特許第6789537号(P6789537)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 学校法人 龍谷大学の特許一覧 ▶ 大日本プラスチックス株式会社の特許一覧

<>
  • 特許6789537-散水ろ床装置洗浄方法 図000003
  • 特許6789537-散水ろ床装置洗浄方法 図000004
  • 特許6789537-散水ろ床装置洗浄方法 図000005
  • 特許6789537-散水ろ床装置洗浄方法 図000006
  • 特許6789537-散水ろ床装置洗浄方法 図000007
  • 特許6789537-散水ろ床装置洗浄方法 図000008
  • 特許6789537-散水ろ床装置洗浄方法 図000009
  • 特許6789537-散水ろ床装置洗浄方法 図000010
  • 特許6789537-散水ろ床装置洗浄方法 図000011
  • 特許6789537-散水ろ床装置洗浄方法 図000012
  • 特許6789537-散水ろ床装置洗浄方法 図000013
  • 特許6789537-散水ろ床装置洗浄方法 図000014
  • 特許6789537-散水ろ床装置洗浄方法 図000015
  • 特許6789537-散水ろ床装置洗浄方法 図000016
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6789537
(24)【登録日】2020年11月6日
(45)【発行日】2020年11月25日
(54)【発明の名称】散水ろ床装置洗浄方法
(51)【国際特許分類】
   C02F 3/04 20060101AFI20201116BHJP
   C02F 3/10 20060101ALI20201116BHJP
【FI】
   C02F3/04
   C02F3/10 A
【請求項の数】5
【全頁数】15
(21)【出願番号】特願2016-149898(P2016-149898)
(22)【出願日】2016年7月29日
(65)【公開番号】特開2018-15740(P2018-15740A)
(43)【公開日】2018年2月1日
【審査請求日】2019年7月12日
【新規性喪失の例外の表示】特許法第30条第2項適用 第50回 日本水環境学会年会講演集 平成28年3月10日 第50回 日本水環境学会年会 平成28年3月16日
(73)【特許権者】
【識別番号】597065329
【氏名又は名称】学校法人 龍谷大学
(73)【特許権者】
【識別番号】000207562
【氏名又は名称】ダイプラ株式会社
(74)【代理人】
【識別番号】100121337
【弁理士】
【氏名又は名称】藤河 恒生
(72)【発明者】
【氏名】岸本 直之
(72)【発明者】
【氏名】神田 崚
(72)【発明者】
【氏名】日野林 譲二
(72)【発明者】
【氏名】橋本 敦
【審査官】 松井 一泰
(56)【参考文献】
【文献】 特開昭58−114792(JP,A)
【文献】 特開昭53−108665(JP,A)
【文献】 国際公開第2012/161339(WO,A1)
【文献】 国際公開第2015/001708(WO,A1)
【文献】 特開平09−155372(JP,A)
【文献】 特開昭57−084788(JP,A)
【文献】 特開2015−077551(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C02F 3/02− 3/10
(57)【特許請求の範囲】
【請求項1】
多数のろ材によって形成された散水ろ床を収容して排水処理時に排水処理を行って処理水を無酸素ろ床装置に排出する散水ろ床装置本体と、前記散水ろ床を洗浄時に洗浄水で湛水する洗浄用湛水設備と、前記洗浄水で湛水された前記散水ろ床を空気爆気する洗浄用空気曝気設備と、を備える散水ろ床装置を定期的に洗浄する散水ろ床装置洗浄方法であって、
洗浄時に前記洗浄用湛水設備により前記洗浄水を注入して前記散水ろ床を湛水したのち、前記洗浄用空気曝気設備により前記散水ろ床を空気曝気して、前記ろ材に付着した蝿の幼虫や卵の剥離を促し、その後、前記散水ろ床の上部から前記蠅の一部を含む前記洗浄水を沈殿装置に排出し、その後、前記散水ろ床の下部から前記蠅の残りを含む前記洗浄水を前記沈殿装置に排出することを特徴とする散水ろ床装置洗浄方法。
【請求項2】
多数のろ材によって形成された散水ろ床を収容して排水処理を行う散水ろ床装置本体と、前記散水ろ床を洗浄時に洗浄水で湛水する洗浄用湛水設備と、前記洗浄水で湛水された前記散水ろ床を空気爆気する洗浄用空気曝気設備と、を備える散水ろ床装置を定期的に洗浄する散水ろ床装置洗浄方法であって、
