(58)【調査した分野】(Int.Cl.,DB名)
前記電子回路基板に半導体電子部品として実装された発熱素子と前記磁性体層との間に、熱伝導シートが配置されている、請求項1から6のいずれかに記載の高周波電力回路モジュール。
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に示されるリーダライタ用アンテナモジュールは、アンテナ導体とチップ部品との間に磁性体層を備えているため、アンテナ導体とチップ部品との間にアイソレーションを確保できるとともに、チップ部品が外来ノイズや外部応力から保護される、といった効果を奏する。
【0005】
ところが、このように、複数のベース部を曲げ部で曲げることにより、ベース部同士が重なるように構成されたモジュールにおいては、その構造上、ベース部に設けられた回路素子の放熱効果は小さい。そのため、例えば高周波電力を扱うモジュールのように、発熱を伴う部品をモジュールに内蔵する場合、その発熱部品またはその近傍の部品や部材の過熱が問題となる場合がある。また、モジュールが電池を内蔵する場合、その電池を貫こうとする磁束が発生すると、電池の電極等にうず電流が流れ、電力損失によって電池が発熱し、電池の寿命を著しく短くしてしまうという問題が生じる。
【0006】
本発明の目的は、放熱性の高い高周波電力回路モジュール、および電池の発熱の問題を解消した高周波電力回路モジュールを提供することにある。
【課題を解決するための手段】
【0007】
(1)本発明の高周波電力回路モジュールは、
屈曲部を有する電子回路基板と、
前記電子回路基板に形成された高周波電力回路と、
前記高周波電力回路に電気的に接続される電池と、
前記電池よりも投影面積が大きい磁性体層と、
を備え、
前記電子回路基板は、前記屈曲部で屈曲された状態で、前記電池は前記磁性体層で覆われ、
前記電池または前記磁性体層のうち少なくとも一方と前記高周波電力回路との空間を充填する素材をさらに備え、
前記素材は、空気よりも熱抵抗が小さく、前記電池または前記磁性体層のうち少なくとも一方と前記高周波電力回路とを熱的に結合する、
ことを特徴とする。
【0008】
上記構成により、高周波電力回路、電池および磁性体層が低熱抵抗の素材で熱的に結合するので、モジュールの熱容量が大きくなって、電力損失により生じるジュール熱に対する放熱効果が高まる。したがって、発熱部の過熱が防止される。また、磁性体層は、外部起因の磁束またはモジュール内に設けられたコイルが発生する磁束が電池の電極に鎖交するのを防止するので、電池の発熱も抑制される。
【0009】
(2)前記高周波電力回路は、前記電子回路基板に実装された表示用電子部品を有し、前記素材は透光性樹脂で構成され、前記表示用電子部品の表示を、前記素材を通して可視できることが好ましいこれにより、モジュール全体が透光性樹脂で覆われていても、表示素子の表示内容を外部から視認できる。
【0010】
(3)前記素材は、例えば冷間樹脂である。このことにより、熱や圧力に弱い電子部品等を容易に樹脂埋込できる。また、多孔質素材の内部にも浸透させることができる。
【0011】
(4)前記素材は、例えばアクリル樹脂粉末を用いた光透過性のある熱間埋込樹脂である。このことにより、表示用電子部品の表示が容易に視認できる。また、縁部の樹脂ダレを軽減でき、硬化時間を短縮化できる。
【0012】
(5)前記電子回路基板は、前記屈曲部を介して繋がる突出部を有し、当該突出部に前記電池が接続される電極が形成されていることが好ましい。この構造により、電池の電極に対する電気的、機械的な接続が容易となる。
【0013】
(6)前記電池と前記磁性体層との間に熱伝導シートが配置されていることが好ましい。この構造により、熱伝導シートを介しての電池の放熱効果が高まる。
【0014】
(7)前記電子回路基板に半導体電子部品としての発熱素子が実装される場合に、この発熱素子と磁性体層との間に、熱伝導シートが配置されていることが好ましい。これにより、発熱素子の放熱性が高まる。
【0015】
(8)前記電子回路基板が前記屈曲部で屈曲された状態で、前記電子回路基板の前記高周波電力回路の形成部、前記電池、および前記磁性体層を含む積層構造体が構成され、この積層構造体を収容する絶縁体の筐体を備えてもよい。この構造により、構造上の堅牢性が高まる。
