(58)【調査した分野】(Int.Cl.,DB名)
複数個の前記線状導体、前記導電性高分子層および前記導体層を絶縁材が覆うことによって構成され、互いに対向する1対の端面および前記端面に隣り合う底面を有する、直方体形状の本体を有し、
1対の前記陽極端子が前記本体の前記1対の端面に配置され、
前記陰極端子が前記本体の前記底面に配置され、
前記陽極端子と、前記導電性高分子層および前記導体層と、の間を電気的に絶縁する陽極側電気絶縁部材をさらに備える、請求項1または2に記載の固体電解コンデンサ。
複数個の前記線状導体、前記導電性高分子層および前記導体層を絶縁材が覆うことによって構成され、互いに対向する1対の端面および前記端面に隣り合う底面を有する、直方体形状の本体を有し、
前記陽極端子が前記本体の一方の前記端面に配置され、
前記陰極端子が前記本体の他方の前記端面に配置され、
前記陽極端子と、前記導電性高分子層および前記導体層と、の間を電気的に絶縁する陽極側電気絶縁部材と、
前記陰極端子と、前記線状導体、前記導電性高分子層および前記導体層と、の間を電気的に絶縁する陰極側電気絶縁部材と、
をさらに備える、請求項1または2に記載の固体電解コンデンサ。
前記導体層は、前記導電性高分子層に接するカーボン層、および前記カーボン層上に形成される金属層を含む積層構造を有する、請求項1ないし4のいずれかに記載の固体電解コンデンサ。
【背景技術】
【0002】
固体電解コンデンサは、デカップリング回路や電源回路において一般的なコンデンサとして用いられるばかりでなく、高周波ノイズを除去するノイズフィルタとしても有利に用いられる。
【0003】
この発明にとって興味ある固体電解コンデンサが、たとえば特開平6−196373号公報(特許文献1)に記載されている。特許文献1に記載の固体電解コンデンサは、陽極側要素として機能する弁作用金属からなる線状導体を備えている。
図19には、特許文献1に記載された固体電解コンデンサと基本的構成を共通にする固体電解コンデンサ1が断面図で模式的に示されている。
【0004】
図19を参照して、固体電解コンデンサ1は、弁作用金属からなる線状導体2を備える。線状導体2は、当該線状導体2の軸線方向(
図19紙面に直交する方向)に延びる芯部3と、芯部3の周面を覆いかつ多数の細孔を有する多孔部4と、からなる。多孔部4は、たとえば、アルミニウムワイヤからなる線状導体2の周面にエッチング処理を施し、それによって周面が粗面化されることにより形成される。
【0005】
多孔部4には、図示しないが、外方に向く開口を有する多数の細孔が形成されている。そして、線状導体2の表面を酸化することによって、図示しないが、細孔の内周面に沿って誘電体層が形成されている。
【0006】
上述した誘電体層を介して、線状導体2を覆うように、固体電解質としての導電性高分子層5が形成される。導電性高分子層5の一部は、線状導体2の多孔部4の細孔に充填される。
【0007】
さらに、導電性高分子層5を覆うように、導体層6が形成される。特許文献1では具体的な記載はないが、現状の製品では、導体層6は、導電性高分子層5上のカーボン層6a、およびその上のたとえば銀からなる金属層6bを備えていることが多い。
【0008】
陽極端子7は、線状導体2の芯部3に電気的に接続される。他方、陰極端子8は、導体層6、より具体的には、金属層6bに電気的に接続される。
【発明の概要】
【発明が解決しようとする課題】
【0010】
上述した固体電解コンデンサ1を複数個用い、これらを並列接続すれば、より低い等価直列抵抗(ESR)かつより大きい静電容量を実現することができる。この場合、部品の小型化および取扱いの簡便さを追求すると、
図20に示すように、複数個、たとえば3個の線状導体2を並列配置して1個の部品としての固体電解コンデンサ1aとすることが考えられる。
図20において、
図19に示した要素に相当する要素には同様の参照符号を付し、重複する説明を省略する。
【0011】
図20に示すように、固体電解コンデンサ1aにおいては、3個の線状導体2の各々に関連して、陰極側要素、すなわち、導電性高分子層5、ならびに導体層7としてのカーボン層6aおよび金属層6bが設けられている。そして、隣り合う線状導体2の各々を覆う金属層6bが互いに接する状態で、3個の線状導体2を並列配置されている。なお、
図20において、1点鎖線で示した長方形は、線状導体2、導電性高分子層5および導体層7を絶縁材が覆うことによって構成された、固体電解コンデンサ1aの本体9を示している。図示しないが、固体電解コンデンサ1aの陽極端子および陰極端子は、本体9の外表面に露出する状態で設けられる。
【0012】
しかしながら、
