(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0005】
ロードインデックスが大きなタイヤ用に、さらなる操縦安定性の向上が求められている。さらに、ロードインデックスが大きなタイヤでは、ベルトの強度が十分でないことに起因して、ベルトの端でコードがゴムから剥がれる「BEL」が起こりうる。ベルトには、さらなる耐久性の向上も求められている。
【0006】
操縦安定性及び耐久性の向上のために、ベルトについて、単位幅あたりのコードの本数(コード密度)を増やす方法や、コードを太くする方法がある。これらにより、ベルトの強度は向上する。しかし、これらの方法では、コード間隔が狭くなる場合がある。コード間のゴム量が少ないことに起因して、耐久性が低下することがある。さらにこれらの方法では、ベルトの質量が大きくなる。高速走行時の遠心力が大きくなり、高速耐久性が低下するおそれがある。
【0007】
本発明の目的は、良好な操縦安定性及び耐久性が達成された空気入りタイヤの提供にある。
【課題を解決するための手段】
【0008】
本発明に係る空気入りタイヤは、その外面がトレッド面をなすトレッドと、このトレッドの半径方向内側に位置するベルトとを備えている。上記ベルトは、内側層及びこの内側層の半径方向外側に積層された外側層を備えている。上記内側層及び上記外側層のそれぞれは、並列された多数のスチールからなるコードを備えている。上記コードの体積の、上記ベルトの全体積に占める割合は11%以上14%以下である。
【0009】
好ましくは、上記内側層の上記コード及び上記外側層の上記コードは、周方向に対して傾斜している。上記内側層の上記コードの周方向に対する傾斜方向は、上記外側層の上記コードの周方向に対する傾斜方向とは逆である。上記内側層において、この内側層のセンター部における上記コードの周方向に対する傾斜角度αiの絶対値は、この内側層のショルダー部における上記コードの周方向に対する傾斜角度βiの絶対値より小さく、角度αiと角度βiとの違いは1.5°以上2.5°以下である。上記外側層において、この外側層のセンター部における上記コードの周方向に対する傾斜角度αoの絶対値は、この外側層のショルダー部における上記コードの周方向に対する傾斜角度βoの絶対値より小さく、角度αoと角度βoとの違いは1.5°以上2.5°以下である。
【0010】
好ましくは、上記内側層において、隣接する上記コード間の隙間の幅は0.4mm以上であり、上記外側層において、隣接する上記コード間の隙間の幅は0.4mm以上である。
【0011】
好ましくは、上記内側層の上記コードと、上記外側層の上記コードとの隙間の幅は0.4mm以上である。
【0012】
好ましくは、内側層及び上記外側層のそれぞれはトッピングゴムをさらに備えている。上記内側層の上記トッピングゴムの70°における複素弾性率E
*iが8MPa以上12MPa以下である。上記外側層の上記トッピングゴムの70°における複素弾性率E
*oが8MPa以上12MPa以下である。
【発明の効果】
【0013】
発明者らは、ベルトの構造を詳細に検討した。その結果、ベルトの体積と、このベルトに含まれるコードの体積との割合が、操縦安定性及び耐久性に大きく影響することを見出した。これらの割合を適切に設定することで、良好な操縦安定性及び耐久性が実現することを見出した。このタイヤでは、コードの体積の、ベルトの全体積に占める割合が11%以上14%以下である。このようにすることで、このタイヤでは、良好な操縦安定性及び耐久性が実現されている。
【発明を実施するための形態】
【0015】
以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。
【0016】
図1には、空気入りタイヤ2が示されている。
図1において、上下方向がタイヤ2の半径方向であり、左右方向がタイヤ2の軸方向であり、紙面との垂直方向がタイヤ2の周方向である。
図1において、一点鎖線CLはタイヤ2の赤道面を表わす。このタイヤ2の形状は、トレッドパターンを除き、赤道面に対して対称である。
【0017】
このタイヤ2は、トレッド4、一対のサイドウォール6、一対のクリンチ8、一対のビード10、カーカス12、ベルト14、バンド16、インナーライナー18及びチェーファー19を備えている。このタイヤ2は、チューブレスタイプである。このタイヤ2は、乗用車に装着される。
【0018】
