【実施例】
【0099】
次に、実施例、比較例を用いて本発明を詳細に説明するが、本発明は当然以下の実施例に限定されるものではない。また、本発明で用いた評価方法は以下の通りである。
【0100】
[NMR測定]
アクリルポリオール中に導入された共重合成分の比率は、核磁気共鳴分光法(
1H−N
MR、
13C−NMR:Varian Unity 400、Agilent社製)を用いて確認した。測定は、合成したアクリルポリオール中の溶媒を真空乾燥機にて除去した後、乾固物を重クロロフォルムに溶解させて行った。得られたNMRスペクトルから、各基の部位に帰属される化学シフトδ(ppm)のピークを同定した。得られた各ピークの積分強度を求め、各基の部位の水素数と積分強度から、アクリルポリオールに導入された共重合成分の組成比率(mol%)を確認した。
【0101】
[Tgの確認]
上記NMR測定で求めた共重合成分の組成比率と、前記したFoxの式から各アクリルポリオールのTgを求めた。
【0102】
[延伸適性]
アクリルポリオール自体の延伸適性を評価するため、合成したアクリルポリオール(1)〜(13)を、固形分濃度が12質量%となるように、イソプロパノール30質量%と水70質量%の混合溶媒(25℃)中に投入して、アクリルポリオール単体の溶解液を調製した後、縦延伸のみを行ったポリエステルフィルムの表面に、溶解液をメイヤーバー#5で塗布した。次いで、塗布層(厚み6.5μm)を形成したフィルムサンプルを、温度60℃に設定した熱風循環オーブン中に30秒間静置した後、フィルムサンプルをオーブンから取り出してプレ乾燥を行った。次いで、サンプルを手廻し延伸装置(東洋紡エンジニアリング社製)にセットして、100℃の熱風循環オーブン中に入れ、ゆっくりと延伸操作を行った。延伸前の長さの4倍の長さになるまで延伸操作を行い、延伸装置を熱風循環オーブンから取り出した。その後、延伸後の塗膜を光学顕微鏡(倍率:200倍)にて観察し、下記の基準に従って、延伸によるクラッキングの有無を判断した。
○:クラックが全く見られない。
△:クラックがやや見られる(1本〜4本)。
×:5本以上のクラック、もしくは全面にクラックが見られる。
【0103】
(1)塗布フィルムの表面特性
非接触表面形状計測システム(VertScan R550H−M100)を用いて、下記の条件で測定した値である。領域表面平均粗さ(Sa)、粗さ曲線要素の平均長さ(RSm)は、5回測定の平均値を採用し、最大突起高さ(P)は5回測定の最大値を採用した。
(測定条件)
・測定モード:WAVEモード
・対物レンズ:50倍
・0.5×Tubeレンズ
・測定面積 187×139μm (Sa,P測定)
・測定長さ(Lr:基準長さ):187μm(RSm測定)
【0104】
(2)易滑塗布層の粒子分散性評価(狭視野、VertScan 測定視野187×139μm)
上記(1)で測定した最大突起高さ(P)の値で下記のような基準で判断した。
○: 最大突起高さ(P)が0.2μm以下
○△: 最大突起高さ(P)が0.2μmより大きく、0.3μmより小さい。
△: 最大突起高さ(P)が0.3μm以上
【0105】
(3)易滑塗布層の粒子分散性評価(広視野、目視 測定視野600mm×420mm)
暗室にて目視でLEDライト(LED LENSER社製、LED LENSER P5R.2)を用いて、A4サイズのグリーンシート製造用剥離フィルムを4枚観察し、白く視認できる粒子凝集物にマーキングを行い、下記のような基準で判断した。
◎: 粒子凝集物無し
○: 粒子凝集物が1個から3個。
△: 粒子凝集物が4個以上。
【0106】
(4)耐粉落ち性
摩擦堅牢度試験機(大栄科学精器製作所製、RT−200)にグリーンシート製造用剥離フィルム(3cm(フィルム幅方向)×20cm(フィルム長手方向))を易滑塗布層が上になるように取り付け、荷重ヘッド部(2cmx2cm、200g)と試料フィルムの接触部にアルミ箔(厚さ80μm、算術的平均表面粗さ0.03μm)を用い、10cmの距離を1往復2秒の速度で10往復させた。黒台紙の上に得られたフィルムをのせ、粉落ちしているか目視で確認した。
○:黒台紙上で粉落ちが確認できない。
△:黒台紙上で全体的にわずかな粉落ちが確認できる。
【0107】
(5)表面自由エネルギー
25℃、50%RHの条件下で接触角計(協和界面科学株式会社製: 全自動接触角計 DM−701)を用いて離型フィルムの離型面に水(液滴量1.8μL)、ジヨードメタン(液適量0.9μL)、エチレングリコール(液適量0.9μL)の液滴を作成しその接触角を測定した。接触角は、各液を離型フィルムに滴下後10秒後の接触角を採用した。前記方法で得られた、水、ジヨードメタン、エチレングリコールの接触角データを「北崎−畑」理論より計算し離型フィルムの表面自由エネルギーの分散成分γsd、極性成分γsp、水素結合成分γshを求め、各成分を合計したものを表面自由エネルギーγsとした。本計算には、本接触角計ソフトウェア(FAMAS)内の計算ソフトを用いて行った。
【0108】
(6)離型フィルムロールの巻出し帯電
各実施例および各比較例で得られたグリーンシート製造用剥離フィルムを、幅400mm、長さ5000mのロール状に巻き上げ、剥離フィルムロールを得た。この剥離フィルムロールを40℃、湿度50%以下の環境下に30日間保管した後、100m/minで巻き返す際の帯電量を春日電機社製「KSD−0103」を用いて測定した。帯電量は、巻出し直後100mmの箇所について、巻出し長さ500M毎に測定し、その平均値を算出した。
