(58)【調査した分野】(Int.Cl.,DB名)
バイアス磁界を発生させる磁石(106、120)と、前記バイアス磁界が印加される検出素子(124)と、を有し、磁性体で構成された検出対象(200)の移動に伴って前記検出素子が前記検出対象から受ける磁界の変化に基づいて、前記検出対象の移動方向に沿って一方向に並んだ複数の範囲に対応すると共に位相差が異なる複数の検出信号を生成する検出部(122)と、
前記検出部から前記複数の検出信号を取得し、前記複数の検出信号と閾値とを比較し、前記複数の検出信号と前記閾値との大小関係の組み合わせに基づいて、前記複数の範囲のいずれかの範囲の位置として前記検出対象の位置を特定する信号処理部(123)と、
を備え、
前記検出対象は、前記複数の範囲に対応する複数の領域部(201〜204)を有し、
前記複数の領域部は、前記検出対象のうち前記検出部が対向する検出面(205)の面内で前記検出対象の移動方向に階段状に接続されて構成されており、
前記検出部は、前記検出対象の移動方向における幅が、前記複数の領域部のうちの最小の領域部の幅よりも短い幅に構成されているポジションセンサ。
磁石(207)を含んで構成された検出対象(200)の移動に伴って前記検出対象から受ける磁界の変化に基づいて、前記検出対象の移動方向に沿って一方向に並んだ複数の範囲に対応すると共に位相差が異なる複数の検出信号を生成する検出部(122)と、
前記検出部から前記複数の検出信号を取得し、前記複数の検出信号と閾値とを比較し、前記複数の検出信号と前記閾値との大小関係の組み合わせに基づいて、前記複数の範囲のいずれかの範囲の位置として前記検出対象の位置を特定する信号処理部(123)と、
を備え、
前記検出対象は、前記複数の範囲に対応する複数の領域部(201〜204)を有し、
前記複数の領域部は、前記検出対象のうち前記検出部が対向する検出面(205)の面内で前記検出対象の移動方向に階段状に接続されて構成されており、
前記検出部は、前記検出対象の移動方向における幅が、前記複数の領域部のうちの最小の領域部の幅よりも短い幅に構成されているポジションセンサ。
前記信号処理部は、前記複数の範囲にそれぞれ設定された離散的な値のうち前記特定した位置の範囲に対応した値の位置信号を外部装置(300)に出力する請求項1または2に記載のポジションセンサ。
【発明を実施するための形態】
【0014】
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
【0015】
(第1実施形態)
以下、本発明の第1実施形態について図を参照して説明する。本実施形態に係るポジションセンサは、検出対象の位置がどの範囲(状態)にあるのかを検出し、その範囲に対応した信号を出力するセンサである。
【0016】
図1に示されるように、ポジションセンサ100は、検出対象として、車両のシフトポジションの動作に連動する可動部品の位置を検出する。具体的には、ポジションセンサ100は、シャフトの位置に応じた信号を検出することで、シャフトの状態を取得する。
【0017】
シャフトの状態とは、ユーザによってシフトポジションが操作されたときのシャフトの位置を意味する。例えば、シャフトは、シフトポジションのパーキングに連動して移動する。シフトポジションがパーキングに位置するように操作された場合、シャフトが軸方向に移動する。これにより、シャフトは、パーキングの状態を反映する。ポジションセンサ100はシャフトのうちパーキングに対応した位置を検出する。
【0018】
一方、シフトポジションがパーキング以外のポジションに位置するように操作された場合、シャフトはパーキング以外の状態を反映する。この場合、ポジションセンサ100は、シャフトのうちパーキングに対応した位置以外の位置を検出する。もちろん、シャフトはパーキング以外のポジションに連動して移動するものでも良い。
【0019】
シャフトは、例えば全体が磁性体材料によって形成されている。なお、シャフトは、ポジションセンサ100に対向する面が磁性体材料で形成され、他の部分が別の金属材料によって形成されていても良い。
【0020】
ポジションセンサ100は、PPS等の樹脂材料が樹脂成形されたことによって形成されたケース101を備えている。ケース101は、シャフト側の先端部102、周辺機構に固定されるフランジ部103、ハーネスが接続されるコネクタ部104を有している。先端部102の内部にセンシング部分が設けられている。
【0021】
また、先端部102がシャフトの検出面に対して所定のギャップを持つように、ポジションセンサ100がフランジ部103を介して周辺機構に固定されている。したがって、シャフトがポジションセンサ100に対して移動する。
【0022】