前記洗浄用湛水設備により前記洗浄水を注入して前記散水ろ床を湛水したのち、前記洗浄用空気曝気設備により前記散水ろ床を空気曝気して、前記ろ材に付着した蝿の幼虫や卵の剥離を促し、その後、前記散水ろ床の上面から深さ50mmまでに溜まる量以上の量であり、かつ、前記散水ろ床の上面から深さ400mmまでに溜まる量以下の量の前記洗浄水を前記散水ろ床の上部から排出し、その後、前記散水ろ床の下部から前記洗浄水を排出することを特徴とする散水ろ床装置洗浄方法。
【請求項3】
請求項1又は2に記載の散水ろ床装置洗浄方法において、
前記湛水に用いる前記洗浄水に水道水、井戸水または排水処理水を用いることを特徴とする散水ろ床装置洗浄方法。
【請求項4】
多数のろ材によって形成された散水ろ床を収容して排水処理を行う散水ろ床装置本体と、前記散水ろ床を洗浄時に洗浄水で湛水する洗浄用湛水設備と、前記洗浄水で湛水された前記散水ろ床を空気爆気する洗浄用空気曝気設備と、を備える散水ろ床装置を定期的に洗浄する散水ろ床装置洗浄方法であって、
前記ろ材は、直径10〜30mm、長さ10〜30mmの円筒状のプラスチック製であり、
前記洗浄用湛水設備により前記洗浄水を注入して前記散水ろ床を湛水したのち、前記洗浄用空気曝気設備により風量を0.6〜1.0m/m・min、前記空気曝気の時間を1〜5minに設定して前記散水ろ床を空気曝気して、前記ろ材に付着した蝿の幼虫や卵の剥離を促し、その後、前記洗浄水を排出することを特徴とする散水ろ床装置洗浄方法。
【請求項5】
請求項1〜4のいずれか1項に記載の散水ろ床装置洗浄方法において、
定期的に前記散水ろ床部を洗浄する頻度を3日間に1回以上とすることを特徴とする散水ろ床装置洗浄方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、散水ろ床装置洗浄方法に関する。
【背景技術】
【0002】
下水や工場排水などの排水を処理する方法として、微生物によって排水を処理する生物学的排水処理法が広く用いられている。生物学的排水処理法には、活性汚泥法、散水ろ床法、循環式硝化脱窒法などが知られている。活性汚泥法は、好気性微生物を含んだ活性汚泥に排水を流入させて排水中の有機物を除去するものであり、我が国における代表的な生物学的排水処理法である。活性汚泥法は、好気性微生物の活性を維持するため、活性汚泥中の排水に空気を送り込む曝気が必要である。散水ろ床法は、砕石又はプラスチック製の多数のろ材によって形成されたろ床を有する散水ろ床装置を用いて、ろ床の上側から排水を散水し、排水がろ材の表面を滴っていく過程で、ろ材の表面に繁茂した好気性微生物の膜の作用により排水中の有機物の除去を行うものである。好気性微生物の膜への酸素供給は、多数のろ材の間隙に存在する空気中の酸素の拡散移動又は溶解に依っているため、曝気が不要となる。循環式硝化脱窒法は、有機物の除去とともに、排水中のアンモニアを好気性微生物により硝酸イオンに酸化する硝化工程と、硝酸イオンを嫌気性微生物により窒素分子にまで還元する脱窒工程と、を経て、富栄養化原因物質の一つである窒素の除去を行うものである。
【0003】
活性汚泥法は、曝気に多量の空気が必要であり、従って、多量の電力エネルギーが消費される。循環式硝化脱窒法は、硝化工程での曝気が必要となるので、一般に、活性汚泥法で必要とする以上の多量の空気が必要であり、従って、さらに多量の電力エネルギーが消費される。これらに対し、散水ろ床法は、曝気が不要であるので、消費される電力エネルギーの削減が可能である。
【0004】
散水ろ床法は、多数のろ材の間隙に空気が出入りする状態で運転されることから、衛生害虫である蝿(いわゆる、ろ床バエ)が容易にろ材の間隙に入り込み、ろ材を産卵床として利用することで、大量に発生し易い。そのため、導入した散水ろ床装置を運転する上で蠅が大きな障害とならないようにする対策が必要である。例えば、特許文献1には、ろ材として親水性及び吸水性を有する布帛を用いた散水ろ床装置が開示されている。ここでは、布帛に形成される好気性微生物の層が水膜で覆われるため、蝿が発生しない、としている。また、例えば、特許文献2には、蝿の発生を防ぐために、装置内に洗浄水を貯留してろ材を湛水(冠水)させる洗浄水貯留機構と、湛水後に散水ろ床装置内から洗浄水を排出する排水機構と、を有した洗浄手段を備える散水ろ床装置が開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2001−121181号公報
【特許文献2】特開2015−033666号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献1に開示される散水ろ床装置は、ろ材の洗浄手段を備えていないため、使い続けた後に蝿の発生を効果的に抑制できるかどうかが問題であり、また、ろ材としての布帛の耐用年数が長くない、と考えられる。また、特許文献2に開示される散水ろ床装置は、産み付けられた場所によっては、洗浄水による湛水とその洗浄水の排出だけでは、卵等を取り除くことが困難な場合が少なくない、と考えられる。