○:±3kV未満
○△:±3kV以上、5kV未満
△:±5kV以上、10kV未満
×:±10kV以上
【0109】
(7)セラミックグリーンシートのピンホール、厚みばらつき評価
下記、材料からなる組成物を攪拌混合し、2.0mmのガラスビーズを分散媒とするペイントシェーカーを用いて2時間分散し、セラミックスラリーを得た。
トルエン 22.5質量%
エタノール 22.5質量%
チタン酸バリウム 50 質量%
(富士チタン社製 HPBT−1)
ポリビニルブチラール 5 質量%
(積水化学社製 エスレックBH−3)
次いで離型フィルムサンプルの離型面にアプリケーターを用いて乾燥後のスラリーが0.5μmの厚みになるように塗布し90℃で1分乾燥後、スラリー面と平滑化塗布層面を重ね合わせ、10分間、1kg/cm
2の加重を掛けたあと、離型フィルムを剥離し、セラミックグリーンシートを得た。
得られたセラミックグリーンシートのフィルム幅方向の中央領域において25cm
2の範囲でセラミックスラリーの塗布面の反対面から光を当て、光が透過して見えるピンホールの発生状況を観察し、下記基準で目視判定した。
◎:ピンホールの発生なし、厚みばらつき特に良好
○:ピンホールの発生なし、厚みばらつき特に問題なし
△:ピンホールの発生がごくわずかにあり、厚みばらつきが若干見える。
×:ピンホールの発生が少しあり、及び、厚みばらつきが少し目立つ。
【0110】
(ポリエチレンテレフタレートペレット(PET(I))の調製)
エステル化反応装置として、攪拌装置、分縮器、原料仕込口及び生成物取出口を有する3段の完全混合槽よりなる連続エステル化反応装置を用いた。TPA(テレフタル酸)を2トン/時とし、EG(エチレングリコール)をTPA1モルに対して2モルとし、三酸化アンチモンを生成PETに対してSb原子が160ppmとなる量とし、これらのスラリーをエステル化反応装置の第1エステル化反応缶に連続供給し、常圧にて平均滞留時間4時間、255℃で反応させた。次いで、第1エステル化反応缶内の反応生成物を連続的に系外に取り出して第2エステル化反応缶に供給し、第2エステル化反応缶内に第1エステル化反応缶から留去されるEGを生成PETに対して8質量%供給し、さらに、生成PETに対してMg原子が65ppmとなる量の酢酸マグネシウム四水塩を含むEG溶液と、生成PETに対してP原子が40ppmのとなる量のTMPA(リン酸トリメチル)を含むEG溶液を添加し、常圧にて平均滞留時間1時間、260℃で反応させた。次いで、第2エステル化反応缶の反応生成物を連続的に系外に取り出して第3エステル化反応缶に供給し、高圧分散機(日本精機社製)を用いて39MPa(400kg/cm
2)の圧力で平均処理回数5パスの分散処理をした平均粒径が0.9μmの多孔質コロイダルシリカ0.2質量%と、ポリアクリル酸のアンモニウム塩を炭酸カルシウムあたり1質量%付着させた平均粒径が0.6μmの合成炭酸カルシウム0.4質量%とを、それぞれ10%のEGスラリーとして添加しながら、常圧にて平均滞留時間0.5時間、260℃で反応させた。第3エステル化反応缶内で生成したエステル化反応生成物を3段の連続重縮合反応装置に連続的に供給して重縮合を行い、95%カット径が20μmのステンレススチール繊維を焼結したフィルターで濾過を行ってから、限外濾過を行って水中に押出し、冷却後にチップ状にカットして、固有粘度0.60dl/gのPETチップを得た(以後、PET(I)と略す)。PETチップ中の滑剤含有量は0.6質量%であった。
【0111】
(ポリエチレンテレフタレートペレット(PET(II))の調製)
一方、上記PETチップの製造において、炭酸カルシウム、シリカ等の粒子を全く含有しない固有粘度0.62dl/gのPETチップを得た(以後、PET(II)と略す。)。
【0112】
(積層フィルムZの製造)
これらのPETチップを乾燥後、285℃で溶融し、別個の溶融押出し機押出機により290℃で溶融し、95%カット径が15μmのステンレススチール繊維を焼結したフィルターと、95%カット径が15μmのステンレススチール粒子を焼結したフィルターの2段の濾過を行って、フィードブロック内で合流させ、PET(I)を反離型面側層、PET(II)を離型面側層となるように積層し、シート状に45m/分のスピードで押出(キャステイング)し、静電密着法により30℃のキャスティングドラム上に静電密着・冷却させ、固有粘度が0.59dl/gの未延伸ポリエチレンテレフタレートシートを得た。層比率は各押出機の吐出量計算でPET(I)/(II)=60%/40%となるように調整した。次いで、この未延伸シートを赤外線ヒーターで加熱した後、ロール温度80℃でロール間のスピード差により縦方向に3.5倍延伸した。その後、テンターに導き、140℃で横方向に4.2倍の延伸を行なった。次いで、熱固定ゾーンにおいて、210℃で熱処理した。その後、横方向に170℃で2.3%の緩和処理をして、厚さ31μmの二軸延伸ポリエチレンテレフタレートフィルムZを得た。得られたフィルムZの離型面側層のSaは2nm、反離型面側層のSaは28nmであった。
【0113】
(アクリルポリオールA−1の製造)
