン)又は糖値を決定することができる。ヘモグロビン(Hb)を含む血液試料において、総ヘモグロビン(THb)及びAlcの存在及び/又は濃度が決定され得る。A1cレベル(%−A1c)は、患者の糖制御の状態を反映するものであり、試験前の2〜3ヵ月にわたる平均糖制御への見解を提供する。糖尿病の個人にとって、%−A1cの精度のよい測定は、測定がなされる時点の血糖制御を指示するだけである血糖値の即時測定よりも長期間にわたって、個人がどれだけ良好に食事及び/又は薬物で血糖値を制御しているかという良好な指示を提供する。
【0005】
バイオセンサシステムは、1つ以上の検体を分析するように設計され、いろいろな容量の生物学的流体を使用することができる。いくつかのシステムは、例えば0.25〜15マイクロリットル(μL)の範囲の容量の、一滴の血液を分析することができる。バイオセンサシステムは、ベンチトップ、ポータブル、及び他の種類の測定装置を使用して実施され得る。ポータブル測定装置は、携帯型であってもよく、試料中の1つ以上の検体の同定及び/又は定量化を可能にし得る。ポータブル測定システムの例としては、Bayer HealthCare(Whippany, New Jersey)のContour(登録商標)metersが挙げられ、ベンチトップ測定システムの例としては、Austin, TexasのCH Instrumentsから入手可能なElectrochemical Workstation、及び現在YSI Incとして知られる(本明細書において「YSI」基準値と呼ばれる)Yellow Springs Instrument Companyのベンチトップモデル「YSI 2300 STAT Plus(商標) Glucose & Lactate Analyzer」及び関連モデルが挙げられる。
【0006】
多くのバイオセンサシステムにおいて、試験センサは、生体の外側、内側、又は部分的に内側での使用に適合され得る。生体の外側で使用されるとき、生物学的流体の試料が、試験センサの試料貯留部内に導入され、試験センサが、分析のための試料の導入の前、後、又は間に測定装置に置かれ得る。生体の内側又は部分的に内側であるとき、例えば連続的なモニタリングのために、試験センサが試料中に継続的に浸漬されるか若しくは試料が試験センサを通って連続的に流され、又は例えば断続的なモニタリングのために、試料が試験センサに断続的に導入されるか若しくは試験センサを通って流され得る。試験センサは、ある容量の試料を部分的に隔離する貯留部を含むか又は試料に対して開放され得る。開放されるとき、試験センサは、生物学的流体と接触して置かれる繊維又は他の構造の形態を取ることができる。
【0007】
バイオセンサシステムは、通常は、1つ以上の一次入力シグナル(集合的に一次入力シグナルと呼ばれる)を生物学的流体の試料に提供して、検体濃度を決定するために試料から生成された1つ以上の一次出力シグナル(集合的に一次出力シグナルと呼ばれる)を測定する。一次出力シグナルは、一次入力シグナルと検体との間の又は一次入力シグナルと検体を指示する種との間の相互作用の結果として生成され、通常は、検体濃度と相関する。バイオセンサシステムは、生物学的流体を分析するために、光学的及び/又は電気化学的方法を使用することができる。
【0008】
光学的システムでは、一次入力シグナルは、通常は、光源から生成された光ビームであり、光ビームに対する試料の透過率又は反射率の測定を誘導する。いくつかの光学的システムでは、検体又は検体を指示する種は、入射光ビーム(一次入力シグナル)の波長を吸収又はシフトすることができ、その結果、もたらされる一次(光)出力シグナルは、強度が低減するか又は一次入力シグナルに対して波長シフトされる。他の光学的システムでは、一次(光)入力シグナルによって照射されるとき、化学インジケータは、検体に応答して蛍光を放つか又は光を発することができる。いずれの光学的システムでも、測定された一次(光)出力シグナルは、電流又は電位などの、電気出力シグナルに変換され、システムは、一次(光)出力シグナルを測定して、一次出力シグナルを試料の検体濃度に相関させる。
【0009】
電気化学的システムでは、一次(電気)入力シグナルが試料に適用されるとき、試料の検体濃度が、検体又は検体濃度に応答する測定可能な種のレドックス反応によって生成された電気シグナルから決定される。一次入力シグナルは、電位又は電流であってもよく、一定、可変、又は、ACシグナルがDCシグナルオフセット共に適用されるときなどの、これらの組み合わせであってもよい。一次入力シグナルは、単一のパルスとして、又は複数のパルス、シーケンス、若しくは循環で適用され得る。酵素又は類似の種が、レドックス反応の間の検体からの電子移動を増進するために、試料に加えられ得る。酵素又は類似の種は、単一の検体と反応し、したがって、生成された出力シグナルの一部分へ特異性を提供する。レドックスメディエータが、酵素の酸化状態を維持して及び/又は検体から電極への電子移動を支援するために、測定可能な種として使用され得る。したがって、レドックス反応の間、酵素又は類似の種は、検体とレドックスメディエータとの間で電子を移動させることができ、レドックスメディエータは、レドックスメディエータ自体と試験センサの電極との間で電子を移動させる。
【0010】
電気化学的バイオセンサシステムの測定装置は、電気接点を介して試験センサの導電体に一次入力シグナルを適用する。導電体は、電極を介して試料貯留部内に存在する試料に一次入力シグナルを伝える。検体のレドックス反応は、一次入力シグナルに応答して一次(電気)出力シグナルを生成する。試験センサからの一次(電気)出力シグナルは、(アンペロメトリー又はボルタンメトリーによって生成されるような)電流、(ポテンシオメトリー/ガルバノメトリーによって生成されるような)電位、又は(クーロメトリーによって生成されるような)蓄積電荷であり得る。測定装置は、一次出力シグナルを測定して試料中の1つ以上の検体の存在及び/又は濃度と相関させる処理能力を有することができる。
【0011】
光学的、電気化学的バイオセンサシステムのどちらでも、標的検体(単数又は複数)の存在及び/又は濃度を指示するための一次出力シグナルの変換は、通常は、変換関数を使用して達成される。変換関数は、一次出力シグナルを標的検体(単数又は複数)の濃度に変換する計算方法である。例えば、変換関数は、一次、多次、多項式の関係を有する一次出力シグナルと検体濃度との間の基準相関の使用を伴うことができる。変換関数は、試験及び試料の状態に関する一連の仮定の下で相関を反映し、これらの仮定からの偏差が、計算された検体濃度におけるエラーを導く場合がある。
【0012】
一次出力シグナルの生成及び測定は、バイオセンサ測定の標的又は目的である検体(単数又は複数)濃度に一次的に応答するように設計されるが、測定された一次出力シグナルは、相関の基礎となる仮定からの偏差などの、外部刺激からの寄与を含まざるを得ない。このような外部刺激としては、妨害物質(例えば、ヘマトクリット(Hct)、アセトアミノフェン、脂質、タンパク質、アスコルビン酸、尿酸など)、周囲温度、湿度などの、試料の物理的又は環境的特徴、測定を行うシステムに対して試料の大きさが不十分である過少充填状態、試料と試験センサの1つ以上の電極との間の断続的な電気接触、試薬の劣化などの、システムの動作状態、並びに試薬の量及び/又は活性の変化、電極領域及び/又は間隔の変化などといった、試験センサのロット間の製造変動などから生じる刺激が挙げられる。
【0013】
外部刺激は、標的検体(単数又は複数)の測定及び分析の精度及び正確度に影響を及ぼす。このようなエラーのある測定は、バイオセンサシステムのエンドユーザの不満を引き起こす場合があり、測定を繰り返すために試験センサを廃棄し追加的な試料を提供することが必要となり、精度の悪い情報のため不確実な処置の選択に直面する可能性がある。したがって、標的検体濃度から外部刺激の影響を除去又は最小化するために外部刺激の影響を定量化して相殺することが継続的に必要とされている。
【0014】
外部刺激が試料の物理的又は環境的特徴から生じるとき、その影響は、一次出力シグナルから抽出されるか又は専用手段若しくは専用検出チャネルによって測定される二次出力シグナルから定量化され得る。例えば、電気化学的システムでは、(Hctなどの)妨害物質による二次出力シグナルは、試料の標的検体濃度を決定するために使用される一次出力シグナルから抽出されるか(例えば、PCT Publication No. WO 2009/108239標題「Slope-Based Compensation」に開示されるR4/3、R5/4、及びR6/5の電流比、並びにPCT Publication No.WO 2011/156152 A1標題「Slope-Based Compensation Including Secondary Output Signals」に開示されるHctパルスを有するゲートアンペロメトリーの電位シーケンスなど)、又は試料の標的検体濃度を決定するために使用される電極と同じ試薬組成物、異なる試薬組成物(例えば、干渉物質と反応する試薬組成物)を含むか若しくは試薬組成物を含まない専用電極を使用して測定され得る。光学的システムでは、例えば、(THbなどの)妨害物質による二次出力シグナルは、妨害物質を指示する波長又は角度に焦点を当てた専用光チャネルを使用して測定され得る(例えば、PCT Publication No. WO 2013/043839 A1標題「Analysis Compensation Including Segmented Signals」及びPCT Publication No. WO 2014/159077 A1標題「Normalized Calibration of Analyte Concentration Determination」に開示される反射率測定など)。いくつかの事例では、二次出力シグナルは、外部刺激の値と相関することができ、例えば、バイオセンサシステムに組み込まれた温度センサが、温度による二次出力シグナルを測定して、温度値と二次出力シグナルを関連させることができ、したがって、試料の周囲温度の別個の測定値を提供することができる。
【0015】