図20に示した固体電解コンデンサ1aにあっては、製品寸法における陰極側要素の厚みの占める割合が比較的大きいという課題がある。そのため、このことが、固体電解コンデンサ1aの小型化および高容量化の妨げとなることが考えられる。
【0013】
また、固体電解コンデンサ1aを製造するには、複数個の線状導体2の各々について、導電性高分子層5、ならびにカーボン層6aおよび金属層6bからなる導体層6を形成するための工程を実施しなければならない。したがって、線状導体2の数の増加に伴い、工程数の増加を招くことになる。
【0014】
そこで、この発明の目的は、より低いESRかつより大きい静電容量を実現するために提案された、弁作用金属からなる複数個の線状導体を備える固体電解コンデンサにおいて、より小型化を図ることができるとともに製造工程数の削減を図ることができる構造および製造方法を提供しようとすることである。
【課題を解決するための手段】
【0015】
上述した技術的課題を解決するため、この発明に係る固体電解コンデンサは、
芯部と、芯部の周面を覆いかつ多数の細孔を有する多孔部とを有し、多孔部の細孔の内周面に沿って表面に誘電体層が形成された弁作用金属からなり、並列配置された、複数個の線状導体と、
多孔部に充填された第1の導電性高分子層と、第1の導電性高分子層が充填された線状導体の外周面上に位置され、複数個の線状導体に共通し
て線状導体を覆う
第2の導電性高分子層とを含む、導電性高分子層と、
導電性高分子層を覆う、導体層と、
複数個の線状導体の端面に接する、陽極端子と、
導体層に電気的に接続された、陰極端子と、
を備えることを特徴としている。
【0016】
この構成において、並列配置された複数個の線状導体に共通して、
第2の導電性高分子層
が線状導体を覆うように形成されることが特に注目される。この構成によれば、体積効率が高く、複数個の線状導体を、
図20に示したものに比べて、互いにより近接させた状態で配置することができる。
【0017】
この発明に係る固体電解コンデンサは、
第1の導電性高分子層および第2の導電性高分子層を含む導電性高分子層
が各線状導体を覆うように形成されることを特徴とするものであるが、他の局面では、複数個の線状導体に共通して、導体層が誘電体層および導電性高分子層を介して線状導体を覆うように形成されることを特徴としている。この構成によっても、間に
第2の導電性高分子層を介在させるものの、複数個の線状導体を互いに近接させた状態で配置することができる。
【0018】
この発明に係る固体電解コンデンサは、好ましくは、複数個の線状導体、導電性高分子層および導体層を絶縁材が覆うことによって構成され、互いに対向する1対の端面および端面に隣り合う底面を有する、直方体形状の本体を有する。この構成によれば、固体電解コンデンサをチップ状電子部品として扱うことが可能となる。
【0019】
上記の好ましい実施形態において、1対の陽極端子が本体の1対の端面に配置され、陰極端子が本体の底面に配置されるとともに、陽極端子と、導電性高分子層および導体層と、の間を電気的に絶縁する陽極側電気絶縁部材をさらに備えると、3端子型の固体電解コンデンサとすることができる。
【0020】
他方、上記の好ましい実施形態において、陽極端子が本体の一方の端面に配置され、陰極端子が本体の他方の端面に配置されるとともに、陽極端子と、導電性高分子層および導体層と、の間を電気的に絶縁する陽極側電気絶縁部材と、陰極端子と、線状導体、導電性高分子層および導体層と、の間を電気的に絶縁する陰極側電気絶縁部材と、をさらに備えると、2端子型の固体電解コンデンサとすることができる。
【0021】
この発明に係る固体電解コンデンサにおいて、導体層が、導電性高分子層に接するカーボン層、およびカーボン層上に形成される金属層を含む積層構造を有することが好ましい。上述の金属層は、ESRの低下に寄与し得る。
【0022】
この発明に係る固体電解コンデンサにおいて
、線状導体は
、芯部と、芯部の周面を覆いかつ多数の細孔を有する多孔部と
を有し、誘電体層は、多孔部の細孔の内周面に沿って形成されている。この構成によれば、誘電体層を介して導電性高分子層と線状導体とが対向する面積を大きくすることができ、大きい静電容量を取得することができる。
【0023】
この発明に係る固体電解コンデンサにおいて、陽極端子は、芯部において線状導体と接触していることが好ましい。この構成によれば、陽極端子側の導電経路長を短くすることができ、ESRの低減に寄与し得る。
【0024】
次に、この発明に係る固体電解コンデンサの製造方法は、
芯部と、芯部の周面を覆いかつ多数の細孔を有する多孔部とを有し、多孔部の細孔の内周面に沿って誘電体層が形成された弁作用金属からなる線状導体を用意する工程と、