撹拌機、還流式冷却器、温度計および窒素吹き込み管を備えた4つ口フラスコに、メチルメタクリレート(MMA)77質量部、ヒドロキシエチルメタクリレート(HEMA)100質量部、メタクリル酸(MAA)33質量部およびイソプロピルアルコール(IPA)490質量部を仕込み、撹拌を行いながら80℃までフラスコ内を昇温した。フラスコ内を80℃に維持したまま3時間の撹拌を行い、その後、2,2−アゾビス−2―メチル−N−2−ヒドロキシエチルプロピオンアミドを0.5質量部フラスコに添加した。フラスコ内を120℃に昇温しながら窒素置換を行った後、120℃で混合物を2時間撹拌した。
次いで、120℃で1.5kPaの減圧操作を行い、未反応の原材料と溶媒を除去し、アクリルポリオールを得た。フラスコ内を大気圧に戻して室温まで冷却し、IPA水溶液(水含量50質量%)840質量部を添加混合した。その後、撹拌しながら滴下ロートを用いて、トリエチルアミンを加え、溶液のpHが5.5〜7.5の範囲になるまでアクリルポリオールの中和処理を行い、固形分濃度が20質量%のアクリルポリオール(A−1)を得た。アクリルポリオール(A−1)のNMR測定による組成比率、Tg、延伸適性、酸価を表1に併記した。
【0114】
(アクリルポリオール(A−2)〜(A−13)の製造)
表1に示したように、MMA、St、SMA、HEMA、MAA、AA、仕込み時IPA、希釈時IPA水溶液の量、及び中和剤を変更した以外はアクリルポリオール1の製造と同様にして、固形分濃度が20質量%のアクリルポリオール(A−2)〜(A−13)を得た。アクリルポリオール(A−2)〜(A−13)のNMR測定による組成比率、Tg、延伸適性、酸価を表1に併記した。なお、組成比率は、MMA、St(スチレン)、SMA(ステアリルメタクリレート)、を各々l-1、l-2、l-3(単位)、HEMAをm(単位)、MAA、AA(アクリル酸)をn(単位)として表した。
【0115】
【表1】
【0116】
(ポリエステル樹脂B0−1の重合)
攪拌機、温度計、および部分還流式冷却器を具備するステンレススチール製オートクレーブに、ジメチルテレフタレート194.2質量部、ジメチルイソフタレート184.5質量部、ジメチルー5−ナトリウムスルホイソフタレート14.8質量部、エチレングリコール185.1質量部、ネオペンチルグリコール185.1質量部、およびテトラ−n−ブチルチタネート0.2質量部を仕込み、160℃から220℃の温度で4時間かけてエステル交換反応を行なった。次いで255℃まで昇温し、反応系を徐々に減圧した後、30Paの減圧下で1時間30分反応させ、共重合ポリエステル樹脂(B0−1)を得た。得られた共重合ポリエステル樹脂(B0−1)は、淡黄色透明であった。共重合ポリエステル樹脂(B0−1)の還元粘度を測定したところ,0.60dl/gであった。DSCによるガラス転移温度は65℃であった。
【0117】
(ポリエステル水分散体B−1の製造)
攪拌機、温度計と還流装置を備えた反応器に、ポリエステル樹脂(B0−1)30質量部、エチレングリコール−n−ブチルエーテル15質量部を入れ、110℃で加熱、攪拌し樹脂を溶解した。樹脂が完全に溶解した後、水55質量部をポリエステル溶液に攪拌しつつ徐々に添加した。添加後、液を攪拌しつつ室温まで冷却して、固形分30質量%の乳白色のポリエステル水分散体(B−1)を作製した。
【0118】
(ポリエステル樹脂B0−2の重合)
撹拌機、温度計、および部分還流式冷却器を具備したステンレススチール製オートクレーブに、ジメチルテレフタレート163質量部、ジメチルイソフタレート163質量部、1,4ブタンジオール169質量部、エチレングリコール324質量部、およびテトラ−n−ブチルチタネート0.5質量部を仕込み、160℃から220℃まで、4時間かけてエステル交換反応を行った。
次いで、フマル酸14質量部およびセバシン酸203質量部を加え、200℃から220℃まで1時間かけて昇温し、エステル化反応を行った。次いで、255℃まで昇温し、反応系を徐々に減圧した後、29Paの減圧下で1時間30分反応させ、疎水性共重合ポリエステル樹脂(B0−2)を得た。得られた疎水性共重合ポリエステル樹脂(B0−2)は、淡黄色透明であった。
【0119】
(ポリエステル水分散体B−2の製造)
次いで、グラフト樹脂の製造撹拌機、温度計、還流装置と定量滴下装置を備えた反応器に、この共重合ポリエステル樹脂(B0−2)60質量部、メチルエチルケトン45質量部およびイソプロピルアルコール15質量部を入れ、65℃で加熱、撹拌し、樹脂を溶解した。樹脂が完全に溶解した後、無水マレイン酸24質量部をポリエステル溶液に添加した。
次いで、スチレン16質量部、およびアゾビスジメチルバレロニトリル1.5質量部をメチルエチルケトン19質量部に溶解した溶液を、0.1ml/分でポリエステル溶液中に滴下し、さらに2時間撹拌を続けた。反応溶液から分析用のサンプリングを行った後、メタノール8質量部を添加した。次いで、水300質量部とトリエチルアミン24質量部を反応溶液に加え、1時間撹拌した。
その後、反応器の内温を100℃に上げ、メチルエチルケトン、イソプロピルアルコール、過剰のトリエチルアミンを蒸留により留去し、淡黄色透明のポリエステル系樹脂を得、固形分濃度25質量%の均一な水分散性ポリエステル系グラフト共重合体分散液(B−2)を調製した。得られたポリエステル系グラフト共重合体のガラス転移温度は68℃であった。
【0120】