本明細書において使用される際、用語「二次出力シグナル」は、行われている特定の測定又は計算のコンテキストに応じて、一次出力シグナルから抽出されるか若しくは専用センサ、電極、検出チャネルなどにより測定された生シグナルを説明するか、又は生シグナルと相関した外部刺激値を説明する。
【0016】
一次出力シグナルを検体濃度に変換するために使用される変換関数は、外部刺激の影響を補償するために二次出力シグナルを利用することができる。例えば、測定された温度値が、例えばU.S. Patent No. 7,781,222(「Temperature-Adjusted Analyte Determination for Biosensor System」)に述べられるように、一次出力シグナルに対して補償をして検体濃度を精度よく決定するために使用され得る。別の例では、変換関数が、例えば、U.S. Patent No. 8,744,776(「Method of Determining Analyte Concentration Based on Complex Index Functions」)及びPCT Publication No. WO 2011/119533 A1「Residual Compensation for a Biosensor」)に述べられるように、二次出力シグナルによる多変数回帰を伴うことができる。正規化がまた、例えば、PCT Publication No. WO 2014/159077 A1(「Normalized Calibration of Analyte Concentration Determinations)に述べられるように、一次出力シグナルから外部刺激の影響を除去又は最小化するために使用され得る。
【0017】
このような補償方法を変換関数に組み込むことは、バイオセンサシステム測定性能を改善することができるが、欠点が残される。このような補償方法は、通常は、制御された環境でエラー状態が再現され得る研究室で、開発及び実施される。ポータブル測定装置、特に大部分の消費者によって使用される携帯型装置、に対して、このような制御された研究室環境は、測定がなされる状態を精度よく反映することができないので、制御された研究室状態下で開発された補償方法は、実際の測定状態下の一次出力シグナルに対する外部刺激の影響を精度よく補償することができない。例えば、バイオセンサシステムに組み込まれた温度センサによって測定される温度は、生物学的流体試料の温度を反映すると仮定されるが、携帯型測定装置が冬の気候(例えば0度〜10度)又は夏の気候(例えば40度〜45度)の間車内に置かれ、次いで室内温度(例えば22度〜25度)の室内に置かれた試験センサですぐに使用されるときなどの、ある動作状態下では、この仮定は役に立たないことになる。別の例では、例えば専用電極の不良により、Hctシグナル測定自体に、エラーのある場合がある。
【0018】
二次出力シグナルが補償方法によって仮定される基準値に一致しないか及び/又は一次出力シグナルから予想される二次出力シグナルに一致しないこのような状況は、「オフ状態」と呼ばれる。検体の決定がオフ状態下でなされるとき、一次出力シグナルに対して補償をするための生成された二次出力シグナルの使用は、検体の決定に追加的なエラーを導く場合がある。現在入手可能なバイオセンサシステム及び方法は、このようなオフ状態が発生するときを決定することができないので、二次出力シグナルによるこのようなエラーを補償するために変換関数に追加的な調整が必要であるときを決定することができない。
【0019】
本明細書において開示される方法及びシステムは、従来技術におけるこれらの不都合の少なくともいくつかを回避又は改良する。
【0020】
概要
一態様では、本開示は、生物学的流体試料中の検体濃度を決定する方法を提供する。検体濃度に一次的に応答する一次出力シグナルが測定され、一次出力シグナルに影響を及ぼす外部刺激に応答する二次出力シグナルが生成される。二次出力シグナルが、測定された一次出力シグナルに基づいて逆算され、生成された二次出力シグナルが、逆算された二次出力シグナルを使用して調整される。測定された一次出力シグナルが、測定された一次出力シグナルに対する外部刺激の影響を補償するために使用される調整された二次出力シグナルと共に変換関数を使用して検体濃度に変換される。
【0021】
別の態様では、本開示は、生物学的流体試料中の検体濃度に一次的に応答する一次出力シグナルを測定し、かつ一次出力シグナルに影響を及ぼす外部刺激に応答する二次出力シグナルを生成することによって、オフ状態の検体測定値に対して補償をする方法を提供する。測定された一次出力シグナルが、測定された一次出力シグナルに対する外部刺激の影響を補償するために、生成された二次出力シグナルと共に変換関数を使用して予備的な検体濃度に変換される。第1の逆算された二次出力シグナルが、測定された一次出力シグナル及び予備的な検体濃度に基づいて決定される。オフ状態であると決定される場合には、第1の調整された二次出力シグナルが、生成された二次出力シグナルを調整するために第1の逆算された二次出力シグナルを使用して決定される。測定された一次出力シグナルが、一次出力シグナルに対する外部刺激の影響を補償するために第1の調整された二次出力シグナルと共に変換関数を使用して第1の検体濃度値に変換される。いくつかの実施態様では、第2の逆算された二次出力シグナルが、測定された一次出力シグナル及び第1の検体濃度値に基づいて決定され、第1及び第2の逆算された二次出力シグナルに基づいてオフ状態であると決定される場合には、第2の調整された二次出力シグナルが、第1の調整された二次出力シグナルを調整するために第2の逆算された二次出力シグナルを使用して決定され、測定された一次出力シグナルが、測定された一次出力シグナルに対する外部刺激の影響を補償するために変換関数及び第2の調整された二次出力シグナルを使用して第2の検体濃度値に変換される。
【0022】
別の態様では、本開示は、一次出力シグナルを測定し、かつ温度センサを使用して温度測定値を生成することによって、オフ温度状態の検体測定値に対して補償をする方法を提供する。測定された一次出力シグナルが、測定された一次出力シグナルに対する温度の影響を補償するために温度測定値と共に変換関数を使用して予備的な検体濃度に変換される。第1の逆算された温度が、測定された一次出力シグナル及び予備的な検体濃度から決定される。オフ温度状態であると決定される場合には、温度測定値が第1の逆算された温度を使用して調整され、測定された一次出力シグナルが、測定された一次出力シグナルに対する温度の影響を調整するために第1の調整された温度と共に変換関数を使用して第1の検体濃度に変換される。
【0023】
別の態様では、本開示は、本明細書において開示される方法のうちの1つ以上を実施するバイオセンサシステムを提供する。
【発明を実施するための形態】
【0025】
発明の詳細な説明
本開示は、測定された一次出力シグナルに基づいて二次出力シグナルを逆算して、検体の決定において一次出力シグナルに対する外部刺激の影響を補償する助けとなるように逆算された二次出力シグナルを使用する概念を導入する。測定された一次出力シグナルに基づく逆算された二次出力シグナルは、一次出力シグナルが測定された実際の状態下の外部刺激の影響を良好に反映するため、オフ状態が発生するときを決定しかつオフ状態によって導かれるエラーを補償する助けとなるように使用され、それにより、検体濃度の決定の精度を向上させることができる。
【0026】
図1Aは、検体の決定において外部刺激の影響を補償する従来のアプローチを例示する。バイオセンサシステムは、一次出力シグナルの測定を行う。測定された一次出力シグナルは、生物学的流体試料中の検体濃度に一次的に応答するが、検体の決定の精度及び正確度に影響を及ぼす外部刺激(例えば温度、Hct、THbなど)からの応答を含むことになる。外部刺激からの影響を補償するために、バイオセンサシステムは、例えば、測定された一次出力シグナルから二次出力シグナルを抽出することによって、又は二次出力シグナルの別個の測定を行うことによって、外部刺激に応答する二次出力シグナルを生成することができる。従来の補償アプローチでは、測定された一次出力シグナル及び生成された二次出力シグナルは、測定された一次出力シグナルを検体濃度に変換する際に測定された一次出力シグナルに対して外部刺激の影響を補償するために生成された二次出力シグナルを使用する変換関数に入力される。
【0027】
測定された一次出力シグナル及び生成された二次出力シグナルを検体濃度を決定するために変換関数に入力するこの一方向プロセスは、検体の決定における外部刺激の影響の低減に効果的であり得るが、生成された二次出力シグナルと関連したエラーを検出することができない。このようなエラーは、例えば、生成された二次出力シグナル自体に、THbシグナルを検出する際に生じ得るような不完全な検出チャネルによるエラーがあるか、若しくはHctシグナルを検出する際に生じ得るような専用電極の不良によるエラーがあるときに、又は測定装置の温度センサがセンサ/試料の温度を表さないときに生じ得るような一次出力シグナルが測定される際に生成された二次出力シグナルが生物学的流体試料の実際の状態を反映しないときに、発生し得る。エラーのある二次出力シグナルが変換関数に入力される場合には、測定された一次出力シグナルに対して外部刺激の影響を補償するときに大きなエラーが生じ、その結果、検体濃度の決定の精度を悪化させる可能性がある。
【0028】
図1Bは、検体の決定において外部刺激の影響を補償する本開示による循環アプローチを例示する。本開示に従って、循環プロセスは、予備的な検体濃度を決定するために変換関数に入力される測定された一次出力シグナル及び生成された二次出力シグナルから、上記のように開始され得る。プロセスは、次いで、外部刺激の影響を良好に補償するために変換関数に戻って循環する新しい入力を生成する。この循環プロセスは、例えば、測定された一次出力シグナル自体、予備的な検体濃度、並びに/又は測定された一次出力シグナル及び/若しくは予備的な検体濃度から導出される他の情報を使用した測定された一次出力シグナルに基づく二次出力シグナルの逆算を伴う。逆算された二次出力シグナルは、例えば、逆算された二次出力シグナルの一部分若しくは逆算された二次出力シグナルに依存するパラメータを生成された二次出力シグナルに加えるか又は生成された二次出力シグナルを逆算された二次出力シグナルに置き換えることによって、生成された二次出力シグナルを調整するために使用される。(測定された一次出力シグナルと共に)調整された二次出力シグナルは、第1の補償された検体濃度を決定するために変換関数に入力される。この循環プロセスは、一循環若しくは複数の循環、例えば所定の循環の回数で、又は一定の基準を満たすまで、実施され得る。