なお、図示しないが、ポジションセンサ100は、シャフトに連動して動作するバルブの位置を検出するように、周辺機構に固定されていても良い。また、シャフトの移動方向は直進や往復に限られず、回転や特定の角度内での往復等でも良い。このように、ポジションセンサ100は、車両のシフトポジションの動作に連動して移動する可動部品の位置や移動、回転等の状態検出に適用できる。
【0023】
ポジションセンサ100は、磁気抵抗素子を用いた磁気検出方式、または、ホール素子を用いた磁気検出方式を採用することができる。磁気抵抗素子を用いた磁気検出方式の場合、
図2に示されるように、ポジションセンサ100は、モールドIC部105、磁石106、及び保持部107を備えている。これらは、ケース101の先端部102に収容されている。モールドIC部105は、中空筒状の磁石106に差し込まれる。磁石106はバイアス磁界を発生させるものであり、有底筒状の保持部107に差し込まれる。
【0024】
図3の平面模式図及び
図4の断面模式図に示されるように、モールドIC部105、磁石106、及び保持部107は一体化される。モールドIC部105の主な部分は、磁石106の中空部に位置している。保持部107は、モールドIC部105及び磁石106の位置を固定している。
【0025】
モールドIC部105は、リードフレーム108、処理回路チップ109、センサチップ110、及びモールド樹脂部111を有している。リードフレーム108は、板状のアイランド部112及び複数のリード113〜115を有している。アイランド部112は、平面部が検出対象の移動方向に対して垂直になるように配置されている。
【0026】
複数のリード113〜115は、電源電圧が印加される電源端子113、グランド電圧が印加されるグランド端子114、信号を出力するための出力端子115に対応している。つまり、各リード113〜115は、電源用、グランド用、及び信号用の3本である。各リード113〜115の先端にはターミナル116がそれぞれ接続されている。ターミナル116は、ケース101のコネクタ部104に位置する。また、ターミナル116がハーネスに接続される。
【0027】
なお、本実施形態では、複数のリード113〜115のうちのグランド用のリード114はアイランド部112に一体化されている。アイランド部112と全てのリード113〜115とが完全に分離されていても良い。
【0028】
処理回路チップ109及びセンサチップ110は、接着剤等によってアイランド部112に実装されている。処理回路チップ109は、センサチップ110の信号を処理する回路部が構成されている。センサチップ110は、外部から磁界の影響を受けたときに抵抗値が変化する磁気抵抗素子を含んでいる。磁気抵抗素子は、例えばAMR、GMR、TMRである。各リード113〜115と処理回路チップ109とは、ワイヤ117を介して電気的に接続されている。処理回路チップ109とセンサチップ110とは、ワイヤ118を介して電気的に接続されている。
【0029】
モールド樹脂部111は、アイランド部112、各リード113〜115の一部、処理回路チップ109、及びセンサチップ110を封止している。モールド樹脂部111は、磁石106の中空部に固定される形状に成形されている。
【0030】
磁気抵抗素子を用いた磁気検出方式による検出信号について説明する。
図5に示されるように、保持部107は、検出対象200に対して所定のギャップを持って配置される。そして、保持部107に対して検出対象200が移動すると、検出対象200の移動方向の中心で検出信号が最大となる。ギャップが大きくなると検出信号の振幅が小さくなり、ギャップが小さくなると検出信号の振幅が大きくなる。このような検出信号に対して閾値を設定することで検出対象200の位置を検出することができる。
【0031】
なお、
図5では検出対象200の移動と磁気検出素子による検出信号との関係のみを示している。後述するが、検出信号は複数の磁気抵抗素子の出力によって生成する。
【0032】
ホール素子を用いた磁気検出方式を採用した場合、
図6の平面模式図及び
図7の断面模式図に示されるように、モールドIC部105は、保持部107に差し込まれて固定される。また、モールドIC部105は、リードフレーム108、ICチップ119、磁石120、及びモールド樹脂部111を有している。
【0033】
リードフレーム108のアイランド部112は、平面部が検出対象200の移動方向に対して平行になるように配置されている。一方、各リード113〜115は、検出対象200の移動方向に対して垂直になるように配置されている。グランド用のリード114がアイランド部112に直角に一体化されている。各リード113〜115の先端にはターミナル116がそれぞれ接続されている。
