特許第6791229号(P6791229)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社オートネットワーク技術研究所の特許一覧 ▶ 住友電装株式会社の特許一覧 ▶ 住友電気工業株式会社の特許一覧

<>
  • 特許6791229-通信用電線 図000011
  • 特許6791229-通信用電線 図000012
  • 特許6791229-通信用電線 図000013
  • 特許6791229-通信用電線 図000014
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6791229
(24)【登録日】2020年11月9日
(45)【発行日】2020年11月25日
(54)【発明の名称】通信用電線
(51)【国際特許分類】
   H01B 11/12 20060101AFI20201116BHJP
   H01B 7/02 20060101ALI20201116BHJP
   H01B 7/18 20060101ALI20201116BHJP
   H01B 1/02 20060101ALI20201116BHJP
【FI】
   H01B11/12
   H01B7/02 Z
   H01B7/18 H
   H01B1/02 A
【請求項の数】5
【全頁数】23
(21)【出願番号】特願2018-225980(P2018-225980)
(22)【出願日】2018年11月30日
(62)【分割の表示】特願2018-2406(P2018-2406)の分割
【原出願日】2016年12月2日
(65)【公開番号】特開2019-33101(P2019-33101A)
(43)【公開日】2019年2月28日
【審査請求日】2019年11月1日
(31)【優先権主張番号】特願2016-71314(P2016-71314)
(32)【優先日】2016年3月31日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】395011665
【氏名又は名称】株式会社オートネットワーク技術研究所
(73)【特許権者】
【識別番号】000183406
【氏名又は名称】住友電装株式会社
(73)【特許権者】
【識別番号】000002130
【氏名又は名称】住友電気工業株式会社
(74)【代理人】
【識別番号】110002158
【氏名又は名称】特許業務法人上野特許事務所
(72)【発明者】
【氏名】上柿 亮真
(72)【発明者】
【氏名】田口 欣司
【審査官】 木村 励
(56)【参考文献】
【文献】 特開2014−156617(JP,A)
【文献】 特開2015−86452(JP,A)
【文献】 特開2009−167450(JP,A)
【文献】 特開2012−248310(JP,A)
【文献】 特開2015−203136(JP,A)
【文献】 特開2015−170431(JP,A)
【文献】 特開2012−28057(JP,A)
【文献】 特開2003−36739(JP,A)
【文献】 特表平8−507900(JP,A)
【文献】 特表2002−510138(JP,A)
【文献】 特開2005−32583(JP,A)
【文献】 特開2001−148206(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01B 11/12
H01B 1/02
H01B 7/02
H01B 7/18
(57)【特許請求の範囲】
【請求項1】
体と、該導体の外周を被覆する絶縁被覆と、からなる、外径が0.81mm以上、1.05mm以下の絶縁電線が1対撚り合わせられた対撚線を有し、
特性インピーダンスが、100±10Ωの範囲にあり、
前記対撚線における撚りピッチが、前記絶縁電線の外径の15倍以上、45倍以下であり、
前記導体は、
0.05質量%以上、2.0質量%以下のFeと、0.02質量%以上、1.0質量%以下のTiと、0質量%以上、0.6質量%以下のMgと、を含有し、残部がCuおよび不可避的不純物よりなる第一の銅合金よりなる素線、または
0.1質量%以上、0.8質量%以下のFeと、0.03質量%以上、0.3質量%以下のPと、0.1質量%以上、0.4質量%以下のSnと、を含有し、残部がCuおよび不可避的不純物よりなる第二の銅合金よりなる素線を含む撚線であり、
破断伸びが7%以上であることを特徴とする通信用電線。
ただし、前記第一の銅合金は、Mgを含有しない形態も含む。
【請求項2】
前記絶縁電線の前記絶縁被覆の厚さは、0.30mm以下であることを特徴とする請求項1に記載の通信用電線。
【請求項3】
前記対撚線において、前記1対の絶縁電線のそれぞれに、撚り合わせ軸を中心とした捻りが加えられていないことを特徴とする請求項1または2に記載の通信用電線。
【請求項4】
前記対撚線における前記撚りピッチは、前記絶縁電線の外径の30倍以上であることを特徴とする請求項1からのいずれか1項に記載の通信用電線。
【請求項5】
前記絶縁電線の導体断面積は、0.22mm未満であることを特徴とする請求項1から4のいずれか1項に記載の通信用電線。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、通信用電線に関し、さらに詳しくは、自動車等において、高速通信に用いることができる通信用電線に関するものである。
【背景技術】
【0002】
自動車等の分野において高速通信の需要が増している。高速通信に用いられる電線においては、特性インピーダンス等の伝送特性を厳しく管理する必要がある。例えば、イーサーネット通信に用いられる電線においては、特性インピーダンスが100±10Ωになるように管理する必要がある。
【0003】
通信用電線の特性インピーダンスは、導体径、絶縁被覆の種類や厚さ等、通信用電線の具体的な構成に依存して定まる。例えば、特許文献1においては、導体と該導体を被覆する絶縁体とを備えた一対の絶縁線心を撚り合わせてなる対撚り線と、該対撚り線を被覆するシールド用の金属箔シールドと、該金属箔シールドに対して導通する接地用電線と、これら全体を被覆するシースとを備え、且つ特性インピーダンス値が100±10Ωとなるように構成した通信用シールド電線が開示されている。ここでは、絶縁線心として、導体径が0.55mmのものが用いられ、導体を被覆する絶縁体の厚さは、0.35〜0.45mmとなっている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2005−32583号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
自動車等に用いる通信用電線においては、細径化に対する需要が大きい。この需要を満足するために、特性インピーダンス等の伝送特性を満たしながら、通信用電線の細径化を図ることが必要となる。対撚線を有する通信用電線を細径化する方法として、対撚線を構成する絶縁電線の絶縁被覆を薄くすることが考えられる。しかし、本発明者の試験によると、特許文献1に記載される通信用電線において、絶縁体の厚さを0.35mmよりも小さくすると、特性インピーダンスが90Ωよりも小さくなり、イーサーネット通信で求められる100±10Ωの範囲を外れてしまう。
【0006】
本発明の課題は、必要な大きさの特性インピーダンス値を確保しながら、細径化された通信用電線を提供することにある。
【課題を解決するための手段】
【0007】