【0029】
生成された二次出力シグナルを調整するために逆算された二次出力シグナルを使用することによって、変換関数に入力される調整された二次出力シグナルが、一次出力シグナルが測定される実際の状態を良好に反映し、更に生成された二次出力シグナルのエラーを補正する助けとなることが見出された。したがって、本開示の循環プロセスは、検体の決定の精度向上を提供することができる。
【0030】
図2A〜2Dは、本開示による循環プロセスのいろいろな実施態様に関係したいくつかのステップを例示する。
【0031】
図2Aは、本開示による検体濃度を決定する方法の一循環実施態様におけるいくつかのステップを例示したフローチャート200である。バイオセンサシステムを使用して、一次出力シグナルが、ステップ201で測定される。一次出力シグナルは、検体濃度に一次的に応答するように設計される。
【0032】
ステップ202で、二次出力シグナルが生成される。二次出力シグナルは、測定された一次出力シグナルに影響を及ぼす外部刺激に応答し、例えば、測定された一次出力シグナルから二次出力シグナルを抽出することによって(例えば、PCT Publication No. WO 2009/108239標題「Slope-Based Compensation」に開示されるように、Hctレベルに応答する二次出力シグナルとしてR4/3、R5/4、及びR6/5の電流比を抽出することによって、若しくはWO 2011/156152 A1標題「Slope-Based Compensation Including Secondary Output Signals」に開示されるように、Hctパルスを有するゲートアンペロメトリーの電位シーケンスを使用することによって、など)、又は別個のセンサ、別個の検出チャネル若しくは電極、などを使用して二次出力シグナルの別個の測定を行うことによって(例えば、WO 2013/043839 A1標題「Analysis Compensation Including Segmented Signals」及びWO 2014/159077 A1標題「Normalized Calibration of Analyte Concentration Determination」に開示されるように、温度測定を行うために温度センサ、若しくはTHbレベルに応答する反射率シグナルを測定するために専用光チャネルを使用することによって、など)生成され得る。ステップ201及び202は、任意の順序で実行され得るか、又は同時に発生し得る。
【0033】
ステップ203で、逆算された二次出力シグナルが、測定された一次出力シグナル自体及び/又は、予備的な検体濃度などの、測定された一次出力シグナルから導出される情報を使用して、測定された一次出力シグナルに基づいて決定される。二次出力シグナルを逆算する方法のいくつかの実施形態は、
図3A〜3Jに示され、
図3A〜3Jを参照して以下に述べられる。
【0034】
ステップ204で、逆算された二次出力シグナルが、バイオセンサシステムによって生成された二次出力シグナルを調整するために使用される。ステップ205で、測定された一次出力シグナルが、測定された一次出力シグナルに対する外部刺激の影響を補償するために使用される(ステップ204の)調整された二次出力シグナルと共に変換関数を使用して検体濃度に変換される。
【0035】
図2Bは、本開示によるオフ状態の検体測定値に対して補償をする方法の一循環実施態様におけるいくつかのステップを例示したフローチャート210である。バイオセンサシステムを使用して、一次出力シグナルがステップ211で測定され、二次出力シグナルがステップ212で生成される。ステップ211及び212は、任意の順序で実行され得るか、又は同時に発生し得る。ステップ213で、測定された一次出力シグナルが、測定された一次出力シグナルに対する外部刺激の影響を補償するために使用される生成された二次出力シグナルと共に変換関数を使用して予備的な検体濃度に変換される。ステップ214で、逆算された二次出力シグナルが、
図3A〜3Jに関して以下で更に述べられるように、測定された一次出力シグナルに基づいて決定される。ステップ215で、オフ状態であるかどうか問い合わせる。生成された二次出力シグナルが、変換関数に組み込まれる補償方法によって仮定された基準値に一致しないか及び/又は測定された一次出力シグナルに基づいて予測された二次出力シグナルに一致しないときに、「オフ状態」が発生するが、オフ状態であるかどうかを決定する方法のいくつかの実施形態は、
図4A及び
図4Bに示され、
図4A及び
図4Bを参照して以下に述べられる。
【0036】
オフ状態ではないと決定される場合(すなわち、215の問い合わせに対する回答が「いいえ」である場合)には、外部刺激の影響の追加的又は更なる補償は必要又は要求されないことになるので、ステップ216で、予備的な検体濃度が、検体測定値としてバイオセンサシステムによって報告され得る。
【0037】
オフ状態であると決定される場合(すなわち、215の問い合わせに対する回答が「はい」である場合)には、外部刺激の影響の追加的な補償が必要又は要求されることになるので、ステップ217で、生成された二次出力シグナルが、逆算された二次出力シグナルを使用して調整される。いくつかの実施態様では、生成された二次出力シグナルは、逆算された二次出力シグナルと置き換えられ、換言すれば、調整された二次出力シグナルが、逆算された二次出力シグナルと等しくなり得る。他の実施態様では、逆算された二次出力シグナルの一部分が、生成された二次出力シグナルを調整するために使用され得る。更に他の実施態様では、逆算された二次出力シグナルと生成された二次出力シグナルとの間の差異の一部分が、生成された二次出力シグナルを調整するために生成された二次出力シグナルに加えられ得る。ステップ218で、測定された一次出力シグナルが、外部刺激の影響を補償するために調整された二次出力シグナルと共に変換関数を使用して検体測定値に変換され、検体測定値が、ステップ219において報告される。
【0038】
図2Cは、本開示によるオフ状態の検体測定値に対して補償をする方法の多循環実施態様におけるいくつかのステップを例示したフローチャート220である。フローチャート220に示される実施態様では、オフ状態がなくなるまで、循環補償が繰り返される。
【0039】
バイオセンサシステムを使用して、一次出力シグナルがステップ221で測定され、二次出力シグナルがステップ222で生成される。ステップ221及び222は、任意の順序で実行され得るか、又は同時に発生し得る。ステップ223で、測定された一次出力シグナルが、測定された一次出力シグナルに対する外部刺激の影響を補償するために使用される生成された二次出力シグナルと共に変換関数を使用して予備的な検体濃度に変換される。
【0040】
カウンタnは、使用された循環の回数を追跡するために使用され、ステップ224で、nは1にセットされる。循環はステップ225から開始され、逆算された二次出力シグナルが、
図3A〜3Jに関して以下で更に述べられるように、測定された一次出力シグナル及び(n−1)番目の検体濃度に基づいて決定されるが、n=1では、(n―1)番目の検体濃度は、ステップ223で決定された予備的な検体濃度である。ステップ226で、オフ状態であるかどうか問い合わせるが、オフ状態であるかどうかを決定する方法のいくつかの実施形態は、
図4A及び
図4Bに示され、
図4A及び
図4Bを参照して以下に述べられる。
【0041】
226の問い合わせが「いいえ」と答える場合には、ステップ230に示されるように、(n−1)番目の検体濃度が検体測定値として報告される。
【0042】
226の問い合わせが「はい」と答える場合には、ステップ227で、n番目の調整された二次出力シグナルが、例えば(n−1)番目の調整された二次出力シグナルを調整するためにn番目の逆算された二次出力シグナルを使用することによって、決定されるが、n=1では、(n−1)番目の調整された二次出力シグナルは、ステップ222で生成された二次出力シグナルである。いくつかの実施態様では、n番目の逆算された二次出力シグナルは、(n−1)番目の調整された二次出力シグナルと置き換えるために使用され、換言すれば、n番目の調整された二次出力シグナルが、n番目の逆算された二次出力シグナルと等しくなり得る。他の実施態様では、n番目の逆算された二次出力シグナルの一部分が、(n−1)番目の生成された第二次出力シグナルを調整するために使用され得る。更に他の実施態様では、n番目の逆算された二次出力シグナルと(n−1)番目の調整された二次出力シグナルとの間の差異の一部分が、n番目の調整された二次出力シグナルを決定するために(n−1)番目の調整された二次出力シグナルに加えられ得る。
【0043】
ステップ228で、測定された一次出力シグナルが、外部刺激の影響を補償するためにn番目の調整された二次出力シグナルと共に変換関数を使用してn番目の検体濃度に変換される。
【0044】
ステップ229で、カウンタnが1増やされ、すなわちn=n+1となり、別の循環がステップ225から開始される。オフ状態がなくなる(すなわち226の問い合わせが「いいえ」と答える)まで、循環(ステップ225〜229)が繰り返され、オフ状態がなくなった時点で、(n−1)番目の検体濃度が、検体測定値として報告される(ステップ230)。
【0045】
図2Dは、本開示によるオフ状態の検体測定値に対して補償をする方法の別の多循環実施態様におけるいくつかのステップを例示したフローチャート240である。フローチャート240に示される実施態様では、循環補償が、所定(一定)の循環の回数だけ繰り返される。
【0046】