線状導体を覆うように導電性高分子層を形成する工程と、
導電性高分子層を覆うように導体層を形成する工程と、
線状導体の端面に接するように陽極端子を設ける工程と、
導体層に電気的に接続されるように陰極端子を設ける工程と、
を備え、
導体層を形成する工程は、複数個の線状導体を並列配置した状態で実施されることを特徴としている。この構成によれば、製造工程数の削減を図ることができる。
【0025】
この発明に係る固体電解コンデンサの製造方法は、上述のように、導体層を形成する工程が、複数個の線状導体を並列配置した状態で実施されることを特徴としているが、導体層を形成する前の導電性高分子層を形成する工程についても、複数個の線状導体を並列配置した状態で実施されることを除外するものではない。
【0026】
上述した導電性高分子層を形成する工程
が、多孔部の細孔に充填された第1の導電性高分子層を形成する工程と、第1の導電性高分子層が充填された線状導体の外周面上に位置される第2の導電性高分子層を形成する工程とを含むとき、第2の導電性高分子層を形成する工程は、複数個の線状導体を並列配置した状態で実施されることが好ましいが、第1の導電性高分子層を形成する工程は、複数個の線状導体を並列配置した状態とする前に、個々の線状導体に対して実施することが好ましい。第1の導電性高分子
層を線状導体の多孔部の細孔に充填することは、個々の線状導体に対して実施する方がより能率的であるからである。
【発明の効果】
【0027】
この発明によれば、複数個の線状導体を備える固体電解コンデンサにおいて、より小型化を図ることができるとともに、製造工程数の削減を図ることができ、また、それによる低コスト化を図ることができる。
【図面の簡単な説明】
【0028】
【
図1】この発明の第1の実施形態による固体電解コンデンサ11の外観を示す斜視図である。
【
図2】
図1に示した固体電解コンデンサ11の拡大断面図であり、
図2(A)は、
図1の線2A−2Aに沿う断面図であり、
図2(B)は、
図2(A)の線2B−2Bに沿う断面図である。
【
図3】
図2(B)の部分IIIを拡大して模式的に示す断面図である。
【
図4】
図2(B)の部分IVを拡大して模式的に示す断面図である。
【
図5】この発明の第2の実施形態を説明するためのもので、
図2(B)に対応する図である。
【
図6】この発明の第3の実施形態を説明するためのもので、線状導体19、導電性高分子層24および導体層25を示す断面図である。
【
図7】この発明の第4の実施形態を説明するためのもので、線状導体19、導電性高分子層24および導体層25を示す断面図である。
【
図8】この発明の第5の実施形態を説明するためのもので、線状導体19、導電性高分子層24および導体層25を示す断面図である。
【
図9】この発明の第6の実施形態を説明するためのもので、線状導体19、導電性高分子層24および導体層25を示す断面図である。
【
図10】この発明の第7の実施形態を説明するためのもので、
図2(B)に対応する図である。
【
図11】
図1に示した固体電解コンデンサ11の製造方法を説明するためのもので、(A)は、用意された線状導体19を示す平面図であり、(B)は、(A)の線11B−11Bに沿う拡大断面図である。
【
図12】
図11に示した工程に続く工程を説明するためのもので、(A)は、陽極側電気絶縁部材28が形成された線状導体19を示す平面図であり、(B)は、(A)の線12B−12Bに沿う拡大断面図である。
【
図13】
図12に示した工程に続く工程を説明するためのもので、(A)は、多孔部21に充填することによって第1の導電性高分子層24aが形成された線状導体19を示す平面図であり、(B)は、(A)の線13B−13Bに沿う拡大断面図である。
【
図14】
図13に示した工程に続く工程を説明するためのもので、3個の線状導体19を並列配置した状態を示す平面図である。
【
図15】
図14に示した工程に続く工程を説明するためのもので、(A)は、第1の導電性高分子層24a上に第2の導電性高分子層24bが形成された線状導体19を示す平面図であり、(B)は、(A)の線15B−15Bに沿う拡大断面図である。
【
図16】
図15に示した工程に続く工程を説明するためのもので、(A)は、第2の導電性高分子層24b上に導体層25が形成された線状導体19を示す平面図であり、(B)は、(A)の線16B−16Bに沿う拡大断面図である。
【
図17】
図16に示した工程に続く工程を説明するためのもので、用意された陰極端子18を保持する基板26を示す平面図である。
【
図18】
図17に示した工程に続く工程を説明するためのもので、(A)は、
図17に示した基板26上に