上記課題を解決するため、本発明にかかる通信用電線は、引張強さが400MPa以上である導体と、該導体の外周を被覆する絶縁被覆と、からなる1対の絶縁電線が撚り合わせられた対撚線と、前記対撚線の外周を被覆する絶縁材料よりなるシースと、を有し、前記シースと前記対撚線を構成する前記絶縁電線との間に、空隙が存在するものである。
【0008】
ここで、前記絶縁電線の導体断面積は、0.22mm未満であるとよい。また、前記絶縁電線の絶縁被覆の厚さは、0.30mm以下であるとよい。前記絶縁電線の外径は、1.05mm以下であるとよい。前記絶縁電線の導体の破断伸びは、7%以上であるとよい。
【0009】
前記通信用電線の軸に交差する断面において、前記シースの外周縁に囲まれた領域の面積のうち、前記空隙が占める面積の割合は、8%以上であるとよい。前記通信用電線の軸に交差する断面において、前記シースの外周縁に囲まれた領域の面積のうち、前記空隙が占める面積の割合は、30%以下であるとよい。前記対撚線における撚りピッチは、前記絶縁電線の外径の45倍以下であるとよい。前記絶縁電線に対する前記シースの密着力は、4N以上であるとよい。
【発明の効果】
【0010】
上記発明にかかる通信用電線においては、対撚線を構成する絶縁電線の導体が400MPa以上の高い引張強さを有しているため、電線として必要な強度を確保しながら、導体径を小さくすることができる。すると、対撚線を構成する2本の導体の間の距離が小さくなることにより、通信用電線の特性インピーダンスを高くすることができる。その結果、通信用電線の細径化のために絶縁電線の絶縁被覆を薄くしても、特性インピーダンスを、100±10Ωの範囲よりも小さくならないように、確保することが可能となる。
【0011】
さらに、対撚線の外周を被覆するシースと対撚線を構成する絶縁電線との間に、空隙が存在し、対撚線の周囲に空気の層が存在することで、シースが充実状態で形成される場合と比較して、通信用電線の特性インピーダンスを高くすることができる。よって、絶縁電線の絶縁被覆の厚さを小さくしても、通信用電線の特性インピーダンスとして十分に高い値を維持しやすくなる。絶縁電線の絶縁被覆の厚さを小さくすることができれば、通信用電線全体の外径を小さくすることができる。
【0012】
ここで、絶縁電線の導体断面積が、0.22mm未満である場合には、対撚線を構成する2本の絶縁電線の間の距離が近くなることの効果によって、特性インピーダンスが高くなるので、必要な特性インピーダンスを維持しながら、絶縁被覆を薄くすることによる通信用電線の細径化が行いやすくなる。また、導体の細さ自体も、通信用電線の細径化に効果を有する。
【0013】
また、絶縁電線の絶縁被覆の厚さが、0.30mm以下である場合には、絶縁電線が十分に細径化されることで、通信用電線全体が細径化されやすい。
【0014】
絶縁電線の外径が、1.05mm以下である場合にも、通信用電線全体を細径化しやすい。
【0015】
絶縁電線の導体の破断伸びが、7%以上である場合には、導体の耐衝撃性が高くなり、通信用電線のワイヤーハーネスへの加工時や、ワイヤーハーネスの組み付け時等に導体に印加される衝撃に耐えやすくなる。
【0016】
通信用電線の軸に交差する断面において、シースの外周縁に囲まれた領域の面積のうち、空隙が占める面積の割合が、8%以上である場合には、通信用電線の特性インピーダンスを高めることで、通信用電線の外径を小さくする効果に特に優れる。
【0017】
通信用電線の軸に交差する断面において、シースの外周縁に囲まれた領域の面積のうち、空隙が占める面積の割合が、30%以下である場合には、空隙が大きすぎることにより、シースの内部空間の中で対撚線の位置が定まらずに、通信用電線の特性インピーダンスや各種伝送特性にばらつきや経時変化が生じるのを防止しやすくなる。
【0018】
対撚線における撚りピッチが、絶縁電線の外径の45倍以下である場合には、対撚線の撚り構造の緩みが起こりにくくなり、撚り構造の緩みによって、通信用電線の特性インピーダンスや各種伝送特性にばらつきや経時変化が生じるのを防止しやすくなる。
【0019】
絶縁電線に対するシースの密着力が、4N以上である場合には、シースに対する対撚線の位置のずれや対撚線の撚り構造の緩みが起こるのが防止され、それらの影響によって、通信用電線の特性インピーダンスや各種伝送特性にばらつきや経時変化が生じるのを防止しやすくなる。
【図面の簡単な説明】
【0020】
図1】本発明の一実施形態にかかる通信用電線を示す断面図であり、シースがルーズジャケットとして設けられている。
図2】シースが充実ジャケットとして設けられた通信用電線を示す断面図である。
図3】対撚線について、2とおりの撚り構造を説明する図であり、(a)は第一の撚り構造(捻りなし)、(b)は第二の撚り構造(捻りあり)を示している。図中、点線は、絶縁電線の軸を中心として同じ位置に当たる部位を絶縁電線の軸に沿って示すガイドである。
図4】シースがルーズジャケットである場合と充実ジャケットである場合について、絶縁電線の絶縁被覆の厚さと特性インピーダンスの関係を示す図である。シースを設けない場合についてのシミュレーション結果もともに示している。
【発明を実施するための形態】
【0021】
以下、図面を用いて本発明の一実施形態にかかる通信用電線について詳細に説明する。
【0022】
[通信用電線の構成]
図1に、本発明の一実施形態にかかる通信用電線1の断面図を示す。
【0023】
通信用電線1は、1対の絶縁電線11,11を撚り合わせた対撚線10を有している。各絶縁電線11は、導体12と、導体12の外周を被覆する絶縁被覆13を有している。そして、通信用電線1は、対撚線10全体の外周を被覆して、絶縁材料よりなるシース30を有している。
【0024】
通信用電線1は、100±10Ωの範囲の特性インピーダンスを有している。100±10Ωとの特性インピーダンスは、イーサーネット通信用の電線に求められる値である。通信用電線1は、このような特性インピーダンスを有することで、自動車等において、高速通信用に好適に用いることができる。
【0025】
(1)絶縁電線の構成
対撚線10を構成する絶縁電線11の導体12は、400MPa以上の引張強さを有する金属線材よりなっている。具体的な金属線材として、後に説明するようなFeおよびTiを含有する銅合金線、また、FeおよびP、Snを含有する銅合金線を例示することができる。導体12の引張強さは、440MPa以上、さらには480MPa以上であれば、より好ましい。
【0026】
導体12が、400MPa以上、さらには440MPa以上、480MPa以上の引張強さを有していることで、細径化しても、電線として求められる引張強さを維持することができる。導体12を細径化することで、対撚線10を構成する2本の導体12,12の間の距離(導体12,12の中心を結ぶ距離)が近くなり、通信用電線1の特性インピーダンスが大きくなる。例えば、導体断面積が、0.22mm未満、さらには0.15mm以下、0.13mm以下となる程度まで、導体12を細径化することができる。導体12の外径としては、0.55mm以下、さらには0.50mm以下、0,45mm以下とすることができる。なお、導体12を過度に細径化すると、強度の維持が困難になるとともに、通信用電線1の特性インピーダンスが大きくなりすぎるので、導体断面積は、0.08mm以上としておくことが好ましい。
【0027】
導体12が0.22mm未満の小さな導体断面積を有する場合に、導体12の外周を被覆する絶縁被覆13の厚さを、例えば0.30mm以下のように薄くしても、通信用電線1において、100±10Ωの特性インピーダンスを確保しやすくなる。なお、従来一般の銅電線の場合には、引張強さが低いことにより、導体断面積を0.22mm未満として用いることは困難である。