バイオセンサシステムを使用して、一次出力シグナルがステップ241で測定され、二次出力シグナルがステップ242で生成される。ステップ241及び242は、任意の順序で実行され得るか、又は同時に発生し得る。ステップ243で、測定された一次出力シグナルが、測定された一次出力シグナルに対する外部刺激の影響を補償するために使用される生成された二次出力シグナルと共に変換関数を使用して予備的な検体濃度に変換される。
【0047】
ステップ244で、オフ状態であるかどうか問い合わせるが、オフ状態であるかどうかを決定する方法のいくつかの実施形態は、
図4A及び
図4Bに示され、
図4A及び
図4Bを参照して以下に述べられる。
【0048】
244の問い合わせが「いいえ」と答える場合には、ステップ251に示されるように、予備的な検体濃度が検体測定値として報告される。
【0049】
244の問い合わせが「はい」と答える場合には、循環補償が実行される。カウンタnは、使用された循環の回数を追跡するために使用され、ステップ245で、nは1にセットされる。循環はステップ246から開始され、逆算された二次出力シグナルが、
図3A〜3Jに関して以下で更に述べられるように、測定された一次出力シグナル及び(n−1)番目の検体濃度に基づいて決定される。n=1では、(n―1)番目の検体濃度は、ステップ243で決定された予備的な検体濃度である。
【0050】
ステップ247で、n番目の調整された二次出力シグナルが、例えば(n−1)番目の調整された二次出力シグナルを調整するためにn番目の逆算された二次出力シグナルを使用することによって、決定されるが、n=1では、(n−1)番目の調整された二次出力シグナルは、ステップ242で生成された二次出力シグナルである。いくつかの実施態様では、n番目の逆算された二次出力シグナルは、(n−1)番目の調整された二次出力シグナルと置き換えるために使用され、換言すれば、n番目の調整された二次出力シグナルが、n番目の逆算された二次出力シグナルと等しくなり得る。他の実施態様では、n番目の逆算された二次出力シグナルの一部分が、(n−1)番目の生成された第二次出力シグナルを調整するために使用され得る。更に他の実施態様では、n番目の逆算された二次出力シグナルと(n−1)番目の調整された二次出力シグナルとの間の差異の一部分が、n番目の調整された二次出力シグナルを決定するために(n−1)番目の調整された二次出力シグナルに加えられ得る。
【0051】
ステップ248で、測定された一次出力シグナルが、外部刺激の影響を補償するためにn番目の調整された二次出力シグナルと共に変換関数を使用してn番目の検体濃度に変換される。
【0052】
ステップ249で、nが所定の循環の回数Nに等しいかどうか問い合わせる。ステップ249の問い合わせが「はい」と答える場合には、ステップ252に示されるように、n番目の検体濃度が検体測定値として報告される。ステップ249の問い合わせが「いいえ」と答える場合には、カウンタnが、ステップ250で、1増やされ、すなわちn=n+1となり、別の循環がステップ246から開始される。n=N(すなわち249の問い合わせが「はい」と答える)まで、循環(ステップ246〜250)が繰り返され、n=Nの時点で、n番目の検体濃度が、検体測定値として報告される(ステップ252)。
【0053】
二次出力シグナルは、測定された一次出力シグナルから導出されるパラメータ又は他の情報に対する二次出力シグナルの相関を使用するなどの、異なる方法で、測定された一次出力シグナルから逆算され得る。例えば、温度は、例えばその全体が参照により本明細書に組み込まれるU.S. Patent No. 8,425,757に述べられるように、温度とゲートアンペロメトリー測定による減衰定数パラメータとの間の相関を使用して逆算され得る、
【0054】
二次出力シグナルを逆算する別の方法は、二次出力シグナルと正規化一次出力シグナルとの間の相関を使用する。上で述べたように、測定された一次出力シグナルは、多数の変数に、一次的に検体濃度にであるが、例えば%−Hct、THb値、温度などの、外部刺激にも依存する。正規化は、これらの多くの変数から少ない変数へ、好ましくはただ1つの変数へ、一次出力シグナルの依存性を低減させる。PCT Publication No. WO 2014/159077A1標題「Normalized Calibration of Analyte Concentration Determinations」は、一般に正規化に関する詳細な議論を提供し、その全体が参照により本明細書に組み込まれる。一次出力シグナルが外部刺激だけに依存するように検体濃度への一次出力シグナルの依存性を解消する一次出力シグナルの正規化は、種々の方法によって達成され得る。例えば、一次出力シグナルは、一次出力シグナルを検体濃度の統一関数値で除算することによって、正規化され得るが、代替的に、正規化関数が生成されて、正規化関数値に対する一次出力シグナルの割合が正規化一次出力シグナルとして使用される。
【0055】
図3A〜3Jは、正規化関数を生成する方法、及び検体濃度への依存性が解消した、二次出力シグナルだけに依存する正規化一次出力シグナルを生成するいくつかの方法を例示する。二次出力シグナルの逆算は、二次出力シグナルと正規化一次出力シグナルとの間の相関を使用して達成され得る。
図3Kは、二次出力シグナルを逆算するために使用され得る正規化関数及び正規化較正情報を生成する
図3A〜3Iに例示されたいくつかのステップを要約するフローチャートである。
【0056】
図3A〜3Dは、温度だけに依存するように糖濃度に一次的に応答する一次出力シグナルを正規化するために適用される正規化のいくつかの態様を例示する。
【0057】
図3Aは、3つの糖濃度での温度(この例では二次出力シグナル)の関数としての糖シグナル(この例では一次出力シグナル)のプロットを示す。YSI糖基準試料(78.4mg/dL(◆)、329.5mg/dL(□)、及び559.8mg/dL(△)の糖値)から測定された糖シグナル(ゲートアンペロメトリー電位シーケンスにおける5.2秒での終了電流として報告される、「5.2秒での電流(mV)」)が、計器の温度センサによって測定される温度(「温度、C」)に対してプロットされる。
図3Aに示されるデータを生成する際に、センサ/試料温度及び計器温度は、同一にされた。線が、各々のYSI糖基準試料毎にプロットされたデータを通って適合されて、各々の線毎の対応する回帰式もまた、
図3Aに示される。
【0058】
図3Bは、指定された温度(22度、
図3Aの垂直な破線参照)に外挿され、基準糖濃度に対してプロットされた糖シグナルを示す。外挿された糖シグナル値は、各々のYSI糖基準試料毎の回帰式に指定された温度(22度)を入力することによって得られ、以下の3つの外挿値がもたらされた:65.77、316.86、及び553.12(電流カウント、mV)。線が、
図3Bにプロットされた外挿値を通って適合され、回帰分析が以下に示される正規化関数を作り出すために実行された。
【数1】
式中、yは、正規化関数値として使用され得る一次出力シグナル値に対応し、xは、糖(検体)濃度に対応する。この実施形態では、回帰式は、検体濃度の一次関数であるが、他の実施形態では、回帰式は、多項式又は他のタイプの関数であり得る。
【0059】
図3Cは、温度(「温度、C」)に対して正規化糖シグナル(「正規化電流」)をプロットし、正規化一次出力シグナルと温度との間の相関を定める。
図3Cは、2つの異なる正規化方法によって決定された正規化糖シグナルを含む。周知のYSI基準糖濃度値の統一関数値(すなわち、周知の検体濃度の数値で取られた正規化電流値)に対する測定された糖シグナル(i5.2)の割合として決定された正規化糖シグナルが、ダイヤモンド(◆)を使用してプロットされる。中空の正方形(□)を使用してプロットされた正規化糖シグナルは、数式(1)によって決定された周知のYSI基準糖濃度値(x)に対する正規化関数値で、測定された糖シグナル(i5.2)を除算することによって、決定された。
図3Cの温度に対してプロットされた2つの正規化糖シグナルの回帰分析は、以下の各々の一次回帰関数を生成する。
【数2】
式中、y(◆)は、周知のYSI基準濃度の統一関数に対する割合を取ることによって正規化された糖シグナルに対応し、y(□)は、正規化関数値(数式(1))に対する割合を取ることによって正規化された糖シグナルに対応し、x(◆)及びx(□)は、温度に対応する。
図3Cに示される2つのプロット並びに数式(2)及び数式(3)は、正規化糖シグナルと温度との関係を示す。数式(2)及び数式(3)は、以下のように正規化糖シグナルの関数として温度を表現するために書き換えられ得る。
【数3】
【0060】
例えば数式(4)又は数式(5)によって表現されるような、正規化糖シグナルと温度との関係は、逆算された温度(二次出力シグナル)に至る正規化較正情報として、測定された糖(一次出力)シグナルを対応する糖(検体)濃度から導出される正規化値に正規化して正規化糖(一次出力)シグナルに正規化較正情報を適用することによって、使用され得る。
【0061】
図3Dは、数式(4)及び数式(5)を使用して逆算された温度の推定精度を示す。数式(4)又は数式(5)を使用して逆算された温度(T
calc)は、測定された温度(T
meas)に対して平均バイアスがないこと、すなわち平均ΔT=T
calc−T
measが0.0度であることを示す。両方の数式は、温度を逆算する方法として同等の精度を示す。
【0062】
図3E〜3Gは、Hctシグナル(二次出力シグナル)だけに依存するように糖濃度に一次的に応答する一次出力シグナルを正規化するために適用される正規化のいくつかの態様を例示する。
【0063】
図3Eは、3つの糖濃度でのHctシグナル(i
Hct、この例では二次出力シグナル)の関数としての糖シグナル(i
G、この例では一次出力シグナル)のプロットを示す。YSI糖基準試料(74.9mg/dL(◆)、348.7mg/dL(■)、及び528.3mg/dL(▲)の糖値)の各々の糖シグナル(ゲートアンペロメトリー電位シーケンスにおける5.2秒での終了電流として報告される、「5.2秒での糖電流、i」)が、専用Hct電極によって測定されるHctシグナル(「Hct電極電流(mV)」)に対してプロットされる。各々のYSI基準試料毎にプロットされたデータに対応する回帰式もまた、示される。