図16に示した構造物32を配置した後、封止材27で樹脂封止した状態を示す平面図であり、(B)は、同じく側面図である。
【
図19】特許文献1に記載された固体電解コンデンサと基本的構成を共通にする固体電解コンデンサ1を模式的に示す断面図である。
【
図20】
図19に示した線状導体2を3個、並列配置することによって、1個の部品としての固体電解コンデンサ1aとした状態を模式的に示す断面図である。
【発明を実施するための形態】
【0029】
図1ないし
図4を参照して、この発明の第1の実施形態による固体電解コンデンサ11について説明する。
【0030】
固体電解コンデンサ11は、互いに対向する1対の端面12および13、ならびに端面12および13に隣り合う底面14を有する直方体形状の本体15を有する。固体電解コンデンサ11は3端子型であり、本体15の1対の端面12および13には、1対の陽極端子16および17が配置され、本体15の底面14には、陰極端子18が配置される。
【0031】
固体電解コンデンサ11は、弁作用金属からなる複数個、たとえば3個の線状導体19を備える。線状導体19を構成する弁作用金属として、たとえば、アルミニウム、タンタル、ニオブ、チタン、またはこれらの少なくとも1種を含む合金が用いられる。線状導体19は、この実施形態では、円柱状である。安価で入手が容易な点で、好ましくは、線状導体19として、アルミニウムワイヤが用いられる。
【0032】
線状導体19は、当該線状導体19の軸線方向に延びる芯部20と、芯部20の周面を覆いかつ多数の細孔を有する多孔部21と、からなる。多孔部21は、たとえば、アルミニウムワイヤからなる線状導体19の周面にエッチング処理を施し、それによって周面が粗面化されることにより形成される。多孔部21には、
図3および
図4に模式的に示すように、外方に向く開口を有する多数の細孔22が形成されている。なお、
図2では、芯部20と多孔部21との境界は、点線で示されている。
【0033】
また、線状導体19の表面には、
図3および
図4に示すように、誘電体層23が形成される。誘電体層23は、たとえば、多孔部21が形成された線状導体19の表面を酸化することによって形成される。
図3および
図4において、誘電体層23は太線で示されている。誘電体層23は、多孔部21の細孔22の内周面に沿って形成されている。
【0034】
固体電解コンデンサ11は、さらに、3個の線状導体19に共通して、誘電体層23を介して線状導体19を覆う、固体電解質としての導電性高分子層24を備えている。前述した誘電体層23は、多孔部21の細孔22の内周面に沿って形成されているので、導電性高分子層24は、誘電体層23に対して広い面積で接している。導電性高分子層24は、後述する製造方法に起因して、多孔部21の細孔22に充填される第1の導電性高分子層24aと、線状導体19の外周面上に位置される第2の導電性高分子層24bとに分類される。導電性高分子層24の材料として、アニオンをドーパントとして含有したポリチオフェン、ポリアセチレン、ポリピロール、ポリアニリン等が用いられる。
【0035】
なお、
図2(A)に示す状態では、3個の線状導体19は互いに接するように配置されているが、多少離れていてもよい。
【0036】
線状導体19は、前述したように、芯部20の周面が多孔部21で覆われている形態を有するものであるが、円柱状、またはそれに類似する形状、たとえば、楕円柱状や扁平柱状、角柱の稜線部分がアール面取りされた形状であることが好ましい。線状導体19が円柱状またはそれに類似する形状であると、その周面には、角が存在しない。そのため、導電性高分子層24の形成性を優れたものとすることができる。
【0037】
線状導体19の周面に角が存在すると、たとえば、その角の一部が導電性高分子層24で覆えず線状導体19が露出してコンデンサの不良を発生させやすくなり、また、覆えている場合でも、その形成厚みは角部で薄くなり平坦部は厚くなり、均一性に乏しくなりやすい。そのため、固体電解コンデンサ11の低背化が困難になる。つまり、導電性高分子層24の形成性が優れるとは、導電性高分子層24の厚みが均一性に優れることを意味する。したがって、線状導体19はその周面に角を有さないことが好ましい。ここで角とは、鋭角ないし鈍角のように丸みを帯びていない部分をいう。
【0038】
また、線状導体19が円柱状であると、その円周面全域を容量出現部として利用することができるので、たとえばアルミニウム箔のような金属箔の場合に比べて、容量出現部の面積を約1.5倍に広げることができる。
【0039】