【0028】
導体12は、7%以上の破断伸びを有していることが好ましい。一般的に、引張強さの高い導体は、靱性が低く、急激に力が加わった際の耐衝撃性が低いことが多い。しかし、上記のように、400MPa以上の高い引張強さを有する導体12において、7%以上の破断伸びを有していれば、通信用電線1からワイヤーハーネスを組み立てる工程、またそのワイヤーハーネスの組み付けの工程において、導体12に対して衝撃が加えられても、導体12が、高い耐衝撃性を発揮することができる。導体12の破断伸びは、10%以上であれば、さらに好ましい。
【0029】
導体12は、単線よりなってもよいが、屈曲性を高める等の観点から、複数の素線が撚り合わせられた撚線よりなることが好ましい。この場合に、素線を撚り合わせた後に、圧縮成形を行い、圧縮撚線としてもよい。圧縮成形により、導体12の外径を縮小することができる。また、導体12が撚線よりなる場合に、導体12全体として400MPa以上の引張強さを有していれば、全て同じ素線よりなっても、2種以上の素線よりなってもよい。2種以上の素線を用いる形態として、後に説明するようなFeおよびTiを含有する銅合金、またはFeおよびP、Snを含有する銅合金よりなる素線と、SUS等、銅合金以外の金属材料よりなる素線を用いる場合を例示することができる。
【0030】
絶縁電線11の絶縁被覆13は、どのような絶縁性のポリマー材料よりなってもよい。特性インピーダンスとして所定の高い値を確保する観点から、絶縁被覆13は、4.0以下の比誘電率を有することが好ましい。そのようなポリマー材料として、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリスチレン、ポリテトラフルオロエチレン、ポリフェニレンサルファイド等を挙げることができる。絶縁電線11は、ポリマー材料に加え、適宜、難燃剤等の添加剤を含有してもよい。
【0031】
通信用電線1において、導体12を細径化し、導体12,12間の接近によって特性インピーダンスを上昇させていることの効果により、所定の特性インピーダンスを確保するために必要な絶縁被覆13の厚さを小さくすることができる。例えば、絶縁被覆13の厚さを、0.30mm以下、さらには0.25mm以下、0.20mm以下とすることが好ましい。なお、絶縁被覆13を薄くしすぎると、必要な大きさの特性インピーダンスを確保することが難しくなるので、絶縁被覆13の厚さは、0.15mmより大きくしておくことが好ましい。
【0032】
導体12の細径化および絶縁被覆13の薄層化により、絶縁電線11全体が細径化される。例えば、絶縁電線11の外径を、1.05mm以下、さらには0.95mm以下、そして0.85mm以下とすることができる。絶縁電線11を細径化することで、通信用電線1全体を細径化することができる。
【0033】
絶縁電線11において、導体12の全周にわたって、絶縁被覆13の厚さ(絶縁厚)の均一性が高い方が好ましい。つまり、偏肉が小さいことが好ましい。すると、導体12の偏芯が小さくなり、対撚線10を構成した際に、対撚線10に占める導体12の位置の対称性が高くなる。その結果、通信用電線1の伝送特性、特に、モード変換特性を高めることができる。例えば、各絶縁電線11の偏芯率を、65%以上、より好ましくは75%以上とするとよい。ここで、偏芯率は、[最小絶縁厚]/[最大絶縁厚]×100%として算出される。
【0034】
(2)対撚線の撚り構造
対撚線10は、2本の絶縁電線11を撚り合わせることで形成することができ、撚りピッチは、絶縁電線11の外径等に応じて設定することができる。しかし、撚りピッチを、絶縁電線11の外径の60倍以下、好ましくは45倍以下、さらに好ましくは30倍以下としておくことで、撚り構造の緩みを効果的に抑制することができる。撚り構造の緩みは、通信用電線1の特性インピーダンスや各種伝送特性のばらつきや経時変化につながりうる。特に、後述するように、シース30をルーズジャケット型とする場合に、シース30と対撚線10との間に空隙Gが存在することにより、充実ジャケット型とする場合と比較して、対撚線10において撚り構造を緩ませるような力が働いた際に、シース30によってそれを抑制することが難しい場合があるが、上記のような撚りピッチを選択することで、ルーズジャケット型のシース30を用いる場合にも、撚り構造の緩みを効果的に抑制することができる。撚り構造の緩みを抑制することで、対撚線10を構成する2本の絶縁電線11の間の距離(線間距離)を、ピッチ内の各部位において、小さな値、例えば実質的に0mmに維持し、安定な伝送特性を得ることが可能となる。一方、対撚線10の撚りピッチを小さくしすぎると、対撚線10の生産性が低くなり、製造コストが上昇するため、撚りピッチは、絶縁電線11の外径の8倍以上、さらに好ましくは12倍以上、15倍以上としておくことが好ましい。
【0035】
対撚線10において、2本の絶縁電線11の撚り構造として、以下の2つの構造を例示することができる。第一の撚り構造においては、図3(a)に示すように、各絶縁電線11に、撚り合わせ軸を中心とした捻り構造が加えらず、絶縁電線11自体の軸を中心とした絶縁電線11の各部の相対的な上下左右の方向が、撚り合わせ軸に沿って変化しない。つまり、絶縁電線11の軸を中心として同じ位置に当たる部位が、撚り構造の全域において、常に、例えば上方等、同じ方向を向いている。図中で、絶縁電線11の軸を中心として同じ位置に当たる部位を、絶縁電線11の軸に沿って点線で示しているが、捻り構造が加えられていないことに対応して、この点線が、常に紙面手前の中心に見えている。なお、図3(a),(b)では、見やすいように、対撚線10の撚り構造を緩めた状態で表示している。
【0036】
一方、第二の撚り構造においては、図3(b)に示すように、各絶縁電線11に、撚り合わせ軸を中心として捻り構造が加えられており、絶縁電線11自体の軸を中心とした絶縁電線11の各部の相対的な上下左右の方向が、撚り合わせ軸に沿って、変化している。つまり、絶縁電線11の軸を中心として同じ位置に当たる部位が、撚り構造の中で、向く方向を上下左右に変化させている。図中で、絶縁電線11の軸を中心として同じ位置に当たる部位を、絶縁電線11の軸に沿って点線で示しているが、捻り構造が加えられていることに対応して、この点線が、撚り構造の1ピッチ内の一部の領域でしか紙面手前に見えておらず、撚り構造の1ピッチ内で紙面に対して前後にその位置を連続的に変化させている。
【0037】
上記2つの撚り構造のうち、第一の撚り構造を採用することが好ましい。第一の撚り構造の方が、撚り構造の1ピッチ内で、2本の絶縁電線11の線間距離の変化が小さいからである。特に、本実施形態にかかる通信用電線1においては、絶縁電線11を細径化していることに起因し、捻りの影響で、線間距離が変化しやすいが、第一の撚り構造を採用することで、その影響を小さく抑えることができる。線間距離が変化すると、通信用電線1の伝送特性が不安定化しやすくなる。
【0038】
対撚線10を構成する2本の絶縁電線11の長さの差(線長差)は、小さい方が好ましい。対撚線10において、2本の絶縁電線11の対称性を上げることができ、伝送特性、特にモード変換特性を高めることができる。例えば、対撚線1mあたりの線長差を、5mm以下、さらに好ましくは3mm以下に抑えておけば、線長差の影響を小さく抑えやすい。
【0039】
(3)シースの概略