図3Eに示されるデータを生成するために使用されたバイオセンサシステムにおいて、予測される平均Hct電流カウントは、20%Hctに対して2500mV、42%Hctに対して2000mV、60%Hctに対して1680mV、及び70%Hctに対して1150mVであり、iG及びiHctの両方が、%Hctの増加と共に減少する。
【0064】
図3Fは、Hct電極電流の指定された値(2000mV;
図3Eの垂直な破線参照)に外挿され、YSI基準糖濃度(mg/dL)に対してプロットされた糖シグナルを示す。外挿された糖シグナル値は、各々のYSI糖基準試料毎の回帰式に指定されたHctシグナル値(2000mV)を入力することによって得られ、以下の3つの外挿値がもたらされた:70.01、352.8、及び585.7。線が、
図3Fにプロットされた外挿値を通って適合され、回帰分析が以下に示される正規化関数を作り出すために実行された。
【数4】
式中、yは、正規化関数値として使用され得る糖シグナル値に対応し、xは、糖(検体)濃度に対応する。
【0065】
図3Gは、Hctシグナル(mV)に対して正規化糖シグナル(「正規化電流」)をプロットし、正規化糖シグナルとHctシグナルとの間の相関を定める。
図3Gは、2つの異なる正規化方法によって決定された正規化糖シグナルを含む。周知のYSI基準糖濃度の統一関数値(すなわち、周知の検体濃度の数値で取られた正規化電流値)に対する測定された糖シグナル(i5.2)の割合として決定された正規化糖シグナルが、ダイヤモンド(◆)を使用してプロットされる。中空の正方形(□)を使用してプロットされた正規化糖シグナルは、数式(6)によって決定された周知の検体濃度値(x)に対する正規化関数値で、測定された糖シグナル(i5.2)を除算することによって、決定された。
図3GのHctシグナルに対してプロットされた2つの正規化糖シグナルの回帰分析は、以下の各々の一次回帰関数を生成する。
【数5】
式中、y(◆)は、周知のYSI基準濃度の統一関数に対する糖シグナルの割合を取ることによって得られた正規化糖シグナルに対応し、y(□)は、正規化関数値(数式(6))に対する糖シグナルの割合を取ることによって得られた正規化糖シグナルに対応し、x(◆)及びx(□)は、Hctシグナルに対応する。
図3Gに示される2つのプロット並びに数式(7)及び数式(8)は、正規化糖シグナルとHctシグナルとの関係を示す。数式(7)及び数式(8)は、正規化糖シグナルの関数としてHctシグナルを表現するために書き換えられ、逆算されたHct(二次出力)シグナルに至る正規化較正情報として、糖(検体)濃度に対応する測定された正規化糖(一次出力)シグナルを入力することによって、使用され得る。
【0066】
図3H〜3Jは、THbシグナル(二次出力シグナル)だけに依存するように%−A1cレベルに一次的に応答する一次出力シグナルを正規化するために適用される正規化のいくつかの態様を例示する。
【0067】
図3Hは、4つの%−A1cレベルでのTHbシグナル(R
THb、この例では二次出力シグナル)の関数としてのA1cシグナル(R
A1c、この例では一次出力シグナル)のプロットを示す。基準試料(4.8(◆)、6.5(□)、9(△)、及び12.3(●)の%A1cレベル)の各々のA1cシグナル(層流A1cバイオセンサシステムを使用して第1の検出ゾーンから測定された第1の波長の反射率として報告される)が、THbシグナル(第2の検出ゾーンから第2の波長の反射率として測定される)に対してプロットされる。曲線が各々の基準試料毎のデータを通って適合されて、各々の曲線に対応する回帰式もまた示される。
【0068】
図3Iは、平均THb濃度(〜150mg/dL)に対応する0.7のTHb反射率シグナル(R
THb)値(
図3Hの垂直な破線参照)に外挿され、基準%−A1cレベルに対してプロットされたA1cシグナルを示す。外挿されたA1cシグナル値は、各々の%−A1c基準試料毎の回帰式に指定されたR
THb値(0.7)を入力することによって得られ、以下の4つの外挿値がもたらされた:0.31602、0.35704、0.40483、及び0.43732。
図3Iにプロットされた外挿されたA1cシグナルデータの回帰分析は、正規化関数(数式(9))を生成する。
【数6】
式中、yは、正規化関数値として使用され得るA1cシグナル値に対応し、xは、%−A1cレベル(検体濃度)に対応する。この例では、回帰式(数式(9))は、検体濃度の二次多項式関数である。
【0069】
図3Jは、正規化A1cシグナルに対してTHbシグナル値をプロットし、THbシグナルと正規化A1cシグナルとの間の相関を定める。
図3Jにプロットされた正規化A1cシグナルは、数式(9)によって決定された周知の検体濃度値(x)の正規化関数値に対する測定されたA1cシグナルの割合として決定された。
図3Jの正規化A1cシグナルに対してプロットされたTHbシグナルの回帰分析は、以下の二次多項式回帰関数を生成する。
【数7】
式中、yは、THbシグナルに対応し、xは、正規化A1cシグナルに対応する。数式(10)は、THb(二次出力)シグナルを逆算するための正規化較正情報として、%−A1c(検体濃度)に対応する測定された正規化A1c(一次出力)シグナルを入力することによって、使用され得る。
【0070】
図3Kは、本開示に従って二次出力シグナルを逆算するために使用され得る正規化関数及び正規化較正情報を生成する一実施形態のためのいくつかのステップを要約する。フローチャート300に示されるステップを実施する際に、ステップ301で、バイオセンサシステムが、複数の基準試料から基準一次出力シグナルを測定するために使用される。基準一次出力シグナルは、一次刺激に一次的に応答し、各々の基準試料は、一次刺激の周知の値と関連する。ステップ302で、バイオセンサシステムは、各々の測定された基準一次出力シグナルに対する二次出力シグナルを生成する。生成された二次出力シグナルは、測定された基準一次出力シグナルに影響を及ぼす外部刺激に応答する。ステップ301及び302は、任意の順序で実行され得るか、又は同時に発生し得る。
【0071】
ステップ303で、各々の基準試料毎の(ステップ301の)測定された基準一次出力シグナルを(ステップ302の)生成された二次出力シグナルに相関させる。いくつかの実施態様では、測定された基準一次出力シグナルを生成された二次出力シグナルと関連づける回帰式を生成するために、回帰分析が、ステップ303の相関データに実行され得る。
【0072】
ステップ304で、各々の基準試料毎に、基準一次出力シグナル値が、二次出力シグナルの指定された値に外挿される。二次出力シグナルの指定された値は、通常は、(ステップ302の)生成された二次出力シグナルの範囲の中間点前後の値であるが、生成された二次出力シグナルの範囲内の任意の値が、基準一次出力シグナル値が外挿される指定された値として使用され得る。測定された基準一次出力シグナルを生成された二次出力シグナルと関連づける第1の回帰式を生成する実施態様では、第1の回帰式は、二次出力シグナルの指定された値を入力することによって基準一次出力シグナル値を外挿するために使用され得る。
【0073】
ステップ305で、(ステップ304の)外挿された基準一次出力シグナル値を、例えば相関データの回帰分析によって正規化関数を生成するために、周知の一次刺激値に相関させる。
【0074】
ステップ306で、正規化関数が、次いで、対応する周知の一次刺激値で各々の測定された基準一次出力シグナルを正規化するために使用される。正規化は、通常は、測定された一次出力シグナルを正規化関数値で除算することによって行われる。この実施形態では、正規化関数値は、ステップ305で生成された正規化関数に周知の一次刺激値を入力することによって決定される。
【0075】
ステップ307で、(ステップ306の)正規化基準一次出力シグナルを、正規化較正情報を生成するために、(ステップ302の)生成された二次出力シグナルに相関させる。この正規化較正情報は、測定された一次出力シグナルに基づく二次出力シグナルを逆算するために、本開示のいくつかの実施形態において使用され得る。いくつかの実施態様では、正規化較正情報は、ステップ307の相関データの回帰分析からもたらされる、正規化一次出力シグナルを二次出力シグナルに関連づける回帰式として表され得る。
【0076】
図4A〜4Bは、オフ状態であるかどうかを決定するいろいろな実施形態を例示する。
図4Aのフローチャート400は、生成された二次出力シグナルとバイオセンサシステムの較正の間に定められた外部刺激に対する基準値との間の差異に基づいてオフ状態であるかどうかを決定する際のいくつかのステップを例示する。例えば、検体濃度に対する一次出力シグナルの標準基準相関は、通常は、基準温度(例えば25度)及び基準ヘマトクリットレベル(例えば42%)で定められる。基準値と異なる温度又はヘマトクリットレベルでのバイオセンサ測定値は、検体濃度が基準温度及びヘマトクリットレベル値で報告されるように、一次出力シグナル上に対する温度又はヘマトクリットの影響が、通常は、変換関数によって補償される。しかしながら、生成された二次出力シグナルと基準値との間の差異があまりにも大きい場合には、オフ状態であり、通常の補償方法は、検体の決定に追加的なエラーを導く可能性がある。
【0077】
フローチャート400に示されるステップを実施する際に、バイオセンサシステムは、ステップ401で二次出力シグナルを生成し、ステップ402で生成された二次出力シグナルと基準値との間の差異を決定する。ステップ403で、ステップ402で決定された差異の絶対値が閾値以上かどうか問い合わせる。繰り返し循環を行う実施態様では、n番目の調整された二次出力シグナル又はn番目の逆算された二次出力シグナルと基準値との間の差異が決定され、この差異の絶対値が閾値以上であるときはオフ状態となる。閾値は、通常は、オフ状態を検出するために所望される感度に応じてセットされて、循環毎に変化させる(例えば、漸減させる)ことができる。ステップ403の問い合わせが「いいえ」と答える場合には、(404に示されるように)オフ状態ではない。ステップ403の問い合わせが「はい」と答える場合には、(405に示されるように)オフ状態であり、いくつかの実施態様では、オフ状態の通知がステップ406で提供され得る。通知は、例えば、バイオセンサシステムを組み込んだディスプレイ上への警告メッセージ、エラーが存在する可能性があることを指示するバイオセンサシステム上の赤色光インジケータなどの、任意の形態を取ることができる。通知はまた、オフ状態を補正するための命令又は測定を繰り返す命令を含むことができる。