【0034】
ICチップ119は、複数のホール素子と信号処理回路部とが形成されている。つまり、ホール素子を用いた磁気検出方式では1チップ構成になっている。磁石120は、アイランド部112のうちICチップ119とは反対側の面に固定されている。各リード113〜115とICチップ119とは、ワイヤ121を介して電気的に接続されている。モールド樹脂部111は、保持部107の中空部に固定される形状に成形されている。
【0035】
ホール素子を用いた磁気検出方式による検出信号について説明する。
図8に示されるように、例えば2つのホール素子(X、Y)が磁石120の上方に配置されている場合、保持部107に対して検出対象200が移動すると、各ホール素子(X、Y)の位置に対応して各検出信号が最大となる。ギャップと検出信号の振幅との関係は磁気抵抗素子を用いた磁気検出方式と同じである。各検出信号に対して閾値を設定することで検出対象200の位置を検出することができる。
【0036】
本実施形態では、上記の磁気検出方式のうち磁気抵抗素子を用いた方式を採用する。磁気ベクトルを検出する磁気抵抗素子は、ギャップのずれによる精度誤差をキャンセルできるメリットがある。また、センサチップ110に発生する応力の影響を低減あるいはキャンセルできるメリットがある。よって、高精度な検出が可能である。
【0037】
次に、センサチップ110及び処理回路チップ109に構成された回路構成について説明する。
図9に示されるように、ポジションセンサ100とコントローラ300とがハーネス400を介して電気的に接続されている。上述のように、モールドIC部105は3本のリード113〜115を有しているので、ハーネス400は3本の配線によって構成されている。
【0038】
コントローラ300は、例えばトランスミッションコントローラ(TCU)である。コントローラ300は、電源部301、制御部302、及びグランド部303を備えている。電源部301は、ポジションセンサ100に電源電圧を供給する回路部である。制御部302は、ポジションセンサ100から入力する出力信号に応じて予め決められた制御を行う回路部である。グランド部303はポジションセンサ100のグランド電圧を設定する回路部である。なお、コントローラ300は、電子制御装置(ECU)として構成されていても良い。
【0039】
ポジションセンサ100は、検出部122及び信号処理部123を備えている。検出部122は、磁石106とセンサチップ110に設けられた検出素子124とを有して構成されている。信号処理部123は、処理回路チップ109に設けられている。検出素子124及び信号処理部123は、コントローラ300から供給される電源電圧及びグランド電圧に基づいて動作する。
【0040】
検出部122は、検出対象200の移動に伴って、検出対象200から受ける磁界の変化に基づいて、検出対象200の移動方向に沿った複数の範囲に対応すると共に位相差が異なる複数の検出信号を生成する。検出対象200の移動方向に沿った複数の範囲は、複数の範囲が検出対象200の移動方向に沿って並列に並んでいるのではなく、複数の範囲が検出対象200の移動方向に沿って一方向に直列に並んでいる。
【0041】
ここで、検出対象200は、
図10に示されるように、複数の範囲A〜Dに対応する4つの領域部201〜204を有している。各領域部201〜204は、長方形の板部材によって構成されている。また、各領域部201〜204は、検出対象200のうち検出部122が対向する検出面205の面内で検出対象200の移動方向に階段状に接続されて構成されている。
【0042】
「階段状に接続される」とは、一方の領域部201と他方の領域部202とが検出面205の面内において移動方向に対して垂直方向にずれて接続されることである。同様に、一方の領域部202と他方の領域部203が検出面205の面内において移動方向に対して垂直方向にずれて接続される。一方の領域部203と他方の領域部204についても同じである。これにより、各領域部201〜204において移動方向に沿った両端部すなわち2本の長辺部は、階段状の形状を構成している。つまり、領域部201の隣には領域部202が一方向に直列に接続され、領域部202には領域部201が接続された側とは反対側に領域部203が一方向に直列に接続されている。同様に、領域部203には領域部202が接続された側とは反対側に領域部204が一方向に直列に接続されている。
【0043】
センサチップ110のうち検出素子124が設けられたチップ面は、検出部122の移動方向に対して垂直な方向に向けられている。そして、位置が固定された検出部122に対して検出対象200が移動方向に移動すると、各領域部201〜204が検出部122に対して検出面205の面内で移動方向に垂直な方向に移動する。このように、検出対象200の移動によって、検出部122と各領域部201〜204との位置関係が変化する。