シース30は、対撚線10の保護や撚り構造の保持等を目的として設けられるものである。図1の実施形態においては、シース30は、ルーズジャケットとして設けられており、中空筒状に成形された空間の中に、対撚線10を収容している。シース30は、対撚線10を構成する絶縁電線11と、内周面の周方向に沿って一部の領域でのみ接触しており、それ以外の領域においては、シース30と絶縁電線11の間に、空隙Gが存在し、空気の層が形成されている。シース30の構成の詳細については、後述する。
【0040】
なお、シース30と絶縁電線11の間における空隙Gの有無、および後述するような空隙Gの割合等、通信用電線1の断面の状態を評価するに際し、断面を形成するための切断操作によってシース30や対撚線10が変形して正確な評価を妨げることがないように、通信用電線1全体をアクリル等の樹脂に包埋し、シース30の内部の空間にまでその樹脂を浸透させた状態で固定してから、切断操作を行うことが好ましい。切断面において、アクリル樹脂が存在している領域が、本来、空隙Gであった領域である。
【0041】
本実施形態にかかる通信用電線1においては、特許文献1の場合とは異なり、シース30の内側に、対撚線20を包囲する導電性材料よりなるシールドは設けられず、対撚線10の外周を直接シース30が包囲している。シールドは、対撚線10に対して、外部からのノイズの侵入および外部へのノイズの放出を遮蔽する役割を果たすが、本実施形態にかかる通信用電線1は、ノイズの影響が深刻でない条件で使用することを想定しており、シールドを設けていない。本実施形態にかかる通信用電線1においては、構成の簡素化による細径化と低コスト化を効果的に達成する観点から、シース30と対撚線20の間に、シールド以外にも他の部材を有さず、シース30が、空隙Gを介して、対撚線20の外周を直接被覆するものであることが好ましい。
【0042】
(4)通信用電線全体の特性
以上のように、本通信用電線1においては、対撚線10を構成する絶縁電線11の導体12が、400MPa以上の引張強さを有していることにより、導体12を細径化しても、自動車用電線として十分な強度を維持しやすくなっている。導体12を細径化することで、対撚線10を構成する2本の導体12,12の間の距離が近くなる。2本の導体12,12の間の距離が近くなると、通信用電線1の特性インピーダンスが高くなる。対撚線10を構成する絶縁電線11の絶縁被覆13の層が薄くなると、特性インピーダンスが小さくなるが、本通信用電線1においては、導体12,12の細径化に伴う接近の効果により、絶縁被覆13の厚さを、例えば0.30mm以下のように小さくしても、通信用電線1において、100±10Ωという特性インピーダンスを確保することが可能となっている。
【0043】
絶縁電線11の絶縁被覆13を薄くすることで、通信用電線1全体としての線径(仕上がり径)を細くすることができる。例えば、通信用電線1の線径を、2.9mm以下、さらには2.5mm以下とすることができる。通信用電線1が、所定の特性インピーダンス値を保ちながら、細径化されることで、通信用電線1を、自動車内等、空間が限られた場所での高速通信の用途に、好適に用いることができる。
【0044】
絶縁電線11を構成する導体12の細径化および絶縁被覆13の薄肉化は、通信用電線1の細径化のみならず、通信用電線1の軽量化にも効果を有する。通信用電線1を軽量化することで、例えば通信用電線1を自動車内の通信に用いた際に、車両全体を軽量化することができ、車両の低燃費化につながる。
【0045】
また、絶縁電線11を構成する導体12が、400MPa以上の引張強さを有していることで、通信用電線1が、高い破断強度を有するものとなる。例えば、破断強度を、100N以上、さらには140N以上とすることができる。通信用電線1が、高い破断強度を有することで、端末において、端子等に対して高い把持力を示すことができる。つまり、端末に端子等を取り付けた部位における通信用電線1の破断を防止しやすくなる。
【0046】
さらに、通信用電線においては、100±10Ωのような十分な大きさの特性インピーダンスを有することに加え、特性インピーダンス以外の伝送特性、つまり、透過損失(IL)、反射損失(RL)、透過モード変換(LCTL)、反射モード変換(LCL)のような伝送特性も、所定の水準を満たすことが望ましい。本実施形態にかかる通信用電線1においては、特に、シース30がルーズジャケット型の構成を有することにより、絶縁電線11の絶縁被覆13を、0.25mm未満、さらには0.15mm以下としても、IL≦0.68dB/m(66MHz)、RL≧20.0dB(20MHz)、LCTL≧46.0dB(50MHz)、LCL≧46.0dB(50MHz)の水準を満たすことができる。
【0047】
[シースの詳細構成]
上記のように、本実施形態においては、シース30は、ルーズジャケットとして設けられており、シース30と対撚線10を構成する絶縁電線11との間に、空隙Gが存在している。一方、図2に示すように、シース30’を充実ジャケットとして設ける形態の通信用電線1’も考えうる。この場合には、シース30’が、対撚線10を構成する絶縁電線11に接触するか、そのすぐ近傍の位置まで充実状に形成されており、シース30’と絶縁電線11の間に、製造上、不可避的に形成される空隙を除いて、空隙が実質的に存在していない。
【0048】
特性インピーダンスを所定の高い水準に保ちながら通信用電線1を細径化する観点から、シース30が充実ジャケットである場合よりも、ルーズジャケットである場合の方が好適である。通信用電線1の特性インピーダンスは、対撚線10が誘電率の低い材料に包囲されている方が高くなり(後の式(1)参照)、対撚線10の周囲に空気の層が存在するルーズジャケットの構成の方が、対撚線10の外側にすぐ誘電体が存在する充実ジャケットの場合よりも、特性インピーダンスを高くすることができる。よって、ルーズジャケットの場合の方が、各絶縁電線11の絶縁被覆13を薄くしても、100±10Ωの特性インピーダンスを確保できることになる。絶縁被覆13を薄くすることで、絶縁電線11を細径化し、通信用電線1全体の外径も小さくすることができる。
【0049】
具体的には、上記のように絶縁電線11の導体12として引張強さ400MPaのものを用い、シース30としてルーズジャケット型のものを用いることで、絶縁電線11の絶縁被覆13の厚さを、0.25mm未満、さらには0.20mm以下としても、通信用電線1において、100±10Ωの特性インピーダンスを確保することができる。この場合に、通信用電線1全体の外径を2.5mm以下とすることができる。
【0050】
また、ルーズジャケットを用いる方が、シース30として用いる材料の量が少ないことにより、充実ジャケットを用いる場合によりも、通信用電線1の単位長さ当たりの質量を小さくすることができる。このようにシース30を軽量化することにより、上記のような、導体12の細径化および絶縁被覆13の薄肉化の効果と相俟って、通信用電線1全体としての軽量化、そして、自動車に用いた際の低燃費化に資することができる。
【0051】
なお、ルーズジャケット型のシース30を用いる場合に、シース30が中空筒形状であることにより、通信用電線1全体として、意図しない撓みや曲げの影響を受けやすくなるが、導体12として引張強さ400MPa以上のものを用いることで、その点を補うことができる。
【0052】