【0078】
図4Bのフローチャート410は、生成された二次出力シグナルと測定された一次出力シグナルに基づいた予想される外部刺激値との間の差異に基づいてオフ状態であるかどうかを決定する際のいくつかのステップを例示する。ステップ411及び412で、バイオセンサシステムは、一次出力シグナルを測定して、二次出力シグナルを生成する。ステップ411及び412は、任意の順序で実行され得るか、又は同時に発生し得る。ステップ413で、逆算された二次出力シグナルが、測定された一次出力シグナルに基づいて決定され、逆算された二次出力シグナルは、測定された出力シグナルに基づいた予想される外部刺激値を反映する。ステップ414で、ステップ412の生成された二次出力シグナルとステップ413の逆算された二次出力シグナルとの間の差異が決定される。ステップ415で、ステップ414で決定された差異の絶対値が設定値以上かどうか問い合わせる。繰り返し循環を行う実施態様では、n番目の逆算された二次出力シグナルと(n−1)番目の逆算された、又は(n−1)番目の調整された、二次出力シグナルとの間の差異が決定され、この差異の絶対値が設定値以上であるときはオフ状態となる。設定値は、通常は、オフ状態を検出するために所望される感度に応じてセットされて、循環毎に変化させる(例えば、漸減させる)ことができる。ステップ415の問い合わせが「いいえ」と答える場合には、(416に示されるように)オフ状態ではない。ステップ415の問い合わせが「はい」と答える場合には、(418に示されるように)オフ状態であり、いくつかの実施態様では、(
図4Aにおけるステップ406に関して前述したような)オフ状態の通知が、ステップ419で提供され得る。
【0079】
本開示によるいくつかの実施態様では、オフ状態は、
図4A及び
図4Bに関して述べられた基準の組み合わせに基づいて決定され得る。すなわち、生成された二次出力シグナルと基準値との間の差異の絶対値が閾値以上であり、生成された二次出力シグナルと逆算された二次出力シグナルとの間の差異の絶対値が設定値以上であるときに、オフ状態であると決定され得る。
【0080】
オフ状態により検体測定値に導かれるエラーは、「オフ温度状態」の影響を例示する
図5A〜5Cによって、例示され得る。例えば、携帯型計器が冬の気候(例えば0度〜10度)又は夏の気候(例えば40度〜45度)の間車内に置かれ、次いで室内温度(例えば22度〜25度)に保たれた試験センサで使用されるときに、オフ温度状態が発生する場合がある。インタフェース接触による試験センサと計器との間の伝熱が短時間内で最小であると予想されるのならば、計器温度にかかわらず、試験センサ/試料温度は比較的不変のままであると予想される。
【0081】
温度センサ又は他の温度測定装置がバイオセンサシステムに組み込まれるときに、このような装置によって測定される温度は試験センサ及び試料の温度を精度よく反映すると想定されるが、このような装置は、通常は、センサでなく、計器に組み込まれる。検体濃度を決定するための温度補償を含む方法は、通常は、一次出力シグナルに対して補償をするためにこのような装置によって測定された温度を使用する。しかしながら、オフ温度状態下では、測定された温度はセンサ/試料温度を精度よく反映することができないので、測定された温度を使用した温度補償測定値は、計算された検体濃度にエラーを導くことになる。
【0082】
図5Aは、計器及びセンサ/試料が同じ温度である、7つの温度、5度(◆)、10度(□)、15度(▲)、25度(×)、35度(※)、40度(●)、及び45度(+)で、バイオセンサシステムによって測定される、3つの異なる糖濃度(70、350、及び550mg/dL)を有する試料の一次出力シグナル(5.2秒での電流(mV))のプロットを示す。異なる糖濃度の測定された一次出力シグナルは、温度に応じて変化し、濃度が増加するにつれて分散が増加している。一次出力シグナルを検体濃度に変換するときに一次出力シグナルのこのような温度関連の分散を補償するために、例えばU.S. Patent No. 7,781,222(「Temperature-Adjusted Analyte Determination for Biosensor System」)に述べられるような、温度補償を含む変換関数が、開発されている。
【0083】
図5Bは、〜22度のセンサ/試料を有するバイオセンサシステム及び以下の平均温度測定値をもたらす6つの異なる温度(22度、5度、10度、15度、35度、45度)で保管された計器によって測定される、4つの異なる糖濃度(86、170、335、及び564mg/dL)を有する試料の一次出力シグナル(5.2秒での電流(mV))のプロットを示す:21.9度(◆)、6度(□)、10.3度(▲)、15.7度(×)、34.1度(※)、及び43.7度(〇)。測定された計器温度が大きく変化する場合であっても、センサ/試料温度は、各々の糖濃度毎に比較的不変のままの測定された一次出力シグナルに反映されるように、比較的安定したままである。温度補償に関する変換関数が温度の影響を補償するために測定された計器温度を使用してこれらのデータに適用される場合には、測定された計器温度は、検体の決定に潜在的に大きなエラーを導く。
【0084】
図5Cは、測定された計器温度がセンサ/試料温度を精度よく表さないときの、オフ温度状態のための温度補償に関する従来の変換関数を使用して決定された
図5Bのデータに対する(バイアス/%−バイアスとしてプロットされた)糖濃度におけるエラーを示す。バイアス/%−バイアスデータ(◆)は、22度、5.5度、10.5度、15.5度、22.5度、34度、39.5度、及び43.5度の平均計器温度(△)(センサ/試料は〜22度であった)と共にシーケンシャルにプロットされる。
図5Cから分かるように、センサ/試料と測定された計器温度との間の差異が大きくなると、検体濃度におけるエラーも大きくなる。
【0085】
補償の際の、測定された温度ではなく、逆算された温度の使用は、オフ温度状態によるこのようなエラーを軽減する助けとなり得る。このような逆算された温度は、実際の測定状態下の試料の温度を良好に反映する。
図6Aは、オフ温度状態下で測定された一次出力シグナルに基づく逆算された温度を示す(〜22度のセンサ/試料温度;22度、5.5度、10.5度、15.5度、22.5度、34度、39.5度、及び43.5度の平均計器温度)。
図6Aに示される逆算された温度(◆)は、上の数式(4)(
図3C及び付随するテキスト参照)によって具現化された正規化較正情報を使用して、
図5Cに示されるバイアス/%−バイアスデータと同じデータから生成された。これらの逆算された温度は、測定された計器温度(△)よりも〜22度のセンサ/試料温度に近いことが示される。更に、
図5Cに示されるデータを生成するために使用された温度補償に関する同じ標準変換関数への逆算された温度の入力は、
図6Bに示されるように、エラーが低減した(小さいバイアス/%−バイアスを有した)精度のよい検体濃度の決定をもたらす。
【0086】
図6Bは、測定された計器温度の平均(△)と共にプロットされた、
図1Aに示されるような温度補償に関する従来の変換関数の一方向適用(×)(これは
図5Cに示されるものと同じデータである)、(
図2Aにおいて概説されるような)補償のための逆算された温度による同じ従来の変換関数の完全な一循環適用(◆)、及び(
図2Bにおいて概説されるような)オフ温度状態が検出されるときにだけ適用される補償のための逆算された温度による同じ従来の変換関数の選択的な一循環適用(□)を使用して決定された(バイアス/%−バイアスとしてプロットされる)糖濃度におけるエラーを示す。逆算された温度は、上の数式(4)(
図3C及び付随するテキスト参照)によって具現化された正規化較正情報を使用して決定された。オフ温度状態の間、完全な及び選択的な一循環適用は共に、従来の一方向適用の結果と比較して、平均〜20%から〜10%までバイアス/%−バイアスにおけるエラーを低減させ、〜5度の測定された計器温度の平均などの、極端なオフ温度状態では、エラーは、〜20%から〜5%まで低減した。オフ温度状態ではない(例えば、〜22度の測定された計器温度)間に適用されるときは、一循環適用は、従来の一方向アプローチと同等の〜10%のエラーを有するが、選択的な一循環適用において行われるような、オフ温度状態の間だけの補償の適用は、不必要なバイアスをもたらす可能性を最小にした。
【0087】
図7A〜7Bは、本開示による循環補償アプローチを使用した、オフ温度状態において検体測定値に対して補償をする方法のいくつかの実施形態のいくつかのステップ及び結果を例示する。
【0088】
図7Aに示される循環補償プロセスの実施形態は、先に決定された検体濃度に基づいて温度を逆算するステップと、逆算された温度と先に決定された検体濃度における補償のために使用された温度との間の温度差を決定するステップと、決定された温度差を使用してオフ温度状態を検出するステップと、オフ温度状態が検出される場合には、温度を調整して、測定された一次出力シグナルに対する温度の影響を補償するために調整された温度を使用して検体濃度を再計算するステップと、を含み、オフ温度状態ではないと検出されるまで、プロセスは繰り返され、オフ温度状態ではないと検出された時点で、決定された検体濃度が、検体測定値として報告される。
【0089】
より詳細には、
図7Aに示されるフローチャート700において、プロセスは、バイオセンサシステムが一次出力シグナルを測定する、ステップ701から開始される。ステップ702で、温度測定値(T
0)が、バイオセンサシステムを使用して生成される(「T」に添えられ得る任意の下付添字にかかわらず、本明細書において「T」と共に使用される上付添字「0」は、バイオセンサシステムを使用して得られた温度測定値を指示する)。ステップ701及び702は、任意の順序で実行され得るか、又は同時に発生し得る。ステップ703で、測定された一次出力シグナルが、測定された一次出力シグナルに対する温度の影響を補償するために温度測定値(T