固体電解コンデンサ11は、また、上述した導電性高分子層24を覆う導体層25を備えている。この実施形態では、導体層25は、導電性高分子層24に接するカーボン層25a、およびカーボン層25a上に形成される金属層25bを含む積層構造を有している。金属層25bは、たとえば、銀、ニッケル、銅、錫、金またはパラジウム等の粉末を樹脂中に分散させた導電性樹脂から構成される。あるいは、金属層25bは、たとえば、銀、ニッケル、銅、もしくは錫からなるめっき膜から構成されてもよい。なお、
図8および
図9を参照して後述する実施形態のように、導体層25は単層構造を有していてもよい。
【0040】
固体電解コンデンサ11の本体15は、3個の線状導体19ならびに線状導体19の各々に関連して設けられる導電性高分子層24および導体層25を絶縁材が覆うことによって構成される。絶縁材は、前述した陰極端子18を保持する基板26と、導体層15を覆う絶縁性樹脂を含む封止材27とを含む。
【0041】
陰極端子18は、基板26を厚み方向に貫通するように設けられ、基板26の上方主面側において、導体層25における金属層25bに接触し、基板26の下方主面側において、本体15の底面に露出している。陰極端子18と金属層25bとは、図示しないが、導電性接着剤で接着される。導電性接着剤としては、たとえば、銀、ニッケル、銅、錫、金、パラジウム等のフィラーとエポキシやフェノール等の樹脂とを含むものが用いられる。なお、導電性接着剤に代えて、溶接が適用されてもよい。
【0042】
上述した基板26としては、たとえばプリント基板が用いられる。また、封止材27は、樹脂に加えて、アルミナやシリカ等のフィラーや、磁性材料を含んでいてもよい。封止材27が上記フィラーを含むことによって、封止材27の機械的強度や加工性を調節することができる。また、所望の線膨張係数を有するフィラーを選択することによって、熱収縮性を調節することができる。封止材27が磁性材料を含むと、コンデンサのインピーダンスを意図的に高めることができる。たとえば、インピーダンスの低いコンデンサを複数並列実装して用いる場合に反共振が発生する可能性がある。このとき、封止材27が磁性材料を含むと、反共振を抑制することができる。磁性材料としては、たとえば、鉄の粉、鉄を含む合金の粉、あるいは、フェライトの粉などの磁性粉が用いられる。磁性材料は、異なる粒径の、あるいは、異なる組成の2種以上の粉の混合物であってもよい。このように、要求される機能に応じて、所望のフィラーや磁性材料を選択して用いられ得る。
【0043】
図2(B)に示すように、線状導体19の両端面は、封止材27から露出しており、本体15の1対の端面12および13の各々上において、1対の陽極端子16および17にそれぞれ接触し、電気的接続を達成している。陽極端子16および17は、たとえば、銀、銅、ニッケル、錫、金およびパラジウムの少なくとも1種を導電成分として含み、かつエポキシ樹脂またはフェノール樹脂を樹脂成分として含む導電性樹脂膜から構成される。
【0044】
変形例として、陽極端子16および17は、線状導体19の芯部20の端面上に形成された、たとえばニッケル、亜鉛、銅、錫、金、銀またはパラジウムなどの金属、あるいはこれら金属の少なくとも1種を含有する合金を含むめっき膜から構成されてもよい。あるいは、陽極端子16および17は、導電性樹脂膜とめっき膜とを含む多層構造とされてもよい。さらには、陽極端子16および17は、2層のめっき層とこれらめっき層の間にある導電性樹脂層とを備えていてもよい。
【0045】
導電性高分子層24と陽極端子16および17との間に、電気絶縁性樹脂からなる陽極側電気絶縁部材28が配置される。陽極側電気絶縁部材28を形成するため、たとえば、エポキシ樹脂やフェノール樹脂、ポリイミド樹脂等が用いられる。陽極側電気絶縁部材28によって、導電性高分子層24および導体層25と、陽極端子16および17と、の間での電気的絶縁状態を確実に達成することができる。この実施形態では、
図4に示すように、陽極側電気絶縁部材28が芯部20に接している部分では、陽極側電気絶縁部材28は多孔部21にある細孔22を充填するように設けられている。
【0046】
なお、変形例として、線状導体19の両端部において、多孔部21が除去され、芯部20がむき出しの状態とされた上で、芯部20に接するように、陽極側電気絶縁部材28が設けられてもよい。
【0047】
上述した2つの場合のいずれであっても、陽極側電気絶縁部材28は、芯部20に接している。この構成によれば、陽極端子16および17を形成するため、たとえば湿式めっきが適用される場合、めっき液が多孔部21に浸透しかつ残留するといった不都合を生じにくくすることができる。なお、導電性高分子層24および導体層25は、陽極端子16および17に接触しない範囲で陽極端子16および17に向かって延びて、陽極側電気絶縁部材28に重なっていてもよい。