(ポリウレタン水分散体C−1の製造)
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4−ジシクロヘキシルメタンジイソシアネート43.75質量部、ジメチロールブタン酸12.85質量部、数平均分子量2000のポリヘキサメチレンカーボネートジオール153.41質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン8.77質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min
−1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分37質量%の水溶性ポリウレタン樹脂溶液C−1を調製した。得られたポリウレタン樹脂のガラス転移点温度は−30℃であった。
【0121】
(オキサゾリン系架橋剤D−1の製造)
撹拌機、還流冷却器、窒素導入管および温度計を備えたフラスコに、イソプロピルアルコール460.6部を仕込み、緩やかに窒素ガスを流しながら80℃に加熱した。そこへ予め調製しておいたメタクリル酸メチル126部、2−イソプロペニル−2−オキサゾリン210部およびメトキシポリエチレングリコールアクリレート84部からなる単量体混合物と、重合開始剤である2,2’−アゾビス(2−メチルブチロニトリル)(日本ヒドラジン工業株式会社製「ABN−E」)21部およびイソプロピルアルコール189部からなる開始剤溶液を、それぞれ滴下漏斗から2時間かけて滴下して反応させ、滴下終了後も引き続き5時間反応させた。反応中は窒素ガスを流し続け、フラスコ内の温度を80±1℃に保った。その後、反応液を冷却し、固形分濃度25%のオキサゾリン基を有する樹脂(D−1)を得た。得られたオキサゾリン基を有する樹脂(D−1)のオキサゾリン基量は4.3mmol/gであり、GPC(ゲルパーミエーションクロマトグラフィ)により測定した数平均分子量は20000であった。
【0122】
(オキサゾリン系架橋剤D−2の製造)
上記オキサゾリン基を有する樹脂(D−1)の合成と同様の方法で、組成(オキサゾリン基量および分子量)の異なる固形分濃度10%のオキサゾリン基を有する樹脂(D−2)を得た。得られたオキサゾリン基を有する樹脂(D−2)のオキサゾリン基量は7.7mmol/gであり、GPCにより測定した数平均分子量は40000であった。
【0123】
(カルボジイミド架橋剤E−1の製造)
撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネート168質量部とポリエチレングリコールモノメチルエーテル(M400、平均分子量400)220質量部を仕込み、120℃で1時間、撹拌し、更に4,4’−ジシクロヘキシルメタンジイソシアネート26質量部とカルボジイミド化触媒として3−メチル−1−フェニル−2−フォスフォレン−1−オキシド3.8質量部(全イソシイアネートに対し2質量%)を加え、窒素気流下185℃で更に5時間撹拌した。反応液の赤外スペクトルを測定し、波長2200〜2300cm
−1の吸収が消失したことを確認した。60℃まで放冷し、イオン交換水を567質量部加え、固形分40質量%のカルボジイミド水溶性樹脂(E−1)を得た。
【0124】
(イソシアネート架橋剤F−1の製造)
撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネートを原料としたイソシアヌレート構造を有するポリイソシアネート化合物(旭化成ケミカルズ製、デュラネートTPA)100質量部、プロピレングリコールモノメチルエーテルアセテート55質量部、ポリエチレングリコールモノメチルエーテル(平均分子量750)30質量部を仕込み、窒素雰囲気下、70℃で4時間保持した。その後、反応液温度を50℃に下げ、メチルエチルケトオキシム47質量部を滴下した。反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認し、固形分75質量%のブロックポリイソシアネート水分散液(F−1)を得た。
【0125】
(シリカ粒子G−1)
コロイダルシリカ(日産化学製、商品名MP2040、平均粒径200nm、固形分濃度40質量%)
【0126】
(シリカ粒子G−2)
コロイダルシリカ(日産化学製、商品名スノーテックスXL、平均粒径40nm、固形分濃度40質量%)
【0127】
(シリカ粒子G−3)
コロイダルシリカ(日産化学製、商品名スノーテックスZL、平均粒径100nm、固形分濃度40質量%)
【0128】
(シリカ粒子G−4)
コロイダルシリカ(日産化学製、商品名MP4540M、平均粒径450nm、固形分濃度40質量%)
【0129】
(アクリル粒子G−5)
アクリル粒子水分散体(日本触媒製、商品名MX100W、平均粒径150nm、固形分濃度10質量%)
【0130】
(アクリル粒子G−6)
アクリル粒子水分散体(日本触媒製、商品名MX200W、平均粒径350nm、固形分濃度10質量%)
【0131】
(アクリル粒子G−7)
アクリル粒子水分散体(日本触媒製、商品名MX300W、平均粒径450nm、固形分濃度10質量%)
【0132】
(離型剤溶液X−1)