トレッド4は、半径方向外向きに凸な形状を呈している。トレッド4は、路面と接地するトレッド面20を形成する。トレッド面20には、溝22が刻まれている。この溝22により、トレッドパターンが形成されている。トレッド4は、ベース層24とキャップ層26とを有している。キャップ層26は、ベース層24の半径方向外側に位置している。キャップ層26は、ベース層24に積層されている。ベース層24は、接着性に優れた架橋ゴムからなる。ベース層24の典型的な基材ゴムは、天然ゴムである。キャップ層26は、耐摩耗性、耐熱性及びグリップ性に優れた架橋ゴムからなる。
【0019】
それぞれのサイドウォール6は、トレッド4の端から半径方向略内向きに延びている。サイドウォール6は、耐カット性及び耐候性に優れた架橋ゴムからなる。サイドウォール6は、カーカス12の損傷を防止する。
【0020】
それぞれのクリンチ8は、サイドウォール6の半径方向略内側に位置している。クリンチ8は、軸方向において、ビード10及びカーカス12よりも外側に位置している。クリンチ8は、耐摩耗性に優れた架橋ゴムからなる。クリンチ8は、リムのフランジと当接する。
【0021】
それぞれのビード10は、クリンチ8の軸方向内側に位置している。ビード10は、コア28と、このコア28から半径方向外向きに延びるエイペックス30とを備えている。コア28はリング状であり、巻回された非伸縮性ワイヤーを含む。ワイヤーの典型的な材質は、スチールである。エイペックス30は、半径方向外向きに先細りである。エイペックス30は、高硬度な架橋ゴムからなる。
【0022】
カーカス12は、カーカスプライ32からなる。カーカスプライ32は、両側のビード10の間に架け渡されており、トレッド4及びサイドウォール6に沿っている。カーカスプライ32は、コア28の周りにて、軸方向内側から外側に向かって折り返されている。この折り返しにより、カーカスプライ32には、主部34と折り返し部35とが形成されている。
【0023】
図示されないが、カーカスプライ32は、並列された多数のコードとトッピングゴムとからなる。それぞれのコードが赤道面に対してなす角度の絶対値は、75°から90°である。換言すれば、このカーカス12はラジアル構造を有する。コードは、有機繊維からなる。好ましい有機繊維として、ポリエステル繊維、ナイロン繊維、レーヨン繊維、ポリエチレンナフタレート繊維及びアラミド繊維が例示される。カーカス12が、2枚以上のプライから形成されてもよい。
【0024】
ベルト14は、トレッド4の半径方向内側に位置している。ベルト14は、カーカス12と積層されている。ベルト14は、カーカス12を補強する。ベルト14は、内側層36及び外側層38からなる。
図1に示されるとおり、この実施形態では、内側層36の幅は外側層38の幅よりも大きい。ベルト14が、3以上の層を備えていてもよい。
【0025】
バンド16は、トレッド4の半径方向内側に位置している。バンド16は、ベルト14の半径方向外側に位置している。バンド16は、ベルト14に積層されている。バンド16は、コードとトッピングゴムとからなる。コードは、螺旋状に巻かれている。このバンド16は、いわゆるジョイントレス構造を有する。コードは、実質的に周方向に延びている。周方向に対するコードの角度は、5°以下、さらには2°以下である。バンド16は、タイヤ2の剛性に寄与しうる。バンド16は、走行時に作用する遠心力の影響を抑制しうる。このタイヤ2は、高速安定性に優れる。コードの材質は、スチールである。コードに、有機繊維が用いられてもよい。好ましい有機繊維としては、ナイロン繊維、ポリエステル繊維、レーヨン繊維、ポリエチレンナフタレート繊維及びアラミド繊維が例示される。
【0026】
インナーライナー18は、カーカス12の内側に位置している。インナーライナー18は、カーカス12の内面に接合されている。インナーライナー18は、架橋ゴムからなる。インナーライナー18には、空気遮蔽性に優れたゴムが用いられている。インナーライナー18の典型的な基材ゴムは、ブチルゴム又はハロゲン化ブチルゴムである。インナーライナー18は、タイヤ2の内圧を保持する。
【0027】
それぞれのチェーファー19は、ビード10の近傍に位置している。タイヤ2がリムに組み込まれると、このチェーファー19がリムと当接する。この当接により、ビード10の近傍が保護される。この実施形態では、チェーファー19は、布とこの布に含浸したゴムとからなる。チェーファー19が、クリンチ8と一体であってもよい。このとき、チェーファー19の材質はクリンチ8の材質と同じである。