【0048】
前述の
図20に示した固体電解コンデンサ1aにおいて、たとえば、直径0.3mmのワイヤ形状の線状導体2を用いるとし、導電性高分子層5の、線状導体2の外周面からはみ出た分の厚みが0.01mm、カーボン層6aの厚みが0.02mm、金属層6bの厚みが0.02mmであるとき、1個の線状導体2についての直径が0.3mm+(0.01mm+0.02mm+0.02mm)×2=0.4mmとなる。したがって、3個の線状導体2を並列配置したとき、配列方向の合計寸法は0.4mm×3=1.2mmとなる。
【0049】
これに対して、実施形態に係る固体電解コンデンサ11の場合には、3個の線状導体19の配列方向の合計寸法は、0.3mm×3+(0.01mm+0.02mm+0.02mm)×2=1.0mmとなり、小型化が可能であることが理解される。
【0050】
また、実施形態に係る固体電解コンデンサ11によれば、本体15の1対の端面12および13に1対の陽極端子16および17を配置し、線状導体19における芯部20の両端面を、1対の陽極端子16および17にそれぞれ接触させているので、陽極端子16および17側の導電経路長を短くすることができる。したがって、陽極端子16および17側の導電経路において生じる寄生インダクタンスを小さくすることができ、固体電解コンデンサ11の高周波数帯(ωL)でのノイズ除去性能を高めることができる。
【0051】
そして、容量形成に寄与しない陽極端子16および17は、本体15の端面12および13に配置され、この陽極端子16および17に線状導体19の芯部20の端面が直接接触する構成となっているので、容量形成に寄与しない部材の、全体積に占める割合が比較的低く、体積効率が高い。そのため、小型かつ大容量化に適している。したがって、容量に起因する周波数帯(1/ωC)においても高いノイズ除去性能を発揮することができる。
【0052】
このように、以上説明した固体電解コンデンサ11によれば、インダクタンスに起因する高周波数帯および容量に起因する周波数帯を含む広い周波数帯域で、高いノイズ除去性能を発揮することができる。
【0053】
また、線状導体19の芯部20の両端面を、1対の陽極端子16および17にそれぞれ比較的広い面同士で面接触させているので、線状導体19の芯部20と陽極端子16および17との電気的接続部分での抵抗を低く抑えることができる。そのため、固体電解コンデンサ11に大電流を流すことができる。
【0054】
また、陰極端子18側に実現される導電経路長についても比較的短いので、この導電経路において発生する寄生インダクタンスを小さくすることができる。
【0055】
図5には、この発明の第2の実施形態が
図2(B)に対応する図で示されている。
図5において、
図2(B)に示す要素に相当する要素には同様の参照符号を付し、重複する説明を省略する。
【0056】
図5に示した固体電解コンデンサ11aは、陰極端子18aがたとえばリードフレームの形態で与えられる金属板からなることを特徴としている。そのため、本体15を構成するための絶縁材として、プリント基板のような基板が用いられず、封止材27のみが用いられる。
【0057】
図6ないし
図9は、それぞれ、この発明の第3ないし第6の実施形態を示している。
図6ないし
図9には、
図2(A)に示した線状導体19、導電性高分子層24および導体層25に相当する部分が示されている。
図6ないし
図9において、
図2(A)に示した要素に相当する要素には同様の参照符号を付し、重複する説明を省略する。
【0058】
第1の実施形態では、3個の線状導体19に対して、導電性高分子層24およびそれより外側の要素が共通化されている。この実施形態によれば、他の実施形態に比べて、ESRがより高くなるという懸念があるが、最も高い体積効率を実現することができる。
【0059】
これに対して、
図6に示す第3の実施形態では、カーボン層25aおよびそれより外側の要素が共通化されている。なお、
図6に示す状態では、3個の線状導体19の各々上にある導電性高分子層24は互いに接するように配置されているが、多少離れていてもよい。
【0060】
図7に示す第4の実施形態では、金属層25bが共通化されている。
図7に示す状態では、3個の線状導体19の各々を覆うカーボン層25aは互いに接するように配置されているが、多少離れていてもよい。この第4の実施形態によれば、前述した第1および第3の実施形態に比べて、体積効率は劣るが、ESRをより低くすることができる。
【0061】