熱硬化型アミノアルキド樹脂(日立化成社製 テスファイン314、固形分60質量%)100質量部と硬化触媒としてp−トルエンスルホン酸(日立化成社製、ドライヤー900、固形分50質量%)1.2質量部を、トルエン/メチルエチルケトン/ヘプタン(=3:5:2)溶液で希釈し、固形分2質量%の離型剤溶液を調製した。
【0133】
(離型剤溶液X−2)
UV硬化型シリコーン樹脂(モメンティブ社製 UV9300、固形分濃度100質量%)100質量部と硬化触媒ビス(アルキルフェニル)ヨードニウムヘキサフルオロアンチモネート1質量部を、トルエン/メチルエチルケトン/ヘプタン(=3:5:2)溶液で希釈し、固形分2質量%の離型剤溶液を調製した。
【0134】
(実施例1)
(易滑塗布液1の調整)
下記の組成の易滑塗布液1を調整した。
(易滑塗布液1)
水 41.86質量部
イソプロピルアルコール 35.00質量部
アクリルポリオール樹脂A−1 16.57質量部
(固形分濃度20質量%)
オキサゾリン系架橋剤D−1 5.68質量部
(固形分濃度25質量%)
シリカ粒子G−1 0.59質量部
(平均粒径200nm、固形分濃度40質量%)
界面活性剤H−1(フッ素系、固形分濃度10質量%)0.30質量部
【0135】
(ポリエステルフィルムの製造)
フィルム原料ポリマーとして、固有粘度(溶媒:フェノール/テトラクロロエタン=60/40)が0.62dl/gで、かつ粒子を実質的に含有していないPET樹脂ペレット(PET(II))を、133Paの減圧下、135℃で6時間乾燥した。その後、押し出し機に供給し、約280℃でシート状に溶融押し出しして、表面温度20℃に保った回転冷却金属ロール上で急冷密着固化させ、未延伸PETシートを得た。
【0136】
この未延伸PETシートを加熱されたロール群及び赤外線ヒーターで100℃に加熱し、その後周速差のあるロール群で長手方向に3.5倍延伸して、一軸延伸PETフィルムを得た。
【0137】
次いで、上記易滑塗布液をバーコーターでPETフィルムの片面に塗布した後、80℃で15秒間乾燥した。なお、最終延伸、乾燥後の塗布量が0.1μmになるように調整した。引続いてテンターで、150℃で幅方向に4.0倍に延伸し、フィルムの幅方向の長さを固定した状態で、230℃で0.5秒間加熱し、さらに230℃で10秒間3%の幅方向の弛緩処理を行ない、厚さ31μmのインラインコーティングポリエステルフィルムを得た。
【0138】
(離型塗布層の形成)
上記で得たインラインコーティングポリエステルフィルムに離型剤溶液X−1を易滑塗布層積層面とは反対表面に、乾燥後の厚みで0.1μmとなるようにリバースグラビアコーターにて塗布し、次いで、130℃の熱風で30秒間乾燥することで離型塗布層を形成し超薄層セラミックグリーンシート製造用離型フィルムを得た。巻き取り性等、工程通過性、ハンドリング性は特に問題なく優秀であった。ロールとして巻き取った後に、セラミックシート塗工のために再度巻きだした時の巻出し帯電も低く、環境異物の付着が抑制できセラミックコンデンサの歩留まりを落とすことなく、品質の良いセラミックコンデンサを作成することができた。
【0139】
(実施例2)
実施例1で使用した易滑塗布液1中の架橋剤をカルボジイミド系架橋剤E−1(固形分濃度40質量%)に変更した易滑塗布液2を使用した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
(易滑塗布液2)
水 43.99質量部
イソプロピルアルコール 35.00質量部
アクリルポリオール樹脂A−1 16.57質量部
(固形分濃度20質量%)
カルボジイミド系架橋剤E−1 3.55質量部
(固形分濃度40質量%)
シリカ粒子G−1 0.59質量部
(平均粒径200nm、固形分濃度40質量%)
界面活性剤H−1(フッ素系、固形分濃度10質量%)0.30質量部
【0140】
(実施例3)
実施例1で使用した易滑塗布液1中の架橋剤をオキサゾリン系架橋剤D−2(固形分濃度10質量%)に変更した易滑塗布液3を使用した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
(易滑塗布液3)
水 33.34質量部
イソプロピルアルコール 35.00質量部
アクリルポリオール樹脂A−1 16.57質量部
(固形分濃度20質量%)
オキサゾリン系架橋剤D−2 14.20質量部
(固形分濃度10質量%)
シリカ粒子G−1 0.59質量部
(平均粒径200nm、固形分濃度40質量%)
界面活性剤H−1(フッ素系、固形分濃度10質量%)0.30質量部
【0141】
(実施例4)
易滑塗布液1を、下記の易滑塗布液4に変更した以外は、実施例1と同様にしてポリエステルフィルムを得た。
(易滑塗布液4)
水 43.28質量部
イソプロピルアルコール 35.00質量部
アクリルポリオール樹脂A−1 9.47質量部
(固形分濃度20質量%)
オキサゾリン系架橋剤D−1 11.36質量部
(固形分濃度25質量%)
シリカ粒子G−1 0.59質量部
(平均粒径200nm、固形分濃度40質量%)
界面活性剤H−1(フッ素系、固形分濃度10質量%)0.30質量部
【0142】
(実施例5)
易滑塗布液1を、下記の易滑塗布液5に変更した以外は、実施例1と同様にしてポリエステルフィルムを得た。
(易滑塗布液5)
水 41.15質量部
イソプロピルアルコール 35.00質量部
アクリルポリオール樹脂A−1 20.12質量部
(固形分濃度20質量%)
オキサゾリン系架橋剤D−1 2.84質量部