シース30と絶縁電線11の間の空隙Gが大きいほど、実効誘電率(下記式(1)参照)が小さくなり、通信用電線1の特性インピーダンスが大きくなる。通信用電線1の軸に略垂直に交差する断面において、シース30の外周縁に囲まれた全領域の面積、つまりシース30の厚さまで含む断面積のうち、空隙Gが占める面積の割合(外周面積率)が8%以上となるようにすると、十分な空気の層が対撚線10の周囲に存在することになり、100±10Ωの特性インピーダンスを確保しやすい。空隙Gの外周面積率は、15%以上であると、さらに好ましい。一方、空隙Gが占める面積の割合を大きくしすぎても、シース30の内部空間における対撚線10の位置ずれや、対撚線10の撚り構造の緩みが生じやすくなる。それらの現象は、通信用電線1の特性インピーダンスや各種伝送特性のばらつき、経時変化につながる。それらを抑制する観点から、空隙Gの外周面積率は30%以下、さらに好ましくは、23%以下に抑えておくことが好ましい。
【0053】
空隙Gの割合を示す指標としては、上記外周面積率の代わりに、通信用電線1の軸に略垂直に交差する断面において、シース30の内周縁に囲まれた領域の面積、つまりシース30の厚さを含まない断面積のうち、空隙Gが占める面積の割合(内周面積率)を用いることもできる。上で外周面積率について記載したのと同様の理由により、空隙Gの内周面積率は、26%以上、さらに好ましくは39%以上であるとよい。一方、内周面積率は、56%以下、さらに好ましくは50%以下に抑えておくとよい。シース30の厚さも、通信用電線1の実効誘電率および特性インピーダンスに影響を与えるので、十分な特性インピーダンスを確保するための指標として、内周面積率よりも、外周面積率を指標として、空隙Gを設定することが好ましい。ただし、特にシース30が厚い場合には、シース30の厚さが通信用電線1の特性インピーダンスに与える影響が小さくなるため、内周面積率も良い指標となる。
【0054】
断面における空隙Gの割合は、対撚線10の1ピッチ内の各部位において、一定でない場合もある。このような場合に、空隙Gの外周面積率および内周面積率が、対撚線10の1ピッチ分の長さ領域の平均値として、上記のような条件を満たすことが好ましく、1ピッチ分の長さ領域の全域にわたり、上記のような条件を満たすと、より好ましい。あるいは、このような場合に、空隙Gの割合を、対撚線10の1ピッチ分の長さ領域における体積を指標として評価するとよい。つまり、対撚線10の1ピッチ分の長さ領域において、シース30の外周面に囲まれた領域の体積のうち、空隙Gが占める体積の割合(外周体積率)を、7%以上、さらに好ましくは14%以上とするとよい。また、外周体積率を、29%以下、さらに好ましくは22%以下とするとよい。あるいは、対撚線10の1ピッチ分の長さ領域において、シース30の内周面に囲まれた領域の体積のうち、空隙Gが占める体積の割合(内周体積率)を、25%以上、さらに好ましくは38%以上とするとよい。また、内周体積率を、55%以下、さらに好ましくは49%以下とするとよい。
【0055】
また、上記のように、シース30と絶縁電線11の間の空隙Gが大きいほど、下記の式1で表される実効誘電率が小さくなる。実効誘電率は、空隙Gの大きさに加え、シース30の材質および厚さ等のパラメータにも依存するが、実効誘電率が7.0以下、さらに好ましくは6.0以下となるように、空隙Gの大きさおよび他のパラメータを選択することで、通信用電線1の特性インピーダンスを、100±10Ωの領域にまで高めやすくなる。一方、通信用電線1の製造性や電線信頼性の観点、また一定以上の絶縁被覆厚さを確保する観点から、実効誘電率が、1.5以上、さらに好ましくは2.0以上となるようにするとよい。空隙Gの大きさは、シース30を押し出し成形によって作製する際の条件(ダイス・ポイント形状、押出温度等)によって制御することができる。
【0056】
【数1】
ここで、εeffは実効誘電率、dは導体径、Dは電線外径、ηは定数である。
【0057】
図1のように、シース30は、内周面の一部の領域において、絶縁電線11と接触している。これらの領域において、シース30が絶縁電線11に強固に密着していれば、シース30によって対撚線10を押さえ込むことで、シース30の内部空間における対撚線10の位置ずれや、対撚線10の撚り構造の緩みのような現象を抑制することができる。シース30の絶縁電線11に対する密着力を4N以上、さらに好ましくは、7N以上、そして8N以上とすれば、それらの現象を抑制し、2本の絶縁電線11の線間距離を、小さな値、例えば実質的に0mmに維持することで、特性インピーダンスや各種伝送特性のばらつき、経時変化を効果的に抑制することができる。一方、シース30の密着力が大きすぎても、通信用電線1の加工性が悪くなるので、密着力は、70N以下に抑えておくとよい。シース30の絶縁電線11に対する密着性は、樹脂材料の押し出しによりシース30を対撚線10の外周に形成する際に、樹脂材料の押出温度を変えることで調整できる。密着力は、例えば、全長150mmの通信用電線1において、シース30を片端から30mm除去した状態で、対撚線10を引っ張り、対撚線10が抜け落ちるまでの強度として評価できる。
【0058】
また、シース30の内周面に絶縁電線11が接触している領域の面積が大きいほど、シース30の内部空間における対撚線10の位置ずれや、対撚線10の撚り構造の緩みのような現象を抑制しやすくなる。通信用電線1の軸に略垂直に交差する断面において、シース30の内周縁の全長のうち、絶縁電線11と接触している部位の長さ(接触率)を、0.5%以上、さらに好ましくは2.5%以上としておけば、それらの現象を効果的に抑制することができる。一方、接触率を80%以下、さらに好ましくは50%以下としておけば、空隙Gを確保しやすい。接触率は、対撚線10の1ピッチ分の長さ領域の平均値として、上記のような条件を満たすことが好ましく、1ピッチ分の長さ領域の全域にわたり、上記のような条件を満たすと、より好ましい。
【0059】
シース30の厚さは、適宜選択すればよい。例えば、通信用電線1の外部からのノイズの影響、例えば通信用電線1を他の電線とともにワイヤーハーネス等の状態で用いた際の他の電線からの影響を低減する観点、また、耐摩耗性、耐衝撃性等、シース30の機械的特性を確保する観点からは、シースの厚さを、0.20mm以上、さらに好ましくは0.30mm以上とすればよい。一方、実効誘電率を小さく抑えること、通信用電線1全体を細径化することを考慮すると、シース30の厚さを、1.0mm以下、さらに好ましくは0.7mm以下とすればよい。
【0060】
以上のように、通信用電線1の細径化の観点からは、ルーズジャケット型のシース30を用いることが好ましいが、細径化の要請がそれほど大きくない場合等には、図2のように充実ジャケット型のシース30’を用いることも考えられる。充実型のシース30’の方が、対撚線10をシース30’によって強固に固定することができ、対撚線10のシース30’に対する位置ずれや撚り構造の緩み等の現象を防止しやすい。その結果、それらの現象によって、通信用電線1の特性インピーダンスや各種伝送特性に経時変化やばらつきが生じるのを防止しやすい。ルーズジャケット型のシース30と充実ジャケット型のシース30’のいずれとするかは、シースを押し出し成形によって作製する際の条件(ダイス・ポイント形状、押出温度等)によって制御することができる。また、対撚線10の保護や撚り構造の保持において問題が生じない状況においては、シース30を省略することができ、通信用電線に必ず設けなければならない訳ではない。
【0061】