【0007】
本発明は、係る事由に鑑みてなされたものであり、その目的は、蝿の発生を効果的に抑制できる散水ろ床装置洗浄方法を提供することにある。
【課題を解決するための手段】
【0008】
上記目的を達成するために、請求項に記載の散水ろ床装置洗浄方法は、多数のろ材によって形成された散水ろ床を収容して排水処理時に排水処理を行って処理水を無酸素ろ床装置に排出する散水ろ床装置本体と、前記散水ろ床を洗浄時に洗浄水で湛水する洗浄用湛水設備と、前記洗浄水で湛水された前記散水ろ床を空気爆気する洗浄用空気曝気設備と、を備える散水ろ床装置を定期的に洗浄する散水ろ床装置洗浄方法であって、洗浄時に前記洗浄用湛水設備により前記洗浄水を注入して前記散水ろ床を湛水したのち、前記洗浄用空気曝気設備により前記散水ろ床を空気曝気して、前記ろ材に付着した蝿の幼虫や卵の剥離を促し、その後、前記散水ろ床の上部から前記蠅の一部を含む前記洗浄水を沈殿装置に排出し、その後、前記散水ろ床の下部から前記蠅の残りを含む前記洗浄水を前記沈殿装置に排出することを特徴とする。
【0009】
請求項に記載の散水ろ床装置洗浄方法は、多数のろ材によって形成された散水ろ床を収容して排水処理を行う散水ろ床装置本体と、前記散水ろ床を洗浄時に洗浄水で湛水する洗浄用湛水設備と、前記洗浄水で湛水された前記散水ろ床を空気爆気する洗浄用空気曝気設備と、を備える散水ろ床装置を定期的に洗浄する散水ろ床装置洗浄方法であって、前記洗浄用湛水設備により前記洗浄水を注入して前記散水ろ床を湛水したのち、前記洗浄用空気曝気設備により前記散水ろ床を空気曝気して、前記ろ材に付着した蝿の幼虫や卵の剥離を促し、その後、前記散水ろ床の上面から深さ50mmまでに溜まる量以上の量であり、かつ、前記散水ろ床の上面から深さ400mmまでに溜まる量以下の量の前記洗浄水を前記散水ろ床の上部から排出し、その後、前記散水ろ床の下部から前記洗浄水を排出することを特徴とする。
【0010】
請求項に記載の散水ろ床装置洗浄方法は、請求項1又は2に記載の散水ろ床装置洗浄方法において、前記湛水に用いる前記洗浄水に水道水、井戸水または排水処理水を用いることを特徴とする。
【0011】
請求項に記載の散水ろ床装置洗浄方法は、多数のろ材によって形成された散水ろ床を収容して排水処理を行う散水ろ床装置本体と、前記散水ろ床を洗浄時に洗浄水で湛水する洗浄用湛水設備と、前記洗浄水で湛水された前記散水ろ床を空気爆気する洗浄用空気曝気設備と、を備える散水ろ床装置を定期的に洗浄する散水ろ床装置洗浄方法であって、前記ろ材は、直径10〜30mm、長さ10〜30mmの円筒状のプラスチック製であり、前記洗浄用湛水設備により前記洗浄水を注入して前記散水ろ床を湛水したのち、前記洗浄用空気曝気設備により風量を0.6〜1.0m/m・min、前記空気曝気の時間を1〜5minに設定して前記散水ろ床を空気曝気して、前記ろ材に付着した蝿の幼虫や卵の剥離を促し、その後、前記洗浄水を排出することを特徴とする。
【0012】
請求項に記載の散水ろ床装置洗浄方法は、請求項1〜4のいずれか1項に記載の散水ろ床装置洗浄方法において、定期的に前記散水ろ床部を洗浄する頻度を3日間に1回以上とすることを特徴とする。
【発明の効果】
【0013】
本発明の散水ろ床装置洗浄方法によれば、蝿の発生を効果的に抑制することが可能になる。
【図面の簡単な説明】
【0014】
図1】本発明の実施形態に係る散水ろ床装置を含む循環式硝化脱窒システムの概略図である。
図2】同上の散水ろ床装置を示すものであって、(a)が正面視断面図、(b)が平面図である。
図3】同上の散水ろ床装置のろ材の例を拡大して示す外観図であって、(a)が正面図、(b)が側面図である。
図4】同上の散水ろ床装置とともに循環式硝化脱窒システムで用いられる無酸素ろ床装置を示すものであって、(a)が平面図、(b)がA−Aで示す切断面での断面図である。
図5A】同上の散水ろ床装置の実験における散水ろ床の側面部の幼虫の個体数分布を示すグラフであって、洗浄を行った散水ろ床装置についてのものである。
図5B】同上の散水ろ床装置の実験における散水ろ床の側面部の幼虫の個体数分布を示すグラフであって、洗浄を行わなかった散水ろ床装置についてのものである。
図6A】同上の散水ろ床装置の実験における散水ろ床装置から排出された洗浄水に含まれる蠅について幼虫、蛹、成虫の数を示すグラフであって、洗浄水全部についてのものである。
図6B】同上の散水ろ床装置の実験における散水ろ床装置から排出された洗浄水に含まれる蠅について幼虫、蛹、成虫の数を示すグラフであって、下部から排出された洗浄水のみについてのものである。
図7】同上の散水ろ床装置の実験における散水ろ床装置中の月別の幼虫の個体サイズを示すグラフであって、洗浄を行った散水ろ床装置と洗浄を行わなかった散水ろ床装置について示している。