(固形分濃度25質量%)
シリカ粒子G−1 0.59質量部
(平均粒径200nm、固形分濃度40質量%)
界面活性剤H−1(フッ素系、固形分濃度10質量%)0.30質量部
【0143】
(実施例6)
実施例1で使用した易滑塗布液1中のアクリルポリオールA−1(固形分濃度20質量%)をアクリルポリオールA−2(固形分濃度20質量%)に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
【0144】
(実施例7)
実施例1で使用した易滑塗布液1中のアクリルポリオールA−1(固形分濃度20質量%)をアクリルポリオールA−3(固形分濃度20質量%)に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
【0145】
(実施例8)
実施例1で使用した易滑塗布液1中のアクリルポリオールA−1(固形分濃度20質量%)をアクリルポリオールA−4(固形分濃度20質量%)に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
【0146】
(実施例9)
実施例1で使用した易滑塗布液1中のアクリルポリオールA−1(固形分濃度20質量%)をアクリルポリオールA−5(固形分濃度20質量%)に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
【0147】
(実施例10)
実施例1で使用した易滑塗布液1中のアクリルポリオールA−1(固形分濃度20質量%)をアクリルポリオールA−6(固形分濃度20質量%)に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
【0148】
(実施例11)
実施例1で使用した易滑塗布液1中のアクリルポリオールA−1(固形分濃度20質量%)をアクリルポリオールA−7(固形分濃度20質量%)に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
【0149】
(実施例12)
実施例1で使用した易滑塗布液1中のアクリルポリオールA−1(固形分濃度20質量%)をアクリルポリオールA−8(固形分濃度20質量%)に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
【0150】
(実施例13)
実施例1で使用した易滑塗布液1中のアクリルポリオールA−1(固形分濃度20質量%)をアクリルポリオールA−9(固形分濃度20質量%)に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
【0151】
(実施例14)
実施例1で使用した易滑塗布液1中のアクリルポリオールA−1(固形分濃度20質量%)をアクリルポリオールA−10(固形分濃度20質量%)に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
【0152】
(実施例15)
実施例1で使用した易滑塗布液1中のアクリルポリオールA−1(固形分濃度20質量%)をアクリルポリオールA−11(固形分濃度20質量%)に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
【0153】
(実施例16)
実施例1で使用した易滑塗布液1中のアクリルポリオールA−1(固形分濃度20質量%)をアクリルポリオールA−12(固形分濃度20質量%)に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
【0154】
(実施例17)
易滑塗布液1を下記の易滑塗布液17に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
(易滑塗布液17)
水 41.74質量部
イソプロピルアルコール 35.00質量部
アクリルポリオール樹脂A−10 16.57質量部
(固形分濃度20質量%)
オキサゾリン系架橋剤D−1 5.68質量部
(固形分濃度25質量%)
シリカ粒子G−1 0.59質量部
(平均粒径200nm、固形分濃度40質量%)
シリカ粒子G−4 0.12質量部
(平均粒径450nm、固形分濃度40質量%)
界面活性剤H−1(フッ素系、固形分濃度10質量%)0.30質量部
【0155】
(実施例18)
易滑塗布液1を下記の易滑塗布液18に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
(易滑塗布液18)
水 41.15質量部
イソプロピルアルコール 35.00質量部
アクリルポリオール樹脂A−10 16.57質量部
(固形分濃度20質量%)
オキサゾリン系架橋剤D−1 5.68質量部
(固形分濃度25質量%)
シリカ粒子G−2 1.18質量部
(平均粒径40nm、固形分濃度40質量%)
シリカ粒子G−4 0.12質量部
(平均粒径450nm、固形分濃度40質量%)
界面活性剤H−1(フッ素系、固形分濃度10質量%)0.30質量部
【0156】
(実施例19)
易滑塗布液1を下記の易滑塗布液19に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
(易滑塗布液19)
水 41.27質量部
イソプロピルアルコール 35.00質量部