シース30は、絶縁電線11の絶縁被覆13と同様、どのようなポリマー材料よりなってもよい。つまり、ポリマー材料として、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリスチレン、ポリテトラフルオロエチレン、ポリフェニレンサルファイド等を挙げることができる。これらのうち、通信用電線1の特性インピーダンスを大きくする観点から、非極性のポリマー材料であるポリオレフィンを用いることが特に好ましい。シース30は、ポリマー材料に加え、適宜、難燃剤等の添加剤を含有してもよい。また、シース30は、複数の層よりなってもよいが、構成の簡素化による通信用電線1の細径化と低コスト化の観点から、シース30は、1層のみよりなることが好ましい。
【0062】
[導体の材料]
ここで、上記実施形態にかかる通信用電線1において、絶縁電線11の導体12の具体例となる銅合金線について説明する。
【0063】
ここで第一の例として挙げる銅合金線は、以下のような成分組成を有している。
・Fe:0.05質量%以上、2.0質量%以下
・Ti:0.02質量%以上、1.0質量%以下
・Mg:0質量%以上、0.6質量%以下(Mgが含有されない形態も含む)
・残部がCuおよび不可避的不純物よりなる。
【0064】
上記組成を有する銅合金線は、非常に高い引張強さを有している。中でも、Feの含有量が0.8質量%以上である場合、またTiの含有量が0.2質量%以上である場合に、特に高い引張強さを達成することができる。特に、伸線加工度を高め、線径を細くすることや、伸線後に熱処理を行うことで、引張強さを高めることができ、400MPa以上の引張強さを有する導体11を得ることができる。
【0065】
また、第二の例として挙げる銅合金線は、以下のような成分組成を有している。
・Fe:0.1質量%以上、0.8質量%以下
・P:0.03質量%以上、0.3質量%以下
・Sn:0.1質量%以上、0.4質量%以下
・残部がCuおよび不可避的不純物よりなる。
【0066】
上記組成を有する銅合金線は、非常に高い引張強さを有している。中でも、Feの含有量が0.4質量%以上である場合、またPの含有量が0.1質量%以上である場合に、特に高い引張強さを達成することができる。特に、伸線加工度を高め、線径を細くすることや、伸線後に熱処理を行うことで、引張強さを高めることができ、400MPa以上の引張強さを有する導体11を得ることができる。
【実施例】
【0067】
以下に本発明の実施例を示す。なお、本発明はこれら実施例によって限定されるものではない。
【0068】
[1]導体の引張強さに関する検証
まず、導体の引張強さの選択による通信用電線の細径化の可能性について検証した。
【0069】
[試料の作製]
(1)導体の作製
まず、試料A1〜A5について、絶縁電線を構成する導体を作製した。つまり、純度99.99%以上の電気銅と、FeおよびTiの各元素を含有する母合金を、高純度カーボン製坩堝に投入して、真空溶解させ、混合溶湯を作成した。ここで、混合溶湯において、Feが1.0質量%、Tiが0.4質量%含まれるようにした。得られた混合溶湯に対して、連続鋳造を行い、φ12.5mmの鋳造材を製造した。得られた鋳造材に対して、φ8mmまで、押出し加工、圧延を行い、その後、φ0.165mmまで伸線を行った。得られた素線を7本用い、撚りピッチ14mmにて、撚線加工を行うとともに、圧縮成形を行った。その後、熱処理を行った。熱処理条件は、熱処理温度500℃、保持時間8時間とした。得られた導体は、導体断面積が0.13mm、外径が0.45mmとなった。
【0070】
このようにして得られた銅合金導体に対して、JIS Z 2241に従って、引張強さおよび破断伸びを評価した。この際、評点間距離を250mmとし、引張速度を50mm/minとした。評価の結果、引張強さは490MPaであり、破断伸びは8%であった。
【0071】
試料A6〜A8については、導体として、従来一般の純銅製の撚線を用いた。上記と同様に評価した引張強さおよび破断伸び、そして導体断面積、外径は、表1に示している。なお、ここで採用している導体断面積および外径は、電線として用いることができる純銅線において、強度上の制約によって規定される実質的な下限とみなされるものである。
【0072】
(2)絶縁電線の作製
上記で作製した銅合金導体および純銅線の外周に、ポリエチレンの押出しにより、絶縁被覆を形成し、絶縁電線を作製した。各試料における絶縁被覆の厚さは、表1に示したとおりとした。絶縁電線の偏芯率は80%であった。
【0073】
(3)通信用電線の作製
上記で作製した絶縁電線2本を、撚りピッチ25mmにて撚り合わせて、対撚線とした。対撚線の撚り構造は、第一の撚り構造(捻りなし)とした。そして、その対撚線の外周を囲むように、ポリエチレンの押出しにより、シースを形成した。シースはルーズジャケット型とし、シースの厚さは、0.4mmとした。シースと絶縁電線の間の空隙の大きさは、外周面積率で23%とし、絶縁電線に対するシースの密着力は、15Nであった。このようにして、試料A1〜A8にかかる通信用電線を得た。
【0074】
[評価]
(仕上がり外径)
通信用電線の細径化が達成できているかどうかを評価するため、得られた通信用電線の外径を計測した。
【0075】
(特性インピーダンス)
得られた通信用電線に対して、特性インピーダンスを計測した。計測は、LCRメータを用い、オープン/ショート法によって行った。
【0076】
[結果]
試料A1〜A8について、通信用電線の構成および評価結果を表1に示す。
【0077】
【表1】
【0078】
表1に示した評価結果を見ると、銅合金導体を用い、導体断面積を0.22mmよりも小さくしている試料A1〜A3を、導体として純銅線を用い、導体断面積を0.22mmとしている試料A6〜A8とそれぞれ比較すると、絶縁被膜の厚さが同じであるにもかかわらず、試料A1〜A3の場合の方が特性インピーダンスの値が大きくなっている。試料A1〜A3では、いずれも、イーサーネット通信で求められる100±10Ωの範囲に入っているのに対し、特に試料A7,A8では100±10Ωの範囲を外れて低くなっている。
【0079】
上記の特性インピーダンスの挙動は、導体として銅合金線を用いる場合に、純銅線を用いる場合よりも導体を細径化できており、導体間の距離が近づいていることの結果であると解釈される。その結果として、銅合金導体を用いる場合に、100±10Ωの特性インピーダンスを維持しながら、絶縁被覆の厚さを0.30mm未満とすることができ、最も薄い場合には、0.18mmにすることが可能となっている。このように、絶縁被覆を薄くすることで、導体を細径化すること自体の効果と合わせて、通信用電線の仕上がり外径を小さくすることができている。
【0080】
たとえば、導体として銅合金導体を用いている試料A3と、純銅線を用いている試料A6とで、ほぼ同じ値の特性インピーダンスが得られている。しかし、両者の仕上がり外径を比較すると、銅合金導体を用いている試料A3の方が、導体の細線化を達成できていることにより、通信用電線の仕上がり外径が約20%小さくなっている。
【0081】
ただし、導体として銅合金を用いる場合に、試料A5のように、絶縁被覆を薄くしすぎると、特性インピーダンスが100±10Ωの範囲を外れてしまう。つまり、銅合金を用いて導体を細径化したうえで、絶縁被覆の厚さを適切に選択することで、100±10Ωの範囲の特性インピーダンスを得ることができる。
【0082】
[2]シースの形態に関する検証
次に、シースの形態による通信用電線の細径化の可能性について検証した。
【0083】
[試料の作製]