図8A】同上の散水ろ床装置の実験における循環式硝化脱窒システムに流入する排水中の各態窒素濃度の経時変化を示すグラフである。
図8B】同上の散水ろ床装置の実験における処理水中の各態窒素濃度の経時変化を示すグラフであって、洗浄を行った散水ろ床装置についてのものである。
図8C】同上の散水ろ床装置の実験における処理水中の各態窒素濃度の経時変化を示すグラフであって、洗浄を行わなかった散水ろ床装置についてのものである。
図9】同上の散水ろ床装置の実験における処理水中のCOD(化学的酸素要求量)の経時変化を示すグラフであって、洗浄を行った散水ろ床装置と洗浄を行わなかった散水ろ床装置について示している。
図10】同上の散水ろ床装置の実験における処理水中のSS(浮遊物質量)の経時変化を示すグラフであって、洗浄を行った散水ろ床装置と洗浄を行わなかった散水ろ床装置について示している。
【発明を実施するための形態】
【0015】
以下、本発明を実施するための形態を説明する。本発明の実施形態に係る散水ろ床装置1は、図1に示すように、循環式硝化脱窒システム2の一部を構成する装置である。循環式硝化脱窒システム2は、上述した循環式硝化脱窒法を実現するシステムである。循環式硝化脱窒システム2では、散水ろ床装置1は、排水W中のアンモニアを好気性微生物により硝酸イオンに酸化する硝化工程を行う。また、散水ろ床装置1は、好気性微生物により排水W中の有機物の除去にも寄与する。
【0016】
散水ろ床装置1は、図1に示すように、散水ろ床装置本体3と洗浄用湛水設備4と洗浄用空気曝気設備5とを備える。
【0017】
散水ろ床装置本体3は、図2(a)、(b)に示すように、筒状の散水ろ床外筒31の内部に、多数のろ材(担体)32aによって形成された散水ろ床32を収容する。散水ろ床32は、上方から排水Wが散水され、排水Wが内部を下方に向かってゆっくりと流れることによって排水処理を行うことができる。ろ材32aは、汚泥(堆積汚泥)を捕捉し、ろ材32aの表面には排水W中のアンモニアを硝酸イオンに酸化し得る好気性微生物が繁茂することになる。散水ろ床32は、その上面及び下面が外気に曝されて空気が供給され、空気中の酸素は、多数のろ材32aの間隙を拡散移動することになる。また、空気中の酸素は、散水ろ床32の上面から供給される排水Wに溶解しても拡散移動する。こうして、好気性微生物の膜への酸素供給が行われる。なお、図2(b)では、後述する洗浄水注入管41、空気注入管51、上部排出管44については、図示を省略している。
【0018】
ろ材32aは、プラスチック製(例えば、高密度ポリエチレン製)の成形品である。プラスチック製のろ材32aは、砕石のろ材に比べて比重が小さい。それにより、ろ材32aは、後述する洗浄時の空気曝気によって容易に動き得、ろ材32aに付着した蝿の幼虫や卵の剥離を促すことができる。ろ材32aの比重は、0.9〜1.1とすることができる。また、ろ材32aは、様々な形状のものが可能であるが、例えば、図3に示すように、円筒状のものとすることができる。
【0019】
散水ろ床外筒31は、その中空部の底部を塞ぐように、多数の網目の有する薄板状の支持体33を取り付けることができる。この網目状の支持体33は、散水ろ床外筒31内に収容する散水ろ床32の多数のろ材32aを支持する。従って、支持体33の網目の大きさは、ろ材32aよりも小さいものである。
【0020】
また、散水ろ床外筒31には、後述する下部排出管35、洗浄水注入管41、空気注入管51を取り付けるための管取付具34を散水ろ床外筒31の下側に設けることができる。管取付具34は、内部空間を有し、その内部空間に後述する下部排出管35、洗浄水注入管41、空気注入管51のそれぞれの中空部が連通する。管取付具34は、図示するように略円錐状とすることができる。また、散水ろ床外筒31と管取付具34は、それぞれにフランジ31a、34aを有するようにして、フランジ31a、34aにおいて固定具(ボルト及びナットなど)で互いに固定され、散水ろ床32の直下に管取付具34の内部空間が位置するようにできる。また、支持体33は、散水ろ床外筒31と管取付具34の間に挟み込むことで取り付けることができる。
【0021】
散水ろ床装置本体3は、排水処理時に散水ろ床32を通った処理水Pが排出される下部排出管35を有する。下部排出管35には、三方コック36を設け、排水処理時には後述する無酸素ろ床装置7へ処理水Pが排出されるようにし、散水ろ床装置1の洗浄時には、下部排出管35を閉じて散水ろ床32を湛水させたり後述する沈殿装置6へ洗浄水Cが排出されるようにさせたりすることができる(図1参照)。
【0022】