0)と共に変換関数を使用して予備的な検体濃度(G
0)に変換される。
【0090】
図7Aに示される実施形態では、オフ温度状態であり得るかどうかの初期決定が、ステップ704で行われる。この実施形態における初期決定は、温度測定値(T
0)と基準温度(T
ref)との間の差異の絶対値が閾値以上かどうかに基づく。例えば、閾値が7度とセットされる場合には、|T
0−T
ref|≧7度のときに、オフ温度状態であることになる。この初期問い合わせでオフ温度状態の恐れがあると決定される(すなわち、ステップ704の問い合わせが「はい」と答える)場合には、(以下で更に述べられるように)循環補償プロセスが進行し得る。しかしながら、ステップ704の初期問い合わせが「いいえ」と答える場合には、オフ温度状態ではなく、プロセスは、予備的な検体濃度(G
0)が検体測定値として報告され得る、ステップ709に直接進行し得る。閾値は、オフ温度状態を検出するために所望される感度に応じて任意の値(例えば、10、7、5、3、2、又は1度)にセットされ得る。
【0091】
図7Aに示される循環補償プロセスは複数循環することができるので、カウンタ(n)は、各々の循環を追跡するために使用され、ステップ705でn=1にセットされる。
【0092】
ステップ706で、n番目の逆算された温度(T
n)が、(n−1)番目の検体濃度(G
n−1)に基づいて決定される。換言すれば、n番目の逆算された温度(T
n)は、(n−1)番目の検体濃度の関数として決定される、すなわちT
n=f(G
n−1)。
【0093】
ステップ707で、n番目の温度差(ΔT
n)が、以下のように決定される。
【数8】
式中、T
nは、(ステップ706の)n番目の逆算された温度であり、n=1では、T
n−1adjは、ステップ702でバイオセンサシステムによって生成された温度測定値(T
0)である。
【0094】
オフ温度状態は、n番目の温度差の絶対値が設定値以上かどうかステップ708で問い合わせることによって検出される、すなわち|ΔT
n|≧設定値。例えば、設定値が5度とセットされる場合には、|ΔT
n|≧5度のときに、すなわちn番目の逆算された温度(T
n)が先に調整された温度(T
n−1adj)と5度以上異なるときに、オフ温度状態が検出される。設定値は、オフ温度状態を検出するために所望される感度に応じて任意の値(例えば、10、7、5、3、2、又は1度)にセットされ、例えば、各々の循環などと共に漸減するようにセットされてもよい。
【0095】
オフ温度状態ではないとn番目の温度差(ΔT
n)に基づいて検出される場合(すなわち、708の問い合わせが「いいえ」と答える場合)には、(n−1)番目の検体濃度(G
n−1)が、ステップ709でバイオセンサシステムによって検体測定値として報告される。
【0096】
オフ温度状態がn番目の温度差(ΔT
n)に基づいて検出される場合(708の問い合わせが「はい」と答える場合)には、n番目の調整された温度(T
nadj)がステップ710で以下のように決定される。
【数9】
式中、n=1では、T
n−1adjは、ステップ702でバイオセンサシステムによって生成された温度測定値(T
0)であり、ΔT
nは、(ステップ707の)n番目の温度差であり、WCは、ゼロ(0)から一(1)までの任意の値であり得る重み係数である。重み係数(WC)は、先に調整された温度(T
n−1adj)を調整するために使用するn番目の逆算された温度(T
n)がどの程度かを決定するために使用される。WC=1のとき、n番目の逆算された温度(T
n)は、先に調整された温度を完全に置き換え、その結果T
nadj=T
nとなる。
【0097】
ステップ711で、n番目の検体濃度(G
n)が、測定された一次出力シグナルに対する温度の影響を補償するために(ステップ710の)n番目の調整された温度(T
nadj)と共に変換関数を使用して(ステップ701の)測定された一次出力シグナルを変換することによって決定される。カウンタnが、ステップ712で、1増やされ(すなわちn=n+1となり)、別の循環がステップ706から開始される。708の問い合わせが「いいえ」と答え、オフ温度状態がn番目の温度差(ΔT
n)に基づいて検出されなくなるまで、ステップ706〜712の循環は繰り返され、検出されなくなった時点で、(n−1)番目の検体濃度(G
n−1)が、ステップ709でバイオセンサシステムによって検体測定値として報告される。
【0098】
図7Bは、
図7Aに示される実施態様によるステップ706〜711の一循環を適用した循環温度補償プロセスに対するWCの影響を例示する。
図7Bは、測定された計器温度の平均(△)と共に、温度の影響を完全に補償するために逆算された温度を使用する温度補償に関する変換関数の一循環適用(すなわちWC=1)(□)、及び温度の影響を部分的に補償するために逆算された温度の一部分を使用する温度補償を関する変換関数の一循環適用(すなわちWC=0.65)(◆)のバイアス/%−バイアスにおけるエラーをプロットする。温度補償に関する標準変換関数の従来の一方向適用(((×)を使用してプロットされた一方向データ、
図6B参照)のエラーと比較して、システムエラーは、極端なオフ温度状態(例えば、5度の測定された計器温度)で、WC=1を使用して〜20%から〜5%に、WC=0.65を使用して〜15%に低減する。温度の影響を完全に補償するための逆算された温度の使用(WC=1)は、いくつかの事例では、例えば、あまり極端ではないオフ温度状態(例えば、〜35度の測定された計器温度)で、温度の影響を過剰に補償することになり、したがって、いくつかの事例では、漸進的に外部刺激の影響を補償するようにWC<1を使用することが望ましい場合がある。
【0099】
以下の表1は、オフ温度状態における検体の決定の際に温度影響を補償をするために
図7Aのフローチャート700に示された方法と類似した循環補償方法の実施形態を使用して生成されたデータを示す。表1のデータは、バイオセンサシステム、3つのYSI基準糖試料(85.9、169.8、及び84.0mg/dLの糖濃度レベル)、並びに〜22度で保管されたセンサ並びに5度、22度、及び44度で保管された計器を使用して生成された。逆算された温度(T
n)は、上の数式(4)(
図3C及び付随するテキスト参照)によって具現化された正規化較正情報を使用して決定された。T
nadj=T
nとなるように、重み係数(WC)は、1にセットされた(すなわち、WC=1)。
【表1】
【0100】
図7Aに示されるように、プロセスは、バイオセンサシステムが一次出力シグナルを測定し温度測定値(T
0)を生成することから開始される。予備的な糖濃度(G
0)が、測定された一次出力シグナルに対する温度の影響を補償するために温度測定値(T
0)を使用して決定される。表1から分かるように、169.8及び84.0mg/dLの糖濃度レベルを有するYSI試料に対する5.7度及び39.1度の測定された計器温度(T
0)での予備的な検体濃度は、それぞれ、±10%より大きいバイアス/%−バイアスを有する。|T
0−T
ref|≧7度(閾値)の初期基準を適用すると、169.8及び84.0mg/dLの糖濃度レベルを有するYSI試料ではオフ温度状態であるが、測定された計器温度が21.9度の85.9mg/dLの糖濃度を有するYSI試料ではオフ温度状態ではないので、循環補償はこの試料測定値に対しては必要ではないことになる。
図7Aに示される実施形態のような、いくつかの実施形態では、初期オフ温度基準が満たさない場合には、循環補償は適用されず、温度の逆算が必要ではない。逆算された温度に基づく第2のオフ温度基準を例示する目的で、表1に示されるデータは、オフ温度状態が初期基準に基づいて検出されなかった85.9mg/dLの糖濃度を有するYSI試料のために計算された、第1の逆算された温度及び|ΔT
n|を含む。
【0101】
第1の逆算された温度(n=1なので、T
1)が、予備的な検体濃度(G
0)に基づいて決定される。|ΔT
1=T
1−T
0|≧5度(設定値)の基準を適用すると、測定された計器温度が21.9度の85.9mg/dLの糖濃度を有するYSI試料ではオフ温度状態ではないと検出され、したがって、循環補償がこの試料測定値に実行されない。オフ温度状態は、169.8及び84.0mg/dLの糖濃度レベルを有するYSI試料では検出されるので、これらの2つのYSI試料のために、第1の調整された温度(T
1adj)が計算されて(WC=1を使用、その結果T
1adj=T
1)、第1の検体濃度(G
1)を決定するために入力として循環する。これらの2つのYSI試料の予備的な検体濃度と比較して、第1の検体濃度(G
1)におけるエラーは、±5%内に低減した。
【0102】
n=2では、第2の逆算された温度(T
2)が、第1の検体濃度(G
1)に基づいて決定される。設定値が同じままで、|ΔT
n|≧5度の同じ基準が適用される場合には、オフ温度状態ではないとこれらのYSI試料(169.8及び84.0mg糖/dL)では検出され、更なる循環補償が実行されない。しかしながら、設定値が低減し|ΔT
n|≧3度の基準が適用される場合には、オフ温度状態がこれらのYSI試料の両方で検出され、第2の調整された温度(T
2adj)が計算されて(WC=1を使用、その結果T
2adj=T
2)、第2の検体濃度(G
2)を決定するために入力として循環する。これらの2つのYSI試料に対する第2の検体濃度(G
2)におけるエラーは、±10%より少なく、現在許容可能な性能限界内に維持される。追加的に、第2の逆算された温度値(T
2)は、第1の逆算された温度(T
1)よりも計器温度の予想値(〜22度)に近い。
【0103】
n=3では、第3の逆算された温度(T
3)が、これらの2つのYSI試料(169.8及び84.0mg糖/dL)に対する第2の検体濃度(G
2)に基づいて決定される。|ΔT
1|≧3度の基準を適用すると、どちらの試料でもオフ温度状態ではないと検出され、更なる循環補償が実行されない。所望に応じて、例えば、試料/センサ温度に近い逆算された温度を算出するために、設定値が更に低減し、例えば、|ΔT