【0028】
図2はベルト14の内側層36の一部が示された拡大断面図である。内側層36は、並列された多数のコード40とトッピングゴム42とからなる。
図2は、コード40の延在方向に垂直な断面である。図で示されるとおり、トッピングゴム42は、コード40を覆っている。コード40の材質はスチールである。この実施形態では、コード40は、スチールからなる素線43を2本撚り合わせた構造を備える。図示されないが、外側層38は内側層36と同様の構造である。すなわち、外側層38は、並列された多数のコードとトッピングゴムとからなる。コードの材質はスチールである。コードは、スチールからなる素線を2本撚り合わせた構造を備える。この実施形態では、内側層36のコード40の構造と外側層38のコードの構造とは、同じである。内側層36のコード40の構造と外側層38のコードの構造とが、異なっていてもよい。この実施形態では、内側層36のトッピングゴム42の組成と外側層38のトッピングゴムの組成とは、同じである。内側層36のトッピングゴム42の組成と外側層38のトッピングゴムの組成とが、異なっていてもよい。
【0029】
内側層36の全てのコード40及び外側層38の全てのコードの合計の体積がCVとされ、内側層36及び外側層38を合わせたベルト14の全体積がBVとされたとき、このタイヤ2では、体積CVの体積BVに対する比(CV/BV)は、百分比で11%以上14%以下である。比(CV/BV)が11%以上14%以下となるように、内側層36のコード40及び外側層38のコードについて、その太さ及び間隔が決められる。比(CV/BV)が11%以上14%以下となるように、内側層36のトッピングゴム42及び外側層のトッピングゴムの大きさが決められる。
【0030】
この実施形態では、内側層36と外側層38とは同じ構造である。すなわち、内側層36の全てのコード40の合計の体積がCViとされ、内側層36の全体積がBViとされたとき、体積CViの体積BViに対する比(CVi/BVi)は、百分比で11%以上14%以下である。外側層38の全てのコードの合計の体積がCVoとされ、外側層38の全体積がBVoとされたとき、体積CVoの体積BVoに対する比(CVo/BVo)は、百分比で11%以上14%以下である。
【0031】
図3は、ベルト14の構造が表された模式図である。
図3において、上下方向がタイヤ2の周方向であり、左右方向がタイヤ2の軸方向であり、紙面との垂直方向がタイヤ2の半径方向である。
図3に示されるとおり、内側層36の各コード40及び外側層38の各コード44は、周方向に対して傾斜している。内側層36のコード40の周方向に対する傾斜方向は、外側層38のコード44の周方向に対する傾斜方向とは逆である。
【0032】
図3に示されるとおり、この実施形態では、周方向に延びる一対の仮想直線Liを境界として、内側層36のコード40の傾斜角度が変化している。この一対の直線Liの間の部分が、この内側層36のセンター部Ciである。一対の直線Liの軸方向外側の部分が、この内側層36のショルダー部Siである。符号αiは、内側層36のセンター部Ciにおける、内側層36のコード40の周方向に対する傾斜角度である。符号βiは、内側層36のショルダー部Siにおける、内側層36のコード40の周方向に対する傾斜角度である。この実施形態では、傾斜角度βiの絶対値は、傾斜角度αiの絶対値よりも大きい。内側層36のコード40は、内側層36のショルダー部Siにおいて、センター部Ciよりも周方向に対して大きく傾斜している。
【0033】
図3において、両矢印Wiは、赤道面から直線Liまでの軸方向距離である。
図1において、Wtは、赤道面からトレッド端までの軸方向距離である。距離Wiの距離Wtに対する比(Wi/Wt)は、0.5以上0.8以下である。
【0034】
図3に示されるとおり、この実施形態では、周方向に延びる一対の仮想直線Loを境界として、外側層38のコード44の傾斜角度が変化している。この一対の直線Loの間の部分が、この外側層38のセンター部Coである。一対の直線Loの軸方向外側の部分が、この外側層38のショルダー部Soである。符号αoは、外側層38のセンター部Coにおける、外側層38のコード44の周方向に対する傾斜角度である。符号βoは、外側層38のショルダー部Soにおける、外側層38のコード44の周方向に対する傾斜角度である。この実施形態では、傾斜角度βoの絶対値は、傾斜角度αoの絶対値よりも大きい。外側層38のコード44は、外側層38のショルダー部Soにおいて、センター部Coよりも周方向に対して大きく傾斜している。