上記の[1]の試験における試料A1〜A4と同様にして、通信用電線を作製した。絶縁電線の偏芯率は80%とし、対撚線の撚り構造は第一の撚り構造(捻りなし)とした。この際、シースが図1のようなルーズジャケット型のものと、図2のような充実ジャケット型のものの2通りを準備した。いずれの場合も、シースは、ポリプロピレンより形成した。シースの厚さは、使用するダイス・ポイント形状によって決定し、ルーズジャケット型の場合は0.4mm、充実型の場合は、最も薄いところで0.5mmとした。ルーズジャケット型のシースと絶縁電線の間の空隙の大きさは、外周面積率で23%とし、絶縁電線に対するシースの密着力は、15Nとした。また、それぞれの場合について、絶縁電線の絶縁被覆の厚さを変更した複数の試料を作製した。
【0084】
[評価]
上記で作製した各試料に対して、上記[1]の試験と同様に、特性インピーダンスを計測した。また、一部の試料に対して、通信用電線の外径(仕上がり外径)と単位長さ当たりの質量を計測した。
【0085】
加えて、一部の試料について、IL、RL、LCTL、LCLの各伝送特性の評価を、ネットワークアナライザを用いて行った。
【0086】
[結果]
図4に、シースがルーズジャケット型である場合と充実ジャケット型である場合のそれぞれについて、絶縁電線の絶縁被覆の厚さ(絶縁厚)と計測された特性インピーダンスの関係を、プロット点として示す。図4には、併せて、シースが設けられない場合について、対撚線を有する通信用電線の特性インピーダンスの理論式として知られている上記式(1)によって得られる、絶縁厚と特性インピーダンスの関係のシミュレーション結果も示している(εeff=2.6)。各シースを有する場合の計測結果に対しても、式(1)に基づく近似曲線を示している。また、図中の破線は、特性インピーダンスが100±10Ωとなる範囲を示している。
【0087】
図4の結果によると、シースを設けることで、実効誘電率が大きくなることと対応して、絶縁厚を同じとした場合の特性インピーダンスが低下している。しかし、シースを充実ジャケット型とした場合と比較して、ルーズジャケット型とした場合の方が、その低下の程度が小さく、大きな特性インピーダンスが得られている。換言すると、ルーズジャケット型とした場合の方が、同じ特性インピーダンスを得るために必要な絶縁厚が小さくて済む。
【0088】
図4によると、特性インピーダンスが100Ωとなっているのは、ルーズジャケット型の場合で、絶縁厚0.20mmの時、充実ジャケット型の場合で、絶縁厚0.25mmの時である。これらの場合について、絶縁厚と通信用電線の外径および質量を下の表2にまとめる。
【0089】
【表2】
【0090】
表2のように、充実ジャケット型の場合と比較して、ルーズジャケット型の場合には、絶縁厚が25%、通信用電線の外径が7.4%、質量が27%、それぞれ減少している。つまり、ルーズジャケット型のシースを使用することで、対撚線を構成する絶縁電線の絶縁厚を小さくしても、十分な大きさの特性インピーダンスを得ることができ、その結果、通信用電線全体として、外径を小さくし、さらに質量も小さくできることが検証された。
【0091】
また、上記の絶縁厚0.20mmのルーズジャケット型の通信用電線について、各伝送特性を評価したところ、IL≦0.68dB/m(66MHz)、RL≧20.0dB(20MHz)、LCTL≧46.0dB(50MHz)、LCL≧46.0dB(50MHz)の水準をいずれも満たすことが確認された。
【0092】
[3]空隙の大きさに関する検証
次に、シースと絶縁電線の間の空隙の大きさと特性インピーダンスとの関係について検証した。
【0093】
[試料の作製]
上記の[1]の試験における試料A1〜A4と同様にして、試料C1〜C6の通信用電線を作製した。この際、シースはルーズジャケット型とし、ダイスとポイントの形状を調整することで、シースと絶縁電線の間の空隙の大きさを変化させた。絶縁電線の導体断面積は0.13mm、絶縁被覆の厚さは0.20mm、シースの厚さは0.40mm、偏芯率は80%とした。また、絶縁電線に対するシースの密着力は15N、撚線の撚り構造は第一の撚り構造(捻りなし)とした。
【0094】
[評価]
上記で作製した各試料に対して、空隙の大きさを計測した。この際、各試料の通信用電線をアクリル樹脂に包埋して固定したうえで、切断することで、断面を得た。そして、断面において、空隙の大きさを、断面積に対する割合として計測した。得られた空隙の大きさは、上記で定義した外周面積率および内周面積率として、表3中に示している。また、各試料に対し、上記[1]の試験と同様に、特性インピーダンスを計測した。表3中で、特性インピーダンスの値を範囲付きで示しているのは、計測中の値のばらつきによるものである。
【0095】
[結果]
空隙の大きさと特性インピーダンスの関係を表3にまとめる。
【0096】
【表3】
【0097】
表3に示すように、空隙の大きさを、外周面積率で、8%以上、30%以下としている試料C2〜C5において、100±10Ωの範囲の特性インピーダンスが、安定に得られている。これに対し、外周面積率が8%未満となっている試料C1においては、空隙の小ささのために実効誘電率が大きくなりすぎ、特性インピーダンスが100±10Ωの範囲に届いていない。一方、外周面積率が30%を超えている試料C6においては、特性インピーダンスが、100±10Ωの範囲を高い側に超えてしまっている。これは、空隙が大きすぎるために、特性インピーダンスの中央値が大きくなっていることに加え、シース内での対撚線の位置ずれや撚り構造の緩みが生じやすくなり、特性インピーダンスのばらつきが大きくなっているものと解釈される。
【0098】
[4]シースの密着力に関する検証
次に、絶縁電線に対するシースの密着力と特性インピーダンスの経時変化との関係について検証した。
【0099】
[試料の作製]
上記の[1]の試験における試料A1〜A4と同様にして、試料D1〜D4の通信用電線を作製した。シースはルーズジャケット型とし、絶縁電線に対するシースの密着力を、表4のように変化させた。この際、密着力は、樹脂材料の押出温度を調整することで変化させた。ここで、シースと絶縁電線の間の空隙の大きさは、外周面積率で23%とした。絶縁電線において、導体断面積は0.13mm、絶縁被覆の厚さは0.20mm、シースの厚さは0.40mmとした。また、絶縁電線の偏芯率は80%とした。対撚線の撚り構造は第一の撚り構造(捻りなし)とし、撚りピッチは、絶縁電線の外径の8倍とした。
【0100】
[評価]
上記で作製した各試料に対して、シースの密着力を計測した。シースの密着力は、全長150mmの試料において、シースを片端から30mm除去した状態で、絶縁電線を引っ張り、絶縁電線が抜け落ちるまでの強度として評価した。また、経時使用を模擬した条件で、特性インピーダンスの変化の測定を行った。具体的には、各試料の通信用電線を、外径φ25mmのマンドレルに沿って、角度90°で200回屈曲させた後、屈曲箇所の特性インピーダンスを測定し、屈曲前からの変化量を記録した。
【0101】
[結果]
シースの密着力と特性インピーダンス変化量の関係を表4にまとめる。
【0102】
【表4】
【0103】
表4に示した結果によると、シースの密着力が4N以上となっている試料D1〜D3においては、特性インピーダンスの変化量が、3Ω以内に抑えられており、マンドレルを用いた屈曲で模擬される経時使用による変化を受けにくいという結果になっている。一方、シースの密着力が4Nに満たない試料D4においては、特性インピーダンスの変化量が、7Ωにも達している。
【0104】
[5]シースの厚さに関する検証
次に、シースの厚さと、伝送特性に対する外部からの影響との関係についての検証を行った。