n|≧2度の基準が適用される。設定値を2度にセットすると、オフ温度状態が84.0mg糖/dLを有するYSI試料で検出され、別の循環の補償がこの試料測定値に適用され、第3の調整された温度(T
3adj)が計算されて(WC=1を使用、その結果T
3adj=T
3)、第3の検体濃度(G
3)を決定するために入力として循環する。
【0104】
n=4では、第4の逆算された温度(T
4)が、84.0mg糖/dLを有するYSI試料に対する第3の検体濃度(G
3)に基づいて決定される。|ΔT
1|≧2度の基準を適用すると、オフ温度状態ではないと検出され、更なる循環補償が実行されない。表1から分かるように、第4の逆算された温度(T
4)は、先に逆算されたどの温度よりも予想される計器温度に近い。
【0105】
表1のデータを検討すると、特に設定値の漸減及びオフ温度基準の絞り込みと併せて使用される、繰り返し循環補償は、予想されるセンサ/試料温度まで逆算された温度を漸進的に近づけるために使用され得ることが分かる。しかしながら、他のエラーソースが多く表出され得るので、設定値の漸減が、必ずしも検体濃度におけるエラーの同時的な漸減をもたらすというわけではない。しかしながら、検体濃度におけるエラーは、現在許容可能な性能限界(例えば、±10%)内に維持される。
【0106】
以下の表2は、検体の決定の際にヘマトクリット影響を補償するために
図2Dのフローチャート240に示された方法と類似した循環補償方法の実施形態を使用して生成されたデータを示す。この実施形態では、|i
Hct_Ref−i
0Hct|≧300(閾値)及び|Δi
1Hct=i
0Hct−i
1Hct|≧300(設定値)に基づいたオフ状態であるという初期決定の後、循環補償プロセスが、所定の循環の回数、この場合N=9、行われた。表2のデータは、専用Hct電極を有したバイオセンサシステムを使用して、245mg/dLの糖濃度レベル及び38%のHctを有するYSI基準試料から生成された。データの第1の行は、バイオセンサ測定値(i
0Hct、G
0)から直接生成されたデータを含む。逆算されたヘマトクリットシグナル(i
nHct)は、上の数式(8)(
図3G及び付随するテキスト参照)によって具現化された正規化較正情報を使用して決定され、n番目の検体濃度を計算する際に使用された(すなわちG
n=f(i
nHct))。循環補償の進捗をモニタするために、オフ状態基準及びバイアス/%−バイアスが、各々の循環毎に計算された。
【0107】
生成されたHctシグナル(i
0Hct=791.5mV)は、基準値(i
Hct_Ref=2000mV、その結果|i
Hct_Ref−i
0Hct|=1208.5mV)と比較して低く、第1の逆算されたHctシグナル(i
1Hct=1271.8mV、その結果|Δi
1Hct=i
0Hct−i
1Hct|=480.3mV)と比較しても低く、オフ状態であることを指示する。予備的な糖濃度(G
0)は、38.3%の%−バイアスを有する。表2のデータは、逆算されたHctシグナルを使用した9回の循環の補償の後、糖濃度の%−バイアスが10%未満に低減することを示す。
【表2】
【0108】
本開示の方法は、電気化学的バイオセンサシステム、光学的システム、これらの組み合わせなどにおいて実施され得る。
図8は、本開示の方法が実施され得るバイオセンサシステム800の一実施形態の概略図である。バイオセンサシステム800は、測定装置802及び試験センサ804を含む。測定装置802は、ベンチトップ装置、ポータブル又は携帯型装置などを含む分析機器において実施され得る。
【0109】
バイオセンサシステム800は、通常は、測定装置802に記憶された較正情報を使用して試料の検体濃度を決定する。バイオセンサシステム800は、糖、A1c、尿酸、乳酸、コレステロール、ビリルビンなどの濃度を含む検体濃度を決定するために利用され得る。特定の構成が示されるが、バイオセンサシステム800は、他の構成を有しかつ追加的なコンポーネントを含むことができる。
【0110】
試験センサ804は、通常は、貯留部808、及び開口部812を有したチャネル810を形成する基部806を有する。貯留部808及びチャネル810は、ベントを有する蓋によって覆われ得る。貯留部808は、部分的に包囲された容積を画定し、水膨潤性ポリマー又は多孔性ポリマーマトリックスなどの、液体試料の保持を支援する組成物を収容することができる。試薬は、貯留部808及び/又はチャネル810内に置かれ得る。試薬は、1つ以上の酵素、バインダ、メディエータ、及び類似種、並びに/又は化学インジケータを含むことができる。試験センサ804は、貯留部808に隣接した試料インタフェース814を有する。試験センサ804は、他の構成を有することができる。
【0111】
電気化学的システムでは、試料インタフェース814は、出力シグナルが測定され得る作用電極(図示せず)及び対向電極(図示せず)に電気的に接続された導体又は接点を有する。試料インタフェース814はまた、二次出力シグナルが測定され得る1つ以上の追加的な電極(図示せず)に電気的に接続された導体又は接点を含むことができる。電極は、実質的に同じ平面にあっても又は複数の平面にあってもよい。電極は、貯留部808を形成する基部806の表面上に配置され得る。電極は、貯留部808内に延在又は突出することができる。誘電層は、導体及び/又は電極を部分的に覆うことができる。試料インタフェース814は、他の電極、並びに導体及び接点を有することができる。
【0112】
光学的センサシステムでは、試料インタフェース814は、通常は、光で試料をプロービングするための1つ以上の光学的入口又は開口を有する。
【0113】
測定装置802は、センサインタフェース818及び省略可能なディスプレイ820に接続された電気回路816を含む。電気回路816は、シグナル生成器824、温度センサ826、及び記憶媒体828に接続されたプロセッサ822を含む。
【0114】
シグナル生成器824は、プロセッサ822に応答して電気入力シグナルをセンサインタフェース818に提供することが可能である。光学的システムでは、電気入力シグナルは、センサインタフェース818の検出器及び光源を操作又は制御するために使用され得る。電気化学的システムでは、電気入力シグナルは、電気入力シグナルを生物学的流体の試料に適用するために、センサインタフェース818を介して試料インタフェース814に伝送され得る。電気入力シグナルは、電位又は電流であってもよく、一定、可変、又は、ACシグナルがDCシグナルオフセット共に適用されるときなどの、これらの組み合わせであってもよい。電気入力シグナルは、連続的に又は複数の励起、シーケンス、若しくは循環として適用され得る。シグナル生成器824はまた、生成器−レコーダとしてセンサインタフェースからの出力シグナルを記録することが可能であり得る。
【0115】
温度センサ826は、測定装置802の周囲温度を測定することが可能であり、サーミスタ、温度計、又は他の温度感知装置であり得る。
【0116】
記憶媒体828は、磁気、光学、又は半導体メモリ、別の記憶装置などであり得る。記憶媒体828は、固定メモリ装置、メモリカードなどの、リムーバブルメモリ装置、遠隔アクセスなどであり得る。記憶媒体828は、(オフ状態を検出するために使用される閾値及び設定値などの)検体測定、分析、及び/又は本開示の方法で使用されるコンピュータプログラムされた命令並びに較正及び他の情報を記憶することができる。
【0117】
記憶媒体828はまた、本開示の方法による、測定された一次出力シグナルから二次出力シグナルを逆算するために使用され得る正規化関数及び/又は正規化較正情報を記憶することができる。このような正規化関数及び/又は正規化較正情報は、例えば
図3B〜3C、
図3F〜3G、及び
図3I〜3Jに示されるように、グラフで、若しくは例えば数式(1)〜(5)、数式(6)〜(8)、及び数式(9)〜(10)に示されるように、数式で、又はこれらの組み合わせなどとして表され得る。正規化関数及び正規化較正情報は、好ましくは、プログラム番号(PNA)テーブル、別のルックアップテーブルなどによって表され得る数式として表される。
【0118】
プロセッサ822は、本開示の方法を含む検体測定及び分析を実施するためにコンピュータプログラムされた命令を実行するように構成される。プロセッサ822はまた、シグナル生成器824と相互作用するように、例えば電気入力シグナルをセンサインタフェース818に提供するように、温度センサ826と相互作用するように、例えば温度測定値(T
0)を生成して受けるように、センサインタフェース818と相互作用するように、例えば試験センサ804からの一次及び/又は他の二次出力シグナル(単数又は複数)を受けるように構成され得る。
【0119】
電気化学的システムでは、一次出力シグナルは、試料の検体の反応に応答して作用及び対向電極を使用して測定される。二次出力シグナルもまた、追加的な電極から測定され得る。光学的システムでは、センサインタフェース818の検出器(単数又は複数)が、一次及びいくつかの二次出力シグナルを受けることができる。
【0120】
プロセッサ822は、センサインタフェース818における試験センサ804の存在、試験センサ804に対する試料の適用、ユーザ入力などに応答して(本開示の方法を含む)検体測定及び分析を開始するためにコンピュータプログラムされた命令を実行するように更に構成される。検体分析の結果は、ディスプレイ820、遠隔受信機(図示せず)に出力されても、及び/又は記憶媒体828に記憶されてもよい。
【0121】
オフ状態を決定すること、測定された一次出力シグナルに基づいて二次出力シグナルを逆算すること、及び/又は循環補償方法を含むことができる、検体測定を実施する命令は、記憶媒体828に記憶されたコンピュータ読み取り可能ソフトウェアコードによって提供され得る。コードは、オブジェクトコード、又は説明された機能性を記述若しくは制御する任意の他のコードであり得る。検体分析からのデータは、プロセッサ822において、減衰率、K定数、比、関数などの決定を含む、1つ以上のデータ処理に付すことができる。
【0122】
前述の説明は、本開示のある態様を例示する目的で提示され、開示を限定することを意図しない。当業者は、多くの追加、修正、変形、及び改善が、上述の教示の観点から実施され、依然として本開示の範囲内にあり得ることを理解するであろう。