図8に示す第5の実施形態では、第1の実施形態の場合と同様、導電性高分子層24およびそれより外側の要素が共通化されるが、導電性高分子層24の外側の導体層25が単層構造となっている。導体層25は、導電性樹脂またはめっき膜から構成される。導電性樹脂としては、樹脂に、フィラーとして、カーボンおよび銀、または銀、ニッケル、銅、もしくは錫を混合したものが用いられる。めっき膜としては、銀、ニッケル、銅、もしくは錫からなるものが用いられる。
図8に示す状態では、3個の線状導体19は互いに接するように配置されているが、多少離れていてもよい。
【0062】
図9に示す第6の実施形態では、導電性高分子層24の外側にある導体層25が共通化されている。共通化された導体層25は、導電性樹脂から構成される。導電性樹脂としては、樹脂に、フィラーとして、カーボンおよび銀、または銀、ニッケル、銅、もしくは錫を混合したものが用いられる。
図9に示す状態では、3個の線状導体19の各々上にある導電性高分子層24は互いに接するように配置されているが、多少離れていてもよい。
【0063】
図10には、この発明の第7の実施形態が
図2(B)に対応する図で示されている。
図10において、
図2(B)に示す要素に相当する要素には同様の参照符号を付し、重複する説明を省略する。
【0064】
たとえば
図2に示した固体電解コンデンサ11は3端子型であるが、
図10に示した固体電解コンデンサ11bは、2端子型である。固体電解コンデンサ11bでは、陽極端子16が本体15の一方の端面12に配置され、陰極端子18bが本体15の他方の端面13に配置される。また、陽極端子16と、導電性高分子層24および導体層25と、の間を電気的に絶縁する陽極側電気絶縁部材28に加えて、陰極端子18bと、線状導体19、導電性高分子層24および導体層25と、の間を電気的に絶縁する陰極側電気絶縁部材29が、本体15の端面13に沿って設けられる。陰極側電気絶縁部材29は、本体15の端面13に絶縁樹脂を塗布することによって形成される。絶縁樹脂としては、たとえば、エポキシ樹脂やフェノール樹脂等が用いられ、フィラーが混合されていてもよい。また、塗布の方法としては、ディッピングや印刷、噴霧、転写等が適用される。
【0065】
固体電解コンデンサ11bでは、陰極端子18bは、基板26を厚み方向に貫通する接続導体30を介して、導体層25と電気的に接続される。なお、基板26の下面の、端面12側には、ダミー導体31が形成される。このダミー導体31による厚み増加は、接続導体30によって基板26の下面側にもたらされる厚み増加と同等とされている。
【0066】
次に、
図11ないし
図18を参照して、固体電解コンデンサの製造方法を説明する。ここでは、特に、
図1ないし
図4を参照して説明した固体電解コンデンサ11の製造方法を採り上げる。
【0067】
まず、
図11(A)および(B)に示すように、線状導体19が用意される。なお、
図11(A)に示した線状導体19は、その長さが
図2(B)に示した1個の線状導体19の長さより長く、後の工程で切断されることが予定されている。線状導体19には、エッチング処理が施されることによって、
図11(B)に示すように、多孔部21が形成され、さらに、陽極酸化によって形成された誘電体層23(
図3および
図4参照)が形成されている。
【0068】
次に、
図12(A)に示すように、陽極側電気絶縁部材28が、線状導体19上に、所定の間隔をもって形成される。陽極側電気絶縁部材28は、
図12(B)に示すように、多孔部21にある細孔22(
図3および
図4参照)を充填する状態となっている。陽極側電気絶縁部材28は、所望の形成位置以外の位置にマスクをし、ディスペンス、ディッピング、印刷、転写、噴霧等の方法で付与し、乾燥させることによって形成される。
【0069】
次に、
図13(A)に示すように、導電性高分子層24のうち、第1の導電性高分子層24aが、線状導体19上における、陽極側電気絶縁部材28が形成された領域以外の領域に形成される。第1の導電性高分子層24aは、
図13(B)に示すように、多孔部21にある細孔22(
図3および
図4参照)を充填する状態となっている。
【0070】
第1の導電性高分子層24aは、所望の形成位置以外の位置にマスクをし、ディスペンス、ディッピング、印刷、転写、噴霧等の方法で付与し、乾燥させることによって形成される。このとき、高分子の前駆体である単量体と、ドーパントおよび酸化剤とからなる反応溶液を交互に塗布し重合反応させる化学酸化重合や、反応溶液内で電気化学的な重合反応を行なう電解重合や、予め導電性が発現している導電性高分子が任意の溶媒中に溶解ないし分散している溶液を塗布して行なう方法などを適用することができる。
【0071】
次に、
図14に示すように、3個の線状導体19が並列配置される。
【0072】
なお、