【0016】
(9)例えば、前記電池は二次電池であり、前記高周波電力回路は、受電コイルを有し、当該受電コイルによる受電電力で前記二次電池を充電する回路であってもよい。この構成により、ワイヤレスで高周波電力を受電して二次電池を充電し、充放電可能なモジュールとして使用できる。
【0017】
(10)前記電子回路基板には、例えば前記電池と電気的に導通する内部接続用の電極が形成されていてもよい。この構成により、この高周波電力回路モジュールを、ワイヤレスで充電可能な電池として用いることができる。
【0018】
(11)前記電池は、前記内部接続用の電極に導電性接着剤で接続されていることが好ましい。これにより、電池を高温にすることなく電気的に接続できる。
【0019】
(12)前記導電性接着剤は、銀を配合したポリマーベースの変成シリコーン系弾性接着剤であることが好ましい。これにより、充分に低い抵抗率を有効に利用でき、低損失化できる。
【0020】
(13)前記電子回路基板に、前記電池と電気的に導通する外部接続用の電極が形成されていることが好ましい。これにより、その外部接続用の電極を実質的な電池の電極として利用できる。
【0021】
(14)前記電子回路基板は、銅箔パターンが形成された樹脂基材を含む複数の樹脂基材の一括積層加熱プレスにより形成されたフレキシブルな樹脂多層基板であり、前記樹脂基材は、ガラス・エポキシ系基板用樹脂材料に比べて、比誘電率、誘電正接、吸水率、がそれぞれ小さいことが好ましい。
【0022】
上記構成により、基材と基材とを接着層を介して接着する構造の多層基板に比べて、薄型、フレキシブルであり、限られた所定の3次元空間内に配置できる。また、高周波特性に優れた電子回路基板とすることができる。
【発明の効果】
【0023】
本発明によれば、放熱性の高い高周波電力回路モジュール、および電池の発熱の問題を解消した高周波電力回路モジュールが得られる。
【発明を実施するための形態】
【0025】
以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明または理解の容易性を考慮して、便宜上実施形態を分けて示すが、異なる実施形態で示した構成の部分的な置換または組み合わせは可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
【0026】
《第1の実施形態》
図1は第1の実施形態に係る高周波電力回路モジュールが備える電子回路基板を展開した状態での斜視図であり、
図2は高周波電力回路モジュールの積層構造体の断面図である。
図3(A)は高周波電力回路モジュール101の斜視図であり、
図3(B)は高周波電力回路モジュール101の断面図である。
【0027】
高周波電力回路モジュール101は、屈曲部を有する電子回路基板1と、この電子回路基板1に形成された高周波電力回路2と、高周波電力回路2に接続された電池3と、この電池3よりも面積が大きい磁性体シート4と、を備える。具体的には、磁性体シート4は電池3よりも投影面積が大きい。磁性体シート4は本発明に係る「磁性体層」の一例である。磁性体シート4は磁性体フェライト板または磁性体フェライト粉と樹脂とのコンポジットシートである。なお、
図2以降に示す各断面図において、電池3やチップ部品についてはハッチングを施していない。
【0028】
電子回路基板1は、銅箔パターンが形成された、液晶ポリマー(LCP)などの樹脂基材を含む複数の樹脂基材の一括積層加熱プレスにより形成された、フレキシブルな樹脂多層基板であることが好ましい。特に、樹脂基材は、ガラス・エポキシ系基板用樹脂材料に比べて、比誘電率、誘電正接、吸水率、がそれぞれ小さいことが好ましい。このような電子回路基板1を用いることで、例えばガラス・エポキシ系基板のように、基材と基材とを接着層を介して接着する構造の多層基板に比べて、薄型、フレキシブルであり、限られた所定の3次元空間内に配置できる。また、高周波特性に優れた電子回路基板とすることができる。
【0029】
図1に示した状態から、電子回路基板1が屈曲部BSで屈曲されることにより、
図2に示すように、電子回路基板1の高周波電力回路2の形成部、電池3、および磁性体シート4を含む積層構造体が構成される。この積層構造体は、電子回路基板1が屈曲部BSで屈曲された状態で、電池3は磁性体シート4で覆われる。