【0105】
[試料の作製]
上記の[1]の試験における試料A1〜A4と同様にして、試料E1〜E6の通信用電線を作製した。シースはルーズジャケット型とし、試料E2〜E6については、シースの厚さを、表5のように変化させた。試料E1については、シースを設けなかった。シースと絶縁電線の間の空隙の大きさは、外周面積率で23%とした。シースの密着力は、15Nとした。絶縁電線において、導体断面積は0.13mm、絶縁被覆の厚さは0.20mmとした。また、絶縁電線の偏芯率は80%とした。対撚線の撚り構造は第一の撚り構造(捻りなし)とし、撚りピッチは、絶縁電線の外径の24倍とした。
【0106】
[評価]
上記で作製した各試料の通信用電線について、他電線の影響による特性インピーダンスの変化を評価した。具体的には、まず、各試料の通信用電線について、独立した単線の状態での特性インピーダンスを測定した。また、他電線を抱き込んだ状態でも、特性インピーダンスを測定した。ここで、他電線を抱き込んだ状態としては、試料電線を中心として略中心対象に、6本の他電線(外径2.6mmのPVC電線)を試料電線の外周に接触させて配置し、PVCテープを巻いて固定したものを準備した。そして、単線の状態での特性インピーダンスの値を基準として、他電線を抱き込んだ状態における特性インピーダンスの変化量を記録した。
【0107】
[結果]
シースの厚さと特性インピーダンス変化量の関係を表5にまとめる。
【0108】
【表5】
【0109】
表5の結果によると、シースの厚さが0.20mm以上となっている試料E3〜E6において、他電線の影響による特性インピーダンスの変化量が、4Ω以下に抑えられている。これに対し、シースを有さない、あるいはシースの厚さが0.20mm未満である試料E1、E2においては、特性インピーダンスの変化量が8Ω以上に大きくなっている。この種の通信用電線を、ワイヤーハーネス等、他電線と近接した状態で、自動車において用いる場合に、他電線の影響による特性インピーダンスの変化量が、5Ω以下に抑えられていることが好ましい。
【0110】
[6]絶縁電線の偏芯率に関する検証
次に、絶縁電線の偏芯率と伝送特性との関係についての検証を行った。
【0111】
[試料の作製]
上記の[1]の試験における試料A1〜A4と同様にして、試料F1〜F6の通信用電線を作製した。この際、絶縁被覆形成時の条件を調整することで、絶縁電線の偏芯率を、表6のように変化させた。絶縁電線において、導体断面積は0.13mm、絶縁被覆の厚さ(平均値)は、0.20mmとした。シースはルーズジャケット型とし、シースの厚さは、0.40mm、シースと絶縁電線の間の空隙の大きさは、外周面積率で23%、シースの密着力は、15Nとした。対撚線の撚り構造は第一の撚り構造(捻りなし)とし、撚りピッチは、絶縁電線の外径の24倍とした。
【0112】
[評価]
上記で作製した各試料の通信用電線について、透過モード変換特性(LCTL)および反射モード変換特性(LCL)を、上記[2]の試験と同様に計測した。測定は、1〜50MHzの周波数で行った。
【0113】
[結果]
表6に、偏芯率と、各モード変換特性の測定結果を示す。各モード変換の値としては、絶対値で、1〜50MHzの範囲で最小となった値を示している。
【0114】
【表6】
【0115】
表6によると、偏芯率が65%以上の試料F2〜F6において、透過モード変換、反射モード変換とも、46dB以上の水準を満たしている。これに対し、偏芯率が60%の試料F1においては、透過モード変換、反射モード変換とも、それらの水準を満たしていない。
【0116】
[7]対撚線の撚りピッチに関する検証
次に、対撚線の撚りピッチと特性インピーダンスの経時変化の関係について検証した。
【0117】
[試料の作製]
上記の[4]の試験における試料D1〜D4と同様にして、試料G1〜G4の通信用電線を作製した。この際、対撚線の撚りピッチを、表7のように変化させた。シースの絶縁電線に対する密着力は、70Nとした。
【0118】
[評価]
上記で作製した各試料に対して、上記の[4]の試験と同様にして、マンドレルを用いた屈曲による特性インピーダンスの変化量を評価した。
【0119】
[結果]
対撚線の撚りピッチと特性インピーダンス変化量の関係を表7にまとめる。表7において、対撚線の撚りピッチは、絶縁電線の外径(0.85mm)を基準とした値、つまり、絶縁電線の外径の何倍となっているかで示している。
【0120】
【表7】
【0121】
表7の結果によると、撚りピッチを絶縁電線の外径の45倍以下としている試料G1〜G3においては、特性インピーダンスの変化量が、4Ω以下に抑えられている。これに対し、撚りピッチが45倍を超えている試料G4では、特性インピーダンスの変化量が8Ωに達している。
【0122】
[8]対撚線の撚り構造に関する検証
次に、対撚線の撚り構造の種類と特性インピーダンスのばらつきの関係について検証した。
【0123】
[試料の作製]
上記の[4]の試験における試料D1〜D4と同様にして、試料H1およびH2の通信用電線を作製した。この際、対撚線の撚り構造として、試料H1については、上記で説明した第一の撚り構造(捻りなし)を採用し、試料H2については、第二の撚り構造(捻りあり)を採用した。対撚線の撚りピッチは、いずれも、絶縁電線の外径の20倍とした。シースの絶縁電線に対する密着力は、30Nとした。
【0124】
[評価]
上記で作製した各試料に対して、特性インピーダンスの測定を行った。測定は3回行い、3回の測定における特性インピーダンスの変動幅を記録した。
【0125】
[結果]
表8に、撚り構造の種類と特性インピーダンスの変動幅の関係を示す。
【0126】
【表8】
【0127】
表8の結果より、各絶縁電線に捻りを加えていない試料H1において、特性インピーダンスの変動幅が小さく抑えられていることが分かる。これは、捻りによって生じうる線間距離の変動の影響が回避されているためであると解釈される。
【0128】
以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
【0129】
また、上記でも述べたとおり、対撚線の外周を被覆するシースは、通信用電線の細径化の要請の程度に応じて、ルーズジャケット型に限らず、充実型として設けてもよい。また、シースを設けない構成とすることもできる。つまり、引張強さが400MPa以上である導体と、該導体の外周を被覆する絶縁被覆と、からなる1対の絶縁電線が撚り合わせられた対撚線を有し、特性インピーダンスが、100±10Ωの範囲にある通信用電線とすることができる。この場合に、絶縁被覆の厚さ、導体の成分組成および破断伸び、絶縁電線の外径および偏芯率、対撚線の撚り構造および撚りピッチ、シースの厚さおよび密着力、絶縁電線の外径および破断強度等、通信用電線の各部に関して適用しうる好ましい構成は、上記と同様である。また、引張強さが400MPa以上である導体と、該導体の外周を被覆する絶縁被覆と、からなる1対の絶縁電線が撚り合わせられた対撚線を有し、特性インピーダンスが、100±10Ωの範囲に入る通信用電線とし、かつ、その構成に対して、上記のような通信用電線の各部に関して適用しうる好ましい構成を適宜組み合わせることで、必要な大きさの特性インピーダンス値の確保と細径化を両立しながら、各構成によって付与されうる特性を備えた通信用電線を得ることができる。
【符号の説明】
【0130】
1 通信用電線
10 対撚線
11 絶縁電線
12 導体
13 絶縁被覆
30 シース
図1
図2
図3
図4