洗浄用湛水設備4は、散水ろ床装置1の洗浄時に、散水ろ床32を湛水するための設備である。洗浄用湛水設備4は、散水ろ床32に下方から洗浄水Cを注入することができる洗浄水注入管41を有している。洗浄水注入管41は、具体的には、上述したように、管取付具34に取り付けることができる。洗浄水注入管41には、通常、洗浄水注入管41を任意に開閉できるコック42が設けられて、上方に向かって洗浄水Cを吐出するようにポンプ43が接続されている。また、後述するように、湛水後に散水ろ床32の上部からも洗浄水Cを排出する場合は、上部排出管44を設けるようにする。
【0023】
洗浄用空気曝気設備5は、散水ろ床装置1の洗浄時に、散水ろ床32を空気により爆気する設備である。洗浄用空気曝気設備5は、散水ろ床32に下方から空気Aを注入することができる空気注入管51を有している。空気注入管51は、具体的には、上述したように、管取付具34に取り付けることができる。空気注入管51には、通常、任意に開閉できるコック52が設けられ、上方に向かって空気を吐出するようにエアポンプ53が接続されている。
【0024】
循環式硝化脱窒システム2は、更に、前述した沈殿装置6と無酸素ろ床装置7を備える。沈殿装置6と無酸素ろ床装置7は、従来の機能及び構成でよいので詳細は説明しないが、基本的な機能と構成は以下の通りである。
【0025】
沈殿装置6は、処理する前の生の排水Wが流入し、その排水W中の大きな固形物Sを沈殿分離させる。固形物Sが分離され取り除かれた排水Wは、ポンプ6Aにより、無酸素ろ床装置7に送られる。固形物Sは、所定の機構でもって排出される。
【0026】
無酸素ろ床装置7は、排水W中の硝酸イオンを嫌気性脱窒微生物により窒素分子にまで還元する脱窒工程を行う。また、無酸素ろ床装置7は、嫌気性微生物により排水W中の有機物の除去を行うこともできる。無酸素ろ床装置7は、図4に示すように、無酸素ろ床槽71の内部に、嫌気性微生物が繁茂したろ材(担体)によって形成されたろ床72と、ろ床72の中に設けられた複数の仕切板73と、を有している。また、無酸素ろ床装置7は、排水流入管74と排水流出管75と処理水流出管76と、を有している。また、無酸素ろ床装置7は、排水Wと処理水Pを隔絶する隔絶板77を有している。排水流入管74から流入した排水Wは、複数の仕切板73の間を上下に迂流しながら、ろ床72を通って有機物の除去及び脱窒が行われる。ろ床72を通った排水Wは、排水流出管75から流出し、ポンプ7Aにより散水ろ床装置1に送られる(図1参照)。また、散水ろ床装置1から排出された処理水Pは、上方から流入し、処理水Pの一部は、最終の処理水Pとして処理水流出管76から流出し、残りは、再度、ろ床72を通過して散水ろ床装置1へ循環する。
【0027】
次に、散水ろ床装置1の操作及び動作を詳細に説明する。
【0028】
先ず、排水処理時について述べる。排水処理時には、散水ろ床装置1は、散水ろ床装置1、洗浄用湛水設備4の洗浄水注入管41のコック42及び洗浄用空気曝気設備5の空気注入管51のコック52は閉じられている。散水ろ床装置1は、散水ろ床32の上方から排水Wが散水され、排水Wがろ材32aの表面を滴っていく過程で、ろ材32aの表面に繁茂した好気性微生物の膜の作用により排水W中のアンモニアを好気性微生物により硝酸イオンに酸化する。また、排水W中の有機物の除去も行われる。散水ろ床装置1からの処理水Pは、下部排出管35(及び三方コック36)を通じて無酸素ろ床装置7に排出される。
【0029】
次に、散水ろ床装置1の洗浄について述べる。散水ろ床装置1は、定期的に、排水処理を一時止めて洗浄が行われる。
【0030】
散水ろ床装置1の洗浄時には、下部排出管35(三方コック36)を閉じ、洗浄水注入管41(コック42)を開き、洗浄水Cを注入して散水ろ床32を湛水する。その後、空気注入管51(コック52)を開き、散水ろ床32を空気曝気する。空気曝気により、ろ材32aを細かく動かして、ろ材32aに付着した蝿の幼虫や卵の剥離を促す。このとき、ろ材32aに付着した蝿の幼虫や卵の剥離を効果的に促すには、プラスチック製のろ材32aは、直径10〜30mm、長さ10〜30mmの円筒状のものを用い、空気曝気の風量を0.6〜1.0m/m・minとし、空気曝気の時間を1〜5minに設定するのが好ましい。なお、洗浄水注入管41によって洗浄水Cを注入しながら、空気注入管51によって空気曝気してもよい。
【0031】
散水ろ床32を湛水し空気曝気した後には、散水ろ床32に溜まった洗浄水Cを排出する。この場合、沈殿装置6へ洗浄水Cが排出されるように下部排出管35(三方コック36)を開いて散水ろ床32の下部からのみ洗浄水Cを排出することも可能であるが、散水ろ床32の下部から洗浄水Cを排出する前に、上部排出管44を通して散水ろ床32の上部から洗浄水Cの一部を排出するのが好ましい。これは、後述する実験結果で示すように、散水ろ床32の上部で蠅の幼虫の存在割合が大きく、そのため、散水ろ床32の上部から排出された洗浄水Cには、下部から排出された洗浄水Cに比較して、極めて多くの蠅が含まれるからである。散水ろ床32の上部から洗浄水Cの一部を排出するには、洗浄水注入管41を開いて洗浄水Cを注入して散水ろ床32に溜まった洗浄水Cを上方に押し出すようにすればよい。