図13に示した第1の導電性高分子層24aの形成工程は、
図14に示すように、3個の線状導体19が並列配置された状態で実施されてもよい。
【0073】
次に、
図15(A)および(B)に示すように、導電性高分子層24の厚みを増しかつ別々の線状導体19上に形成された第1の導電性高分子層24aを並列接続するため、第2の導電性高分子層24bが、並列配置された3個の線状導体19上における、第1の導電性高分子層24aが形成された領域上に共通して重なるように形成される。
【0074】
第2の導電性高分子層24bは、所望の形成位置以外の位置にマスクをし、ディスペンス、ディッピング、印刷、転写、噴霧等の方法で付与し、乾燥させることによって形成される。第2の導電性高分子層24bの場合にも、前述した第1の導電性高分子層24aの場合と同様、高分子の前駆体である単量体と、ドーパントおよび酸化剤とからなる反応溶液を交互に塗布し重合反応させる化学酸化重合や、反応溶液内で電気化学的な重合反応を行なう電解重合や、予め導電性が発現している導電性高分子が任意の溶媒中に溶解ないし分散している溶液を塗布して行なう方法などを適用することができる。
【0075】
上述のようにして、3個の線状導体19に対して、導電性高分子層24が共通化された構成が得られる。
【0076】
次に、
図16(A)および(B)に示すように、導電性高分子層24が形成された領域に重ねて、カーボン層25aおよび金属層25bが順次形成されることによって、導体層25が形成される。カーボン層25aおよび金属層25bの各々の形成には、所望の形成位置以外の位置にマスクをし、ディスペンス、ディッピング、印刷、転写、噴霧等の方法で付与し、乾燥させる工程が適用される。
【0077】
次に、
図17に示すように、陰極端子18を保持する基板26が用意される。
【0078】
次に、基板26上に、
図16に示した構造物32が乗せられ、陰極端子18と導体層25とがたとえば導電性接着剤によって接着される。
図16に示した構造物32は、
図17において、1点鎖線で示されている。
【0079】
次に、
図18に示すように、基板26を覆うように、樹脂封止が施され、封止材27が形成される。封止材27の形成には、トランスファーモールド、コンプレッションモールド、熱圧着等が適用される。
【0080】
上述したように、封止材27を成形する際、線状導体19に加わる外部ストレスは、線状導体19が円柱状であるため、有利に分散される。したがって、封止材27の成形時において、線状導体19が損傷するといった事態を有利に避けることができる。
【0081】
また、線状導体19が円柱状であると、封止材27の充填性に優れている。したがって、封止材27によるパッケージ効果が高いため、水分や空気の遮断性が高く、得られた固体電解コンデンサ11を耐湿性や耐熱性に優れたものとすることができる。
【0082】
次に、
図18に1点鎖線で示した切断線33および34に沿う切断工程が、たとえばダイサーまたはレーザーを適用して実施される。この切断工程によって、複数個の固体電解コンデンサ11のための本体15が得られる。ここで、切断線33に沿う切断によって現れた切断面が本体15の端面12および13となる。また、
図18(B)からわかるように、本体15の底面14には、陰極端子18が露出している。
【0083】
次に、本体15の端面12および13に露出する線状導体19の両端面に接続されるように、陽極端子16および17が形成される。陽極端子16および17の形成のため、たとえば、導電性樹脂が用意され、ディッピングや噴霧、転写等が適用される。このようにして形成された導電性樹脂膜上に、さらにめっき膜が形成されてもよい。
【0084】
以上、固体電解コンデンサの製造方法として、第1の実施形態による固体電解コンデンサ11の製造方法について説明したが、この製造方法の基本的構成は、
他の実施形態による固体電解コンデンサの製造方法に対しても適用することができる。
【0085】
たとえば、
図5に示した第2の実施形態による固体電解コンデンサの製造方法では、
図17に示した工程以降の工程において、陰極端子18を保持する基板26に代えて、陰極端子18aとして機能するリードフレームが用いられる。
【0086】
また、
図6ないし
図9にそれぞれ示した第3ないし第6の実施形態による固体電解コンデンサの製造方法では、第1の実施形態による固体電解コンデンサ11の製造方法の場合と同様、共通化される要素の形成工程を実施するにあたって、3個の線状導体19が並列配置される。
【0087】
以上、この発明を図示した実施形態に関連して説明したが、これらの実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。