【0035】
図3において、両矢印Woは、赤道面から直線Loまでの軸方向距離である。距離Woの距離Wtに対する比(Wo/Wt)は、0.5以上0.8以下である。
【0036】
この実施形態では、角度αiの絶対値と、角度αo外側層38の絶対値との差は2°以内である。角度αi及びαoの絶対値は、10°から35°である。
【0037】
以下では、本発明の作用効果が説明される。
【0038】
ロードインデックスが大きなタイヤ用に、さらなる操縦安定性の向上が求められている。ロードインデックスが大きなタイヤでは、耐久性の向上も求められている。特に、ロードインデックスが85以上のタイヤにおいて、操縦安定性及び耐久性の向上に対する要求が強い。
【0039】
発明者らは、ベルトの構造を詳細に検討した。その結果、ベルトの体積と、このベルトに含まれるコードの体積との割合が、操縦安定性及び耐久性に大きく影響することを見出した。これらの割合を適切に設定することで、ロードインデックスが大きなタイヤ2においても、良好な操縦安定性及び耐久性が実現することを見出した。
【0040】
このタイヤ2では、コード40、44の体積CVの、ベルト14の全体積BVに対する比(CV/BV)は、百分比で11%以上14%以下である。比(CV/BV)を、百分比で11%以上にすることで、このベルト14は、操縦安定性に寄与する。さらにこのベルト14は、効果的にカーカス12を補強する。このベルト14を備えたタイヤ2は、耐久性に優れる。比(CV/BV)を百分比で14%以下とすることで、コード40、44の周辺のゴムが少なくなることに起因するBELの発生が抑えられている。このタイヤ2は、耐久性に優れる。このタイヤ2は、このタイヤ2では、良好な操縦安定性及び耐久性が実現されている。
【0041】
このタイヤ2では、比(CV/BV)を百分比で14%以下とすることで、このトレッド4の剛性は適正に維持される。これは、乗り心地に効果的に寄与する。このタイヤ2では、良好な乗り心地が実現されている。さらに、比(CV/BV)が14%以下であるベルト14は、軽量である。このベルト14を備えたタイヤ2は、軽量である。このベルト14は、タイヤ2の転がり抵抗の低減に寄与する。
【0042】
良好な操縦安定性及び耐久性を実現するとの観点から、比(CV/BV)は12%以上がより好ましい。良好な耐久性及び乗り心地の実現、並びに軽量化の観点から、比(CV/BV)は13.5%以下がより好ましい。
【0043】
前述のとおり、内側層36のコード40では、ショルダー部における周方向に対する傾斜角度βiが、センター部における周方向に対する傾斜角度αiよりも大きいのが好ましい。センター部におけるコード40の傾斜角度αiが小さなベルト14は、トレッド4の周方向の剛性に効果的に寄与する。このタイヤ2は高速走行における操縦安定性及び耐久性に優れる。ショルダー部におけるコード40の傾斜角度βiが大きなベルト14は、トレッド4の横方向の剛性に効果的に寄与する。このタイヤ2は旋回走行における操縦安定性及び耐久性に優れる。
【0044】
傾斜角度αiと傾斜角度βiとの違いは1.5°以上が好ましい。この違いを1.5°以上とすることで、このベルト14は周方向及び横方向の剛性に効果的に寄与する。このタイヤ2は、直線走行及び旋回走行における操縦安定性及び耐久性に優れる。傾斜角度αiと傾斜角度βiとの違いは2.5°以下が好ましい。傾斜角度αiと傾斜角度βiとの違いを2.5°以下とすることで、トレッド4のセンター部とショルダー部との剛性の違いによる乗り心地の低下が抑えられる。このタイヤ2は、乗り心地に優れる。
【0045】
前述のとおり、外側層38のコード44では、ショルダー部における周方向に対する傾斜角度βoが、センター部における周方向に対する傾斜角度αoよりも大きいのが好ましい。センター部におけるコード44の傾斜角度αoが小さなベルト14は、トレッド4の周方向の剛性に効果的に寄与する。このタイヤ2は高速走行における操縦安定性及び耐久性に優れる。ショルダー部におけるコード44の傾斜角度βoが大きなベルト14は、トレッド4の横方向の剛性に効果的に寄与する。このタイヤ2は旋回走行における操縦安定性及び耐久性に優れる。
【0046】