アクリルポリオール樹脂A−10 16.57質量部
(固形分濃度20質量%)
オキサゾリン系架橋剤D−1 5.68質量部
(固形分濃度25質量%)
シリカ粒子G−3 1.18質量部
(平均粒径100nm、固形分濃度40質量%)
界面活性剤H−1(フッ素系、固形分濃度10質量%)0.30質量部
【0157】
(実施例20)
易滑塗布液1を下記の易滑塗布液20に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
(易滑塗布液20)
水 40.09質量部
イソプロピルアルコール 35.00質量部
アクリルポリオール樹脂A−10 16.57質量部
(固形分濃度20質量%)
オキサゾリン系架橋剤D−1 5.68質量部
(固形分濃度25質量%)
アクリル粒子G−5 2.37質量部
(平均粒径150nm、固形分濃度10質量%)
界面活性剤H−1(フッ素系、固形分濃度10質量%)0.30質量部
【0158】
(実施例21)
離型塗布層の形成を下記のように実施した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
(離型塗布層の形成)
得たインラインコーティングポリエステルフィルムに離型剤溶液X−2を乾燥後の厚みで0.1μmとなるようにリバースグラビアコーターにて塗布し、次いで、90℃の熱風で30秒間乾燥した後、直ちに無電極ランプ(ヘレウス株式会社製Hバルブ)にて紫外線照射(300mJ/cm
2)を行い、離型塗布層を形成し超薄層セラミックグリーンシート製造用離型フィルムを得た。
【0159】
(実施例22)
実施例1で使用した易滑塗布液1中のアクリルポリオールA−1(固形分濃度20質量%)をアクリルポリオールA−13(固形分濃度20質量%)に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
【0160】
(実施例23)
易滑塗布液1を下記の易滑塗布液22に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
(易滑塗布液22)
水 41.39質量部
イソプロピルアルコール 35.00質量部
アクリルポリオール樹脂A−13 16.57質量部
(固形分濃度20質量%)
オキサゾリン系架橋剤D−1 5.68質量部
(固形分濃度25質量%)
シリカ粒子G−1 0.59質量部
(平均粒径200nm、固形分濃度40質量%)
アクリル粒子G−6 0.47質量部
(平均粒径350nm、固形分濃度10質量%)
界面活性剤H−1(フッ素系、固形分濃度10質量%)0.30質量部
【0161】
(実施例24)
易滑塗布液1を下記の易滑塗布液23に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
(易滑塗布液23)
水 41.39質量部
イソプロピルアルコール 35.00質量部
アクリルポリオール樹脂A−13 16.57質量部
(固形分濃度20質量%)
オキサゾリン系架橋剤D−1 5.68質量部
(固形分濃度25質量%)
シリカ粒子G−1 0.59質量部
(平均粒径200nm、固形分濃度40質量%)
アクリル粒子G−7 0.47質量部
(平均粒径450nm、固形分濃度10質量%)
界面活性剤H−1(フッ素系、固形分濃度10質量%)0.30質量部
【0162】
(実施例25)
易滑塗布液1を下記の易滑塗布液24に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを得た。
(易滑塗布液24)
水 39.62質量部
イソプロピルアルコール 35.00質量部
アクリルポリオール樹脂A−13 16.57質量部
(固形分濃度20質量%)
オキサゾリン系架橋剤D−1 5.68質量部
(固形分濃度25質量%)
アクリル粒子G−5 2.37質量部
(平均粒径150nm、固形分濃度10質量%)
アクリル粒子G−7 0.47質量部
(平均粒径450nm、固形分濃度10質量%)
界面活性剤H−1(フッ素系、固形分濃度10質量%)0.30質量部
【0163】
(比較例1)
易滑塗布液1を、下記の易滑塗布液25に変更した以外は、実施例1と同様にしてポリエステルフィルムを得た。
(易滑塗布液25)
水 48.33質量部
イソプロピルアルコール 35.00質量部
ポリエステル水分散体B−1 15.78質量部
(固形分濃度30質量%)
シリカ粒子G−1 0.59質量部
(平均粒径200nm、固形分濃度40質量%)
界面活性剤(フッ素系、固形分濃度10質量%) 0.30質量部
【0164】
(比較例2)
易滑塗布液1を、下記の易滑塗布液26に変更した以外は、実施例1と同様にしてポリエステルフィルムを得た。
(易滑塗布液26)
水 45.18質量部
イソプロピルアルコール 35.00質量部
ポリエステル水分散体B−2 18.93質量部
(固形分濃度25質量%)
シリカ粒子G−1 0.59質量部
(平均粒径200nm、固形分濃度40質量%)
界面活性剤(フッ素系、固形分濃度10質量%) 0.30質量部
【0165】
(比較例3)
易滑塗布液1を、下記の易滑塗布液27に変更した以外は、実施例1と同様にしてポリエステルフィルムを得た。
(易滑塗布液27)
水 51.32質量部
イソプロピルアルコール 35.00質量部
ポリウレタン樹脂水分散体C−1 12.79質量部