図10では、各領域部201〜204に対してそれぞれ検出部122を配置することにより、各領域部201〜204と検出部122との位置関係を示している。
【0044】
検出対象200は、磁性体材料によって構成された板部材がプレス加工等によって形成される。各領域部201〜204は、移動方向の長さが同一でも良いし、異なっていても良い。また、各領域部201〜204は、検出面205の面内での移動方向に垂直な方向の長さが同一でも良いし、異なっていても良い。なお、検出対象200は、シャフト等の部品に固定される。また、検出対象200は、両端の領域部201、204がシャフトに固定されても良い。
【0045】
図9の検出素子124は、検出対象200の移動に伴って抵抗値が変化する第1磁気抵抗素子対、第2磁気抵抗素子対、及び第3磁気抵抗素子対の3つの素子対を有している。
【0046】
図示しないが、検出対象200の移動方向において、第2磁気抵抗素子対が第1磁気抵抗素子対と第3磁気抵抗素子対との間に位置するように各々が配置されている。つまり、第2磁気抵抗素子対が第1磁気抵抗素子対と第3磁気抵抗素子対とに挟まれるように配置されている。そして、第2磁気抵抗素子対には磁石106の中心軸に沿ったバイアス磁界が印加される。一方、第1磁気抵抗素子対及び第3磁気抵抗素子対には磁石106の端部を巻き込むバイアス磁界が印加される。
【0047】
各磁気抵抗素子対は、電源とグランドとの間に2つの磁気抵抗素子が直列接続されたハーフブリッジ回路として構成されている。各磁気抵抗素子対は、検出対象200の移動に伴って2つの磁気抵抗素子が磁界の影響を受けたときの抵抗値の変化を検出する。また、各磁気抵抗素子対は、当該抵抗値の変化に基づいて、2つの磁気抵抗素子の中点の電圧を波形信号としてそれぞれ出力する。なお、各磁気抵抗素子対が電流源によって駆動される構成では、各磁気抵抗素子対の両端電圧が波形信号となる。
【0048】
また、検出部122は、各磁気抵抗素子対の他に、図示しない第1〜第4オペアンプを備えている。第1磁気抵抗素子対の中点の中点電位をV1と定義すると共に、第2磁気抵抗素子対の中点の中点電位をV2と定義すると、第1オペアンプは、V1−V2を演算してその結果をR1として出力するように構成された差動増幅器である。また、第3磁気抵抗素子対の中点の中点電位をV3と定義すると、第2オペアンプは、V2−V3を演算してその結果をR2として出力するように構成された差動増幅器である。
【0049】
第3オペアンプは、第1オペアンプからR1(=V1−V2)を入力すると共に第2オペアンプからR2(=V2−V3)を入力し、R2−R1を演算してその結果をS1(=(V2−V3)−(V1−V2))として出力するように構成された差動増幅器である。
【0050】
第4オペアンプは、第1磁気抵抗素子対の中点から中点電位V1を入力すると共に、第3磁気抵抗素子対の中点から中点電位V3を入力し、V1−V3を演算してその結果をS2として出力するように構成された差動増幅器である。信号S2は、信号S1に対して位相差を持った波形の信号である。
【0051】
このように、検出部122は、各磁気抵抗素子対の出力から信号S1(=V1−V3)及び信号S2(=2V2−V1−V3)を生成及び取得するように構成されている。検出部122は、信号S1及び信号S2を検出信号として信号処理部123に出力する。
【0052】
信号処理部123は、検出部122から各検出信号を取得し、各検出信号と閾値とを比較し、各検出信号と閾値との大小関係の組み合わせに基づいて、検出対象200における複数の範囲のいずれかの範囲の位置として検出対象200の位置を特定する。また、信号処理部123は、検出対象200の位置をコントローラ300に出力する。信号処理部123は、処理部125及び出力回路部126を有している。
【0053】
処理部125は、検出部122から各検出信号を入力し、各検出信号に基づいて検出対象200の位置を特定する。このため、処理部125は、各検出信号に対して共通の閾値を有している。
【0054】
そして、処理部125は、検出信号である信号S1、S2と閾値とを比較する。処理部125は、信号S1、S2が閾値よりも大きい場合をHiと判定し、信号S1、S2が閾値よりも小さい場合をLoと判定する。また、処理部125は、信号S1、S2のHi/Loの組み合わせから、検出部122が検出対象200のどの範囲を検出したのかを判定する。
【0055】
具体的には、