傾斜角度αoと傾斜角度βoとの違いは1.5°以上が好ましい。この違いを1.5°以上とすることで、このベルト14は周方向及び横方向の剛性に効果的に寄与する。このタイヤ2は、直線走行及び旋回走行における操縦安定性及び耐久性に優れる。傾斜角度αoと傾斜角度βoとの違いは2.5°以下が好ましい。傾斜角度αoと傾斜角度βoとの違いを2.5°以下とすることで、トレッド4のセンター部とショルダー部の剛性の違いによる乗り心地の低下が抑えられる。このタイヤ2は、乗り心地に優れる。
【0047】
前述のとおり、このタイヤ2のベルト14では、比(CV/BV)が11%以上14%以下である。これを満たすベルト14について、上記のとおり、内側層36のショルダー部Siにおけるコード40の傾斜角度をセンター部Ciにおけるコードの傾斜角度より大きくし、外側層38のショルダー部Soにおけるコード44の傾斜角度をセンター部Coにおけるコード44の傾斜角度より大きくすることで、このベルト14は、操縦安定性及び耐久性に特に効果的に寄与する。これらを組み合わせることで、操縦安定性及び耐久性に優れたタイヤ2が実現できる。
【0048】
上記のとおり、このベルト14の内側層36では、傾斜角度αiと傾斜角度βiとの違いは1.5°以上2.5°以下である。この内側層36では、そのセンター部Ciとショルダー部Siとで、コード40の傾斜角度の違いは適切に抑えられている。このベルト14の外側層38では、傾斜角度αoと傾斜角度βoとの違いは1.5°以上2.5°以下である。この外側層38では、そのセンター部Coとショルダー部Soとで、コード44の傾斜角度の違いは適切に抑えられている。このベルト14は、成形工程におけるドラムの周長及び加硫工程におけるモールドのキャビティ面の形状を調整することで、実現することができる。このタイヤ2の製造においては、内側層36及び外側層38のそれぞれについて、そのセンター部とショルダー部とで、コード40、44の傾斜角度を変更するために、特別な工程を必要としない。このタイヤ2では、良好な生産性が維持されている。
【0049】
図2において、両矢印Diは、内側層36において、隣接するコード40間の隙間の幅である。幅Diは0.4mm以上が好ましい。幅Diが0.4mm以上の内側層36では、ベルト14が荷重により歪んだときにも、隣接するコード40同士が接触することが防止されている。この内側層36では、コード40が接触することによる、コード40の損傷が防止されている。この内側層36を備えるタイヤ2は、耐久性に優れる。この観点から、幅Diは0.45mm以上がより好ましい。
【0050】
図示されないが、両矢印Doは、外側層38において、隣接するコード44間の隙間の幅である。幅Doは0.4mm以上が好ましい。幅Doが0.4mm以上の外側層38では、ベルト14が荷重により歪んだときにも、隣接するコード44同士が接触することが防止されている。この外側層38では、コード44が接触することによる、コード44の損傷が防止されている。この外側層38を備えるタイヤ2は、耐久性に優れる。この観点から、幅Doは0.45mm以上がより好ましい。
【0051】
図示されないが、両矢印Dioは、内側層36のコード40と、これに隣接する外側層38のコード44との隙間の幅である。幅Dioは0.4mm以上が好ましい。幅Dioが0.4mm以上のベルト14では、ベルト14が荷重により歪んだときにも、隣接する内側層36のコード40と外側層38のコード44とが接触することが防止されている。このベルト14では、コードが接触することによる、コード40、44の損傷が防止されている。このベルト14を備えるタイヤ2は、耐久性に優れる。この観点から、幅Dioは0.45mm以上がより好ましい。
【0052】
ベルトのトッピングゴムの特性は、タイヤの性能に影響を与える。硬いトッピングゴムはベルトの剛性に寄与する。硬いトッピングゴムを備えるタイヤは、操縦安定性に優れる。しかし、硬いトッピングゴムは、タイヤの衝撃吸収性を低下させる。このタイヤは、乗り心地に劣る。柔らかいトッピングゴムを備えるタイヤは、乗り心地に優れる一方で、操縦安定性に劣る。発明者らは、体積CVの体積BVに対する比(CV/BV)が11%以上14%以下であるタイヤでは、トッピングゴムの複素弾性率を適正にすることで、操縦安定性及び乗り心地がより向上できることを見出した。
【0053】
内側層36のトッピングゴム42の複素弾性率E
*iは、8MPa以上が好ましい。複素弾性率E
*iを8MPa以上とすることで、このトッピングゴム42はベルト14の剛性に効果的に寄与する。このタイヤは、操縦安定性に優れる。この観点から、複素弾性率E