【0030】
磁性体シート4はコイル7の外形より一回り大きい。そのため、コイル7を鎖交する磁束が磁性体シート4で閉じ込められることはなく、磁性体シート4はコイル7を鎖交する磁束の磁路として作用する。
【0031】
図3(A)、
図3(B)に表れているように、高周波電力回路2、電池3および磁性体シート4は樹脂封止体5で封止されている。言い換えると、高周波電力回路2、電池3および磁性体シート4の間は樹脂封止体5で充填されている。この構造により、高周波電力回路2、電池3および磁性体シート4は互いに熱的に結合する。この樹脂封止体5は例えば透明エポキシ樹脂であり、空気よりも熱抵抗の小さな素材である。この透明エポキシ樹脂は本発明に係る「透光性樹脂」の一例である。
【0032】
図4(A)、
図4(B)、
図4(C)は、本実施形態の高周波電力回路モジュールが備える電子回路基板、およびそれに実装される各部品の構成を示す断面図である。電子回路基板1は
図4(A)に表れているように、所定の導体パターンが形成された複数の基材1−1,1−2,1−3で構成される。この例では、基材1−1,1−2,1−3それぞれに銅箔のパターニングによる導体パターンが形成されている。基材1−1,1−2,1−3は例えば液晶ポリマー(LCP)等の熱可塑性樹脂からなり、加熱プレスによって一体化される。
【0033】
電子回路基板1は、基材の積層数が少ないフレキシブル部FPと、基材の積層数の多い第1リジッド部RP1および第2リジッド部RP2を備える。電子回路基板1の第1主面MS1は積層構造体となった後の外面であり、第2主面MS2は積層構造体となった後の内面である。
【0034】
第1リジッド部RP1の第2主面MS2側に電池フォルダ3Fが設けられていて、この電池フォルダ3Fに電池3が取り付けられている。この電池3は例えば二次電池であり、充放電時の発熱量は他の部品に比べて多い。
【0035】
また、第1リジッド部RP1の第2主面MS2側に高周波電力回路2を構成する複数の電子部品が実装されている。第2リジッド部RP2にはコイルアンテナ用のコイル7が形成されている。この第2リジッド部RP2に接着層8を介して磁性体シート4が接着されている。フレキシブル部FPは屈曲部BSに相当する。
【0036】
図4(C)に示した電子回路基板1は、第1主面MS1に段差部が無く、第2主面MS2に段差部がある。電子回路基板1はこの第2主面MS2を内側にして屈曲される。このことにより、
図2に表れているように、電子回路基板の段差部は内側にあって、この段差部に引っ張り応力が掛からず、引っ張り応力による基材層の剥離は生じにくい。
【0037】
図5は特に第1リジッド部RP1の平面図である。この第1リジッド部RP1には、DC−DCコンバータ2A、充放電用IC 2B、近距離通信用チップアンテナ2C、制御IC 2D、コネクタ2E、および表示用電子部品9等が実装されている。表示用電子部品9は例えば電池の充放電状態や動作状態を示すLEDである。DC−DCコンバータ2Aは、他の電子部品に比べて電力を扱うために発熱量が比較的多い。
【0038】
近距離通信用チップアンテナ2Cは例えばBluetooth(登録商標)規格、特にBLE(Bluetooth(登録商標) Low Energy)で通信を行うチップアンテナであり、平面視で電池3とは重ならない位置に配置されている。そのため、この近距離通信用チップアンテナを用いた近距離通信の電磁波は電池で遮蔽され難い。
図2中の矢印はその様子を概念的に表している。このような構造により、広角度範囲での近距離通信性能が確保される。
【0039】
本実施形態によれば、次のような効果を奏する。
【0040】
(a)高周波電力回路2、電池3および磁性体シート4が樹脂封止体5で熱的に結合するので、高周波電力回路モジュール101の熱容量が大きくなって、放熱効果が高まる。したがって、電池3やDC−DCコンバータ2Aにおける半導体素子の過熱が防止される。
【0041】
(b)磁性体シート4は、外部起因の磁束またはモジュール内に設けられたコイル7が発生する磁束が電池3の電極に鎖交するのを防止するので、そのことによる電池3の発熱も抑制される。
【0042】
(c)樹脂封止体5は透明であるので、表示用電子部品9の表示状態を外部から視認できる。
【0043】
なお、樹脂封止体5は