【0032】
散水ろ床32の上部から排出する洗浄水Cは、散水ろ床32の上面から深さ50mmまでに溜まる量以上の量であるのが好ましい。これは、散水ろ床32の上面から深さ50mmまでに溜まる量の洗浄水Cを散水ろ床32の上部から排出する後述する実験結果により、効果が確認された事実に基づく。また、散水ろ床32の上部から排出する洗浄水Cは、散水ろ床32の上面から深さ400mmまでに溜まる量以下の量であるのが好ましい。これは、後述する実験結果により、蠅の幼虫が散水ろ床32の上部、特に0〜400mmの深さの区間に集中している事実と、散水ろ床32の上部から排出する洗浄水Cを余り多くすると経済的でなくなる事実と、に基づいている。
【0033】
湛水に用いる洗浄水Cには、水道水、井戸水、又は、上記処理水Pを貯留したものなどの排水処理水を用いることができる。
【0034】
蠅(ろ床バエ)には、チョウバエ科のPsychoda albipunctataやPsychoda alternataなどの複数種類がいる。散水ろ床32に産み付けられた蠅の卵は48時間以内に孵化し、1〜3週間で成虫になる。成長し大きくなった幼虫はろ材32aに物理的に捕捉されやすく、洗浄による除去効果が小さくなるから、卵や孵化直後の小型の幼虫段階での除去を想定し、洗浄頻度は3日に1回以上とするのが好ましい。
【0035】
このように、散水ろ床装置1は、定期的に、排水処理を一時止め、上述した洗浄を行うことで、蝿の発生を効果的に抑制することが可能になる。
【0036】
なお、散水ろ床32の洗浄によりろ材32aに捕捉されている堆積汚泥も少し除去されることになる。その結果として、ろ材32aの表面の好気性微生物の量が減少し、散水ろ床装置1の本来の機能である水処理能力に悪影響を及ぼす可能性が懸念されるが、後述する実験結果(図8A図10参照。)で示すように、水処理能力が低下することはない。逆に、散水ろ床32の洗浄は、排水処理中での堆積汚泥の剥離及びその流出を防止し、ろ材32aの表面の好気性微生物の膜を適切な状態に維持し。水処理能力を維持することができる。
【0037】
また、散水ろ床装置1は、このように循環式硝化脱窒システム2の一部を構成する装置とする他、他のシステムの一部を構成する装置としたり、或いは、単体として上述した散水ろ床法を実現する装置としたりすることが可能である。この場合、当然であるが、好気性微生物は様々なものが可能である。
【0038】
次に、本願発明者が行った散水ろ床装置1及びその洗浄方法の実験について以下説明する。この実験では、図1に示した循環式硝化脱窒システム2を用いた。散水ろ床装置1の散水ろ床外筒31は、透明アクリル製の円筒状であり、高さ1000mm、内径80mmとした。
【0039】
ろ材32aは、直径15mm、長さ15mmの円筒状の高密度ポリエチレン製の成形品(比重0.98)(大日本プラスチックス株式会社製のラメールチューブLT−15)を用いた。これらのろ材32aを散水ろ床外筒31に約540g(嵩容積4.5L、充填高さ約900mm)充填して散水ろ床32を形成した。
【0040】
散水ろ床外筒31の底部には、網目状の支持体33が取り付けられている。また、支持体33には、下部排出管35、洗浄水注入管41、空気注入管51が設けられている。下部排出管35には三方コック36が設けられ、排水処理時には処理水Pが無酸素ろ床装置7へ、散水ろ床装置1の洗浄時には沈殿装置6へ洗浄水Cが排出される。洗浄水注入管41にはコック42、空気注入管51にはコック52が設けられ、任意に開閉できるようになっている。また、空気注入管51には吐出量3L/minのエアポンプ53が接続されている。
【0041】
無酸素ろ床装置7は幅70mm、高さ125mm、奥行320mmの槽型で、槽内に紐状接触材(大日本プラスチックス株式会社製クレオコードKC−30)を180cm充填している。
【0042】
実験用の循環式硝化脱窒システム2は、2個(循環式硝化脱窒システム2A及び2B)用意し、実験は次のように行った。
【0043】
実験の開始日(2015年4月25日)から2015年5月31日までは、循環式硝化脱窒システム2A及び2Bにおいて、排水処理のみを行い、散水ろ床装置1の洗浄は行わなかった。2015年6月1日に、蠅の発生が確認されたので、それ以降、循環式硝化脱窒システム2Aでは、以下に述べる洗浄を一定の頻度で行った。循環式硝化脱窒システム2Bでは、2015年6月1日以降も、洗浄は行わず、排水処理のみを継続して行った。
【0044】