(固形分濃度37質量%)
シリカ粒子G−1 0.59質量部
(平均粒径200nm、固形分濃度40質量%)
界面活性剤(フッ素系、固形分濃度10質量%) 0.30質量部
【0166】
(比較例4)
易滑塗布液1を、下記の易滑塗布液28に変更した以外は、実施例1と同様にしてポリエステルフィルムを得た。
(易滑塗布液28)
水 47.39質量部
イソプロピルアルコール 35.00質量部
ポリエステル水分散体B−1 11.04質量部
(固形分濃度30質量%)
オキサゾリン系架橋剤D−1 5.68質量部
(固形分濃度25質量%)
シリカ粒子G−1 0.59質量部
(平均粒径200nm、固形分濃度40質量%)
界面活性剤(フッ素系、固形分濃度10質量%) 0.30質量部
【0167】
(比較例5)
易滑塗布液1を、下記の易滑塗布液29に変更した以外は、実施例1と同様にしてポリエステルフィルムを得た。
(易滑塗布液29)
水 49.51質量部
イソプロピルアルコール 35.00質量部
ポリエステル水分散体B−1 11.04質量部
(固形分濃度30質量%)
カルボジイミド系架橋剤E−1 3.55質量部
(固形分濃度40質量%)
シリカ粒子G−1 0.59質量部
(平均粒径200nm、固形分濃度40質量%)
界面活性剤(フッ素系、固形分濃度10質量%) 0.30質量部
【0168】
(比較例6)
易滑塗布液1を、下記の易滑塗布液30に変更した以外は、実施例1と同様にしてポリエステルフィルムを得た。
(易滑塗布液30)
水 40.44質量部
イソプロピルアルコール 35.00質量部
アクリルポリオール樹脂A−1 23.67質量部
(固形分濃度20質量%)
シリカ粒子G−1 0.59質量部
(平均粒径200nm、固形分濃度40質量%)
界面活性剤H−1(フッ素系、固形分濃度10質量%)0.30質量部
【0169】
(比較例7)
易滑塗布液1を、下記の易滑塗布液31に変更した以外は、実施例1と同様にしてポリエステルフィルムを得た。
(易滑塗布液31)
水 45.65質量部
イソプロピルアルコール 35.00質量部
アクリルポリオール樹脂A−1 16.57質量部
(固形分濃度20質量%)
イソシアネート架橋剤F−1 1.89質量部
(固形分濃度75質量%)
シリカ粒子G−1 0.59質量部
(平均粒径200nm、固形分濃度40質量%)
界面活性剤H−1(フッ素系、固形分濃度10質量%)0.30質量部
【0170】
(比較例8)
離型塗布層を形成するフィルムとして、実施例1で作成した一方の表面に易滑塗布層を有するインラインコーティングフィルムの代わりに、E5000−25μm(東洋紡製)に変更して使用した以外は、実施例1と同様の方法でセラミックグリーンシート製造用離型フィルムを得た。E5000はフィルム内部に粒子を含有しており、両表面のSaがともに0.031μmであった。
【0171】
(比較例9)
離型塗布層を形成するフィルムとして、実施例1で作成した一方の表面に易滑塗布層を有するインラインコーティングフィルムの代わりに、積層フィルムZに変更して使用した以外は、実施例1と同様の方法でセラミックグリーンシート製造用離型フィルムを得た。積層フィルムZのPET(II)ペレットを吐出した面(粒子を含有しない層)に離型塗布層を設けた。
【0172】
各実施例及び比較例の評価結果を表2、表3に示す。
【0173】
【表2】
【0174】
【表3】
【0175】
上記表2において、易滑塗布液中の樹脂、架橋剤、粒子、界面活性剤について、各々の組成を固形分の質量部として記載しており、易滑塗布液中に存在する樹脂、架橋剤、粒子、界面活性剤の固形分の質量部の総和が易滑塗布層の全固形分の質量部となり、樹脂、架橋剤、粒子、界面活性剤について、各々の固形分の質量部を易滑塗布層の全固形分の質量部で除して、樹脂、架橋剤、粒子、界面活性剤の易滑塗布層中の全固形文中の質量百分率を求めることができる。
【0176】
実施例1〜25においては、離型加工後ロールを再度巻きだした場合の巻出し帯電が低く環境異物が付着しにくいため、セラミックコンデンサの歩留まりを落とすことなく、品質の良いセラミックコンデンサを作成することができた。離型フィルムとして、無機粒子を実質的に含有していないポリエステルフィルムを基材とし、前記基材の一方の表面上に離型塗布層を有し、かつ、もう一方の表面上に粒子を含有する易滑塗布層を有し、易滑塗布層がアクリル樹脂及び、オキサゾリン系架橋剤またはカルボジイミド系架橋剤から選ばれる少なくとも1種の架橋剤を含有する組成物が硬化されてなるため、易滑塗布層の架橋密度が高く易滑塗布層の変形量が小さくなる。離型加工済のフィルムロールを巻きだす際の離型層と易滑層の剥離時に、接触面積が小さくなるため、帯電する量を抑制できたと考えられる。
一方、比較例1〜7においては、本発明で規定するアクリル樹脂、及びオキサゾリン系架橋剤またはカルボジイミド系架橋剤から選ばれる少なくとも1種の架橋剤を含有する組成物が硬化されてなる易滑塗布層ではないため、易滑塗布層の架橋密度が低くなり、易滑塗布層の変形量が大きくなる。離型加工済のフィルムロールを巻きだす際の離型層と易滑層の剥離時に、接触面積が大きくなるため、巻出し帯電が大きくなったと考えられる。また、比較例8、9においては巻出し帯電は低いものの、本発明で規定する易滑塗布層を有しておらず、易滑面の表面粗さが大きいため、セラミックシートにピンホールが発生した。