図11に示されるように、信号S1がHi、信号S2がLoの場合、検出部122は検出対象200のうち領域部201の範囲を検出したことになる。つまり、処理部125は、検出対象200であるシャフトの位置を特定したことになる。当該範囲の位置を特定した場合のシャフトの状態を「状態A」とする。
【0056】
信号S1がHiの場合、信号S2がHiの場合、検出部122は検出対象200の領域部202のうち範囲を検出したことになる。当該範囲の位置を特定した場合のシャフトの状態を「状態B」とする。
【0057】
信号S1がLoの場合、信号S2がHiの場合、検出部122は検出対象200の領域部203のうち範囲を検出したことになる。当該範囲の位置を特定した場合のシャフトの状態を「状態C」とする。
【0058】
さらに、信号S1がLo、信号S2がLoの場合、検出部122は検出対象200のうち領域部204の範囲を検出したことになる。当該範囲の位置を特定した場合のシャフトの状態を「状態D」とする。このように、処理部125は、検出対象200の移動方向に沿った複数の範囲のいずれかの範囲の位置として検出対象200の位置を特定する。
【0059】
出力回路部126は、処理部125の判定結果に基づいて、上記の状態A〜Dのいずれかを示す位置信号をコントローラ300に出力する回路部である。まず、出力回路部126は、処理部125から検出信号に基づいて判定された状態A〜Dの情報を取得する。また、出力回路部126は、複数の範囲にそれぞれ設定された離散的な値のうち特定した位置の範囲に対応した値の位置信号をコントローラ300に出力する。
【0060】
本実施形態では、離散的な値の位置信号は、電圧値が異なる電圧信号である。例えば、状態AはV
H、状態BはV
M1、状態CはV
M2、状態DはV
Lというように、各状態A〜Dを示す電圧値が各状態A〜Dで重複しないように、離散的な値に設定される。電圧値の大小関係はV
H>V
M1>V
M2>V
Lである。離散的な値が各状態A〜Dで重複しなければ良いので、離散的な値は所定の電圧範囲内のいずれかの電圧値として設定されていても良い。所定の電圧範囲は、例えば1V以内というように各状態A〜Dで同じでも良いし、状態Aでは1V以内であるが状態Bでは2V以内であるというように異なっていても良い。
【0061】
図11に示されるように、検出対象200が移動方向に移動した場合、位置信号は階段状の離散的な電圧値となる。また、ノイズによって位置信号の電圧値が瞬間的に上下することで他の状態を示す電圧値に達する場合がある。しかし、コントローラ300の制御部302は所定時間の電圧値を読み取ることでノイズの影響をほとんど無くすことができる。つまり、ポジションセンサ100はノイズ耐性が高い位置信号を出力することができる。以上が、本実施形態に係るポジションセンサ100の構成である。
【0062】
コントローラ300の制御部302は、ポジションセンサ100から位置信号を入力し、所望の制御に利用する。例えば、車両のメータ部のパーキングランプの点消灯制御、シフトポジションがパーキングに入っているか否かに応じて他の制御を許可または不許可する制御、ポジションセンサ100の故障の場合はポジションセンサ100を使用しない制御、故障ランプの点灯制御等である。
【0063】
また、制御部302は、位置信号以外の信号を入力する場合もある。この信号は、ポジションセンサ100の出力としては本来起こりえない信号である。この場合、ポジションセンサ100以外の故障が原因であると考えられる。例えば、ハーネス400等の通信装置の故障等である。したがって、コントローラ300は、通信装置の故障を検知することができる。
【0064】
比較例として、
図12に示されるように、ブロック状の検出対象500が移動方向に移動する場合について説明する。この場合、検出部122から検出対象500が離れた位置まで移動すると、検出部122の磁石106が検出対象500に反応しなくなる。このため、信号S1が閾値に収束してしまう。これにより、検出対象500が移動方向のどちらの方向に移動しているのか、判定できなくなってしまう。
【0065】
また、検出対象500が移動方向に長さを持っている形状の場合、検出部122が検出対象500の移動方向中心を検出しにくくなってしまう。検出部122は、検出対象500の移動方向の2つのエッジを検出して移動方向中心と判定するため、検出対象500が長くなりエッジ間距離が離れすぎると移動方向中心が分からなくなってしまう。
【0066】
これに対し、本実施形態では、検出対象200の移動方向の範囲内に、検出部122によって検出される部分である各領域部201〜204が設けられている。これにより、