2015年6月1日〜7月16日の期間(期間1)、循環式硝化脱窒システム2Aでは、3日に1回の頻度で、排水処理を一時止め以下に述べるような散水ろ床装置1の洗浄を行った。すなわち、下部排出管35を閉じ、洗浄水注入管41を開き、洗浄水Cを散水ろ床32の高さ990mmまで供給して、散水ろ床32を湛水した。次に、洗浄水注入管41を閉じ、空気注入管51を開いて3L/minの空気流量(曝気風量0.6m/m・min)で空気曝気を3分間行った。曝気終了後、空気注入管51を閉じ、下部排出管35を開いて散水ろ床32の下部からの洗浄水Cを排出した。
【0045】
2015年7月17日〜8月22日の期間(期間2)、循環式硝化脱窒システム2Aでは、3日に1回の頻度で、排水処理を一時止め以下に述べる散水ろ床装置1の洗浄を行った。すなわち、下部排出管35を閉じ、洗浄水注入管41を開いて、洗浄水Cを散水ろ床32の高さ990mmまで供給して、散水ろ床32を湛水した。次に洗浄水注入管41を閉じ、空気注入管51を開いて3L/minの空気流量(曝気風量0.6m/m・min)で空気曝気を3分間行った。曝気終了後、空気注入管51を閉じ、上部排出管44を通して散水ろ床32の上部から200mL(全洗浄水の5%)(散水ろ床32の上面から深さ50mmまでに溜まる量)の洗浄水Cを排出した後、下部排出管35を開いて散水ろ床32の下部からの残りの洗浄水Cを排出した。
【0046】
実験期間中、排出された洗浄水C中の蠅の幼虫、蛹、成虫を計数するとともに、散水ろ床32の側面写真を定期的に撮影し、写真に記録された蠅の幼虫の数を計数した。
【0047】
実験結果は、以下の通りである。なお、蠅として、Psychoda albipunctataとPsychoda alternataの2種類が観測されたが、実験結果を示す以下に説明する各図では両者をまとめて示している。
【0048】
図5A図5Bに、上記の期間1及び期間2での散水ろ床32の側面部の蠅の幼虫の分布(側面積3.85×10−3に観測された個体数)を示す。横軸は月日、縦軸は棒グラフで示す、上部から0〜200mmの区間a、200〜400mmの区間b、400〜600mmの区間c、600〜800mmの区間d、800〜1000mmの区間e、における幼虫の数である。図5Aは、循環式硝化脱窒システム2Aでのもの、図5Bは、循環式硝化脱窒システム2Bでのものである。
【0049】
図5A図5Bより、期間1においては、循環式硝化脱窒システム2Aでは、循環式硝化脱窒システム2Bと比較して蠅の幼虫の個体数が大幅に減っているのが分かる(より詳細には66.0%減)。これは、3日に1回の頻度で洗浄し、散水ろ床32の下部から排出された洗浄水Cによって幼虫又は卵を除去した結果である。また、循環式硝化脱窒システム2Aでは、目視で判る程度にろ材32aに捕捉されている堆積汚泥の量も減少しており、幼虫の餌となる汚泥の減少も幼虫の低減に貢献していたものと考えられる。
【0050】
また、図5A図5Bより、期間1においては、循環式硝化脱窒システム2A、2Bともに、散水ろ床32の上部、特に0〜400mmの区間に、幼虫が集中していることが分かる。また循環式硝化脱窒システム2Aでは、散水ろ床32の上部から600〜1000mmの区間でほとんど幼虫が確認されなかった。蠅の成虫が散水ろ床32の上部から侵入して産卵することと、散水ろ床32の洗浄により散水ろ床32の下部の卵や幼虫が優先的に洗浄水Cに含まれて除去されることとが、要因として考えられる。
【0051】
また、図5A図5Bより、期間2においては、循環式硝化脱窒システム2Aでは、循環式硝化脱窒システム2Bと比較して、蠅の幼虫が15.5%にまで減っている。これは、期間2では、3日に1回の頻度で洗浄し、散水ろ床32の下部から排出された洗浄水Cによって幼虫又は卵を除去する前に、散水ろ床32の上部から排出された洗浄水Cによって幼虫又は卵を除去した結果であり、散水ろ床32の下部からと上部から排出された洗浄水Cを併用した場合の効果が確認された。
【0052】
次に、図6A図6Bに、循環式硝化脱窒システム2Aにおいて散水ろ床装置1から排出された洗浄水Cに含まれる蠅について幼虫、蛹、成虫の数を示す。横軸は月日、右側の縦軸は折れ線グラフfで示す幼虫の数、左側の縦軸は棒グラフで示す蛹(符号gの部分)と成虫(符号hの部分)の数である。図6Aは、洗浄水C全部(下部から排出された洗浄水Cと上部から排出された洗浄水Cの合計)についてのもの、図6Bは、下部から排出された洗浄水Cのみについてのものである。下部から排出された洗浄水Cには成虫は観察されていない。なお、図6Aおいては、期間1のデータは、図6Bと同じであるので省略している。
【0053】
図6A図6Bより、散水ろ床装置1の上部から排出された洗浄水Cに含まれる蠅(幼虫、蛹、成虫)の数は、下部から排出された洗浄水Cに比較して極めて多く、従って、上部からの洗浄水Cの排出による蠅の除去効果は、下部からの洗浄水Cの排出に比較して極めて大きいことが分かる。詳細には、上部から排出された洗浄水Cに含まれる蠅の数は、下部から排出された洗浄水Cに含まれる蠅の数の860±176倍にも達していた。なお、図6A図6Bより、期間2の初めから2週間後の8月1日頃より洗浄水Cに含まれる蠅の数が減少しているが、これは散水ろ床装置1の洗浄により、卵が効果的に除去されたこと、及び散水ろ床装置1の洗浄に伴う成虫の減少により産卵数が抑制されたためであると考えられる。