*iは9MPa以上がより好ましい。複素弾性率E
*iは、12MPa以下が好ましい。複素弾性率E
*iを12MPa以下とすることで、このベルト14の剛性は適正に抑えられている。このタイヤは乗り心地に優れる。この観点から、複素弾性率E
*iは11MPa以下がより好ましい。
【0054】
外側層38のトッピングゴムの複素弾性率E
*oは、8MPa以上が好ましい。複素弾性率E
*oを8MPa以上とすることで、このトッピングゴムはベルト14の剛性に効果的に寄与する。このタイヤは、操縦安定性に優れる。この観点から、複素弾性率E
*oは9MPa以上がより好ましい。複素弾性率E
*oは、12MPa以下が好ましい。複素弾性率E
*oを12MPa以下とすることで、このベルト14の剛性は適正に抑えられている。このタイヤは乗り心地に優れる。この観点から、複素弾性率E
*oは11MPa以下がより好ましい。
【0055】
本発明では、複素弾性率E
*i及びE
*oは、「JIS K 6394」の規定に準拠して、下記の測定条件により、粘弾性スペクトロメーター(岩本製作所社製の商品名「VESF−3」)を用いて計測される。
初期歪み:10%
振幅:±2.0%
周波数:10Hz
変形モード:引張
測定温度:70℃
【0056】
本発明では、タイヤ2の各部材の寸法及び角度は、タイヤ2が正規リムに組み込まれ、正規内圧となるようにタイヤ2に空気が充填された状態で測定される。測定時には、タイヤ2には荷重がかけられない。本明細書において正規リムとは、タイヤ2が依拠する規格において定められたリムを意味する。JATMA規格における「標準リム」、TRA規格における「Design Rim」、及びETRTO規格における「Measuring Rim」は、正規リムである。本明細書において正規内圧とは、タイヤ2が依拠する規格において定められた内圧を意味する。JATMA規格における「最高空気圧」、TRA規格における「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に掲載された「最大値」、及びETRTO規格における「INFLATION PRESSURE」は、正規内圧である。乗用車用タイヤ2の場合は、内圧が180kPaの状態で、寸法及び角度が測定される。
【実施例】
【0057】
以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。
【0058】
[実施例1]
図1に示された構造を備えた実施例1のタイヤを得た。タイヤのサイズは、「205/60R16 96V L」とされた。表1にこのタイヤのベルトの諸元が示されている。
【0059】
[比較例1−3及び実施例2−4]
幅Di及び幅Doを変えて比(CV/BV)を表1−2の通りとした他は実施例1と同様にして、比較例1−3及び実施例2−4のタイヤを得た。
【0060】
[実施例5]
幅Dioを変えて比(CV/BV)を表2の通りとした他は実施例1と同様にして、実施例5のタイヤを得た。
【0061】
[実施例6−9]
角度αi及びαoを表3の通りとした他は実施例1と同様にして、実施例6−9のタイヤを得た。
【0062】
[実施例10−13]
複素弾性率E
*i及び複素弾性率E
*oを表4の通りとした他は実施例1と同様にして、実施例10−13のタイヤを得た。
【0063】
[操縦安定性及び乗り心地]
タイヤを正規リム(サイズ:6.5J)に組み込み、このタイヤに内圧が250kPaとなるように空気を充填した。このタイヤを、車両の後輪に装着した。ドライバーに、この車両をテストコースで運転させて、操縦安定性及び乗り心地を評価させた。この結果が、10を満点とした段階評価で下記の表1−4に示されている。数値が大きいほど好ましい。
【0064】
[耐久性]
タイヤを正規リム(サイズ:6.5J)に組み込み、このタイヤに空気を充填して内圧を290kPaとした。このタイヤをドラム式走行試験機に装着し、10.27kNの縦荷重をタイヤに負荷した。このタイヤを、80km/hの速度で、半径が1.7mであるドラムの上を走行させた。タイヤに損傷が確認されるまでの走行距離を、測定した。この結果が指数として、下記の表1−4に示されている。数値が大きいほど、好ましい。
【0065】
【表1】
【0066】
【表2】
【0067】
【表3】
【0068】
【表4】
【0069】
表1−4に示されるように、実施例のタイヤは比較例のタイヤと比べて値が優れている。この評価結果から、本発明の優位性は明らかである。