図11に示されるように、信号S1、S2は閾値に収束することがなく、閾値に対して明らかにHiまたはLoとなる。もちろん、中央の領域部202と領域部203との境界を検出対象200の中心に設定しておくことで、検出対象200の移動方向中心を検出することも可能である。
【0067】
また、
図12に示された比較例の問題を起こさないために、検出対象200が移動したとしても、検出対象200−検出部122の相対関係が維持されている。すなわち、複数の範囲の端に位置する範囲にも検出対象200の位置を示す領域部201、204が設けられている。このため、検出部122によって領域部201、204から受ける磁界の変化に基づいた検出信号を生成することができる。
【0068】
したがって、比較例に対して検出部122の検出可能範囲が実質的に広くなっているので、検出対象200の移動量が大きくなったとしても、1つの検出部122によって検出対象200の移動を検出することができる。以上のように、検出対象200を判別したいポジション数で分かれた形状で区分することで、それぞれの区分の判定及び区分に対応した出力をすることができる。
【0069】
変形例として、
図13に示されるように、検出対象200を3つの領域部201〜203で構成することもできる。信号処理部123は、信号S3がHi、信号S4がLoの場合を「状態A」とし、信号S4がHiの場合を「状態B」とし、信号S3がLo、信号S4がLoの場合を「状態C」として判定する。この場合、
図13に示されるように、3状態を3つの離散的な電圧値に設定すれば良い。
【0070】
変形例として、
図14に示されるように、検出信号として、
図13に示された各信号S3、S4とは異なる位相差を持った信号S5、S6を生成することもできる。各信号S5、S6は、各磁気抵抗素子対の出力を用いた演算式を変更することで生成可能である。なお、中央の領域部202が、移動方向において、
図13に示された領域部202よりも短く形成されていても良い。
【0071】
なお、領域部201〜204の数や、位相差が異なる複数の検出信号を適宜変更することで、検出可能な状態の数を自由に変更できる。したがって、3状態や4状態の検出に限られず、5状態や7状態等の状態数も検出も可能である。
【0072】
変形例として、
図15に示されるように、検出対象200の各領域部201〜204は、板部材の一部が打ち抜かれた空間部として構成されていても良い。この場合、位相差を持った信号S7、S8は、
図11に示された信号S1、S2が反転した信号となる。
【0073】
したがって、信号処理部123は、信号S7がLo、信号S8がHiの場合を「状態A」とし、信号S7がLo、信号S8がLoの場合を「状態B」とし、信号S7がHi、信号S8がLoの場合を「状態C」とし、信号S7がHi、信号S8がHiの場合を「状態D」として判定する。このように、検出部122が検出する位置は、検出対象200の素材部分ではなく、窓状に構成された空間部分として構成されていても良い。
【0074】
変形例として、
図16に示されるように、領域部201と領域部202との間、及び、領域部202と領域部203との間に遷移部206が設けられていても良い。領域部201〜204の数に関係なく、隣同士の領域間に遷移部206を設けることができる。遷移部206の形状は、直線状やR形状等に限定されない。また、遷移部206は各領域部201〜204が空間部分として構成されている場合にも適用できる。
【0075】
変形例として、
図17に示されるように、センサチップ110のうち検出素子124が設けられたチップ面は、検出部122の移動方向に対して垂直な方向ではなく、傾斜していても良い。なお、
図17では、検出対象200に遷移部206が設けられているが、遷移部206は検出対象200に設けられていなくても良い。
【0076】
変形例として、
図18に示されるように、各領域部201〜204は、板部材にブロックが設けられた凹凸形状として構成されていても良い。
【0077】
変形例として、
図19及び
図20に示されるように、検出対象200は、扇形状の板部材の一部が打ち抜かれたものでも良い。打ち抜きの形状を考慮することにより、例えば
図10に示された階段状の各領域部201〜204を扇形状の周方向に設けることができる。これにより、検出対象200が軸を中心に回転あるいは回動することで各範囲A〜Dの位置の検出が可能になる。
【0078】
変形例として、
図21に示されるように、検出対象200はロータ等の回転体として構成されていても良い。この場合、
図21の破線部に検出範囲に対応した各領域部201〜204が設けられる。具体的には、
図22に示されるように、回転角のθ方向に4つの領域部201〜204が設けられている。これにより、検出部122は検出対象200の回転あるいは回動の状態を検出することができる。
【0079】