【0054】
また、下記の表1に、期間2において上部から排出された洗浄水C及び下部から排出された洗浄水Cの各1Lに含まれる幼虫、蛹、成虫の数(平均と標準偏差)を示す。
【0055】
【表1】
【0056】
次に、図7に、散水ろ床装置1中の月別の幼虫の個体サイズを示す。各月において、左側が循環式硝化脱窒システム2A、右側が循環式硝化脱窒システム2Bにおけるものである。散水ろ床装置1の洗浄を開始した6月には循環式硝化脱窒システム2A、2Bの間で幼虫の個体サイズに有意差は認められなかった。7月以降、循環式硝化脱窒システム2Bについては個体サイズに変化はなかったが、循環式硝化脱窒システム2Aでは平均個体サイズが1.95倍に上昇した。これは、個体サイズの大きな幼虫は散水ろ床32内のろ材32aに物理的に捕捉されやすいことから、循環式硝化脱窒システム2Aでは洗浄により個体サイズの小さな幼虫が優先的に除去されたことによる結果であると考えられる。
【0057】
以上の図5A図7で示した実験結果より、散水ろ床装置1の上記の洗浄を行うことで蠅の発生を効果的に抑制できることが分かる。
【0058】
次に、散水ろ床装置1の洗浄による水処理能力への影響についての実験結果を述べる。水処理能力の指標として、処理水P中の各態窒素濃度、COD(化学的酸素要求量)、SS(浮遊物質量)のそれぞれの経時変化を調べた。
【0059】
図8A図8Cに各態窒素濃度の経時変化を示す。図8Aは、循環式硝化脱窒システム2A又は2Bに流入する排水W中の各態窒素濃度の経時変化を示し、図8Bは、循環式硝化脱窒システム2Aにおける処理水P中の各態窒素濃度の経時変化を示し、図8Cは、循環式硝化脱窒システム2Bにおける処理水P中の各態窒素濃度の経時変化を示す。図8B及び図8Cの符号lの部分は、亜硝酸イオンの濃度を示す。図8B及び図8Cの符号mの部分は、硝酸イオンの濃度を示す。図8Aの符号iの部分、図8B及び図8Cの符号nの部分は、アンモニアイオンの濃度を示す。図8Aの符号jの部分、図8B及び図8Cの符号oの部分は、その他の態様を示す。また、図8B及び図8Cの曲線kは、循環式硝化脱窒システム2A又は2Bに流入する排水Wの窒素濃度(各態窒素濃度の合計)から処理水P中の窒素濃度(各態窒素濃度の合計)を引いて求めた窒素の除去効率である。
【0060】
図8A図8Cより、循環式硝化脱窒システム2Aにおいて水処理性能の低下は認められなかった。従って、各態窒素濃度の点から、散水ろ床装置1の洗浄によって水処理能力への悪影響はないことが分かる。
【0061】
また、図9に、CODの経時変化を示す。曲線pは、循環式硝化脱窒システム2A及び2Bに流入する排水Wにおける濃度、曲線qは、循環式硝化脱窒システム2Aでの処理水Pにおける濃度、曲線rは、循環式硝化脱窒システム2Bでの処理水Pにおける濃度である。また、図10に、SSの経時変化を示す。曲線sは、循環式硝化脱窒システム2A及び2Bに流入する排水Wにおける濃度、曲線tは、循環式硝化脱窒システム2Aでの処理水Pにおける濃度、曲線uは、循環式硝化脱窒システム2Bでの処理水Pにおける濃度である。
【0062】
図9図10より、循環式硝化脱窒システム2Aにおいて水処理性能の低下は認められなかった。従って、COD及びSSの点からも、散水ろ床装置1の洗浄によって水処理能力への悪影響はないことが分かる。また、循環式硝化脱窒システム2Bでは、散水ろ床32中のろ材32aに捕捉されている堆積汚泥の剥離及びその流出が途中起こり、それに伴うCOD及びSSの一時的な悪化が観測されたが、循環式硝化脱窒システム2Aでは、それは起こらず、ろ材32aの表面の好気性微生物の膜を適切な状態に維持し、水処理能力を維持していた。
【0063】
以上、本発明の実施形態に係る散水ろ床装置及びその洗浄方法について説明したが、本発明は、上述の実施形態に記載したものに限られることなく、特許請求の範囲に記載した事項の範囲内でのさまざまな設計変更が可能である。
【符号の説明】
【0064】
1 散水ろ床装置
2 循環式硝化脱窒システム
3 散水ろ床装置本体
31 散水ろ床外筒
32 散水ろ床
32a ろ材
33 支持体
34 管取付具
35 下部排出管
36 三方コック
4 洗浄用湛水設備
41 洗浄水注入管
42 コック
43 ポンプ
44 上部排出管
5 洗浄用空気曝気設備
51 空気注入管
52 コック
53 エアポンプ
6 沈殿装置
7 無酸素ろ床装置
A 空気
C 洗浄水
P 処理水
W 排水
図1
図2
図3
図4
図5A
図5B
図6A
図6B
図7
図8A
図8B
図8C
図9
図10