なお、本実施形態の記載と特許請求の範囲の記載との対応関係については、コントローラ300が特許請求の範囲の「外部装置」に対応する。
【0080】
(第2実施形態)
本実施形態では、第1実施形態と異なる部分について説明する。本実施形態では、出力回路部126は、離散的な値の信号として、パルス幅が異なるパルス信号をコントローラ300に出力する。つまり、離散的な値の信号は、PWM方式の信号である。離散的な値は、パルス幅の値、信号の周期、Duty比等である。第1実施形態と同様に、ノイズに対する耐性を向上させることができる。
【0081】
図23に示されるように、例えば、状態Aに対応した信号のパルス幅が最も小さく、状態Dに対応した信号のパルス幅が最も大きく設定されている。状態B、Cに対応した信号のパルス幅は、状態A、Dに対応した信号のパルス幅の間に設定されている。パルス幅は状態Aから状態Dまで段階的に変化していても良いし、ランダムになっていても良い。
【0082】
(第3実施形態)
本実施形態では、第1、第2実施形態と異なる部分について説明する。本実施形態では、検出対象200の全体あるいは一部を磁石で構成し、ポジションセンサ100に磁石106、120を備えない構成としている。
【0083】
図24及び
図25に示されるように、磁気抵抗素子を用いた磁気検出方式では磁石106が設けられていない。同様に、
図26及び
図27に示されるように、ホール素子を用いた磁気検出方式では磁石120が設けられていない。したがって、モールドIC部105は保持部107に直接差し込まれて固定される。
【0084】
図28に示されるように、検出対象200が移動方向に対してセンサチップ110側に磁化方向を持つ磁石207として構成されている。この場合、センサチップ110に設けられた検出部122は、磁極の中心で最大または最小となる信号S9と、各磁極の境界で最大または最小となる信号S10と、を検出信号として信号処理部123に出力する。このように、検出対象200が磁石207で構成されていても、信号S9、S10は、位相差を持った信号となる。
【0085】
なお、
図28に示された磁石207のN極/S極は逆の配置でも良い。また、検出部122は、信号S9が各磁極の境界で最大または最小となり、信号S10が磁極の中心で最大または最小となるように構成されていても良い。また、1つの領域部201〜204を構成する磁極の極数は3極に限られず、他の極数でも良い。
【0086】
そして、
図29に示されるように、検出対象200の各領域部201〜204は、磁石207のN極が2つのS極に挟まれるように構成されている。これにより、磁石207の磁化方向は紙面垂直方向となる。状態判定は、第1実施形態の
図11の場合と同じである。
【0087】
変形例として、
図30に示されるように、検出対象200は板部材の上に各領域部201〜204を構成する磁石207が貼り付けられたものでも良い。磁化方向は板部材の板面に垂直な方向である。
【0088】
変形例として、
図31に示されるように、検出対象200は磁性体の板部材208の上に設けられたゴム磁石209の一部が磁石207となるように着磁されたものでも良い。磁化方向はゴム磁石209の板面に垂直な方向である。
【0089】
変形例として、
図32に示されるように、検出対象200は扇形状の板部材に磁石207が貼り付けあるいは着磁されたものでも良い。
【0090】
変形例として、
図33に示されるように、検出対象200はロータ等の回転体に磁石207が設けられたのでも良い。この場合、
図34に示されるように、回転角のθ方向に4つの領域部201〜204を構成する磁石207が
図33の破線部に設けられている。磁石207の構成は
図31に示された構成と同じでも良いし、板部材に磁石207が貼り付けられる構成でも良い。
【0091】
(他の実施形態)
上記各実施形態で示されたポジションセンサ100の構成は一例であり、上記で示した構成に限定されることなく、本発明を実現できる他の構成とすることもできる。例えば、ポジションセンサ100の用途は車両用に限られず、可動部品の位置を検出するものとして産業用ロボットや製造設備等にも広く利用できる。
【0092】
また、上記各実施形態では、検出対象200に磁石207が含まれていないが、ポジションセンサ100に磁石106、120が含まれる構成と、検出対象200に磁石207が含まれるが、ポジションセンサ100に磁石106、120が含まれない構成と、が示されているが、これらの組み合わせは一例である。したがって、検出対象200に磁石207が含まれており、ポジションセンサ100に磁石106、120が含まれる構成となっていても良い。この場合、ポジションセンサ100の作動は第1実施形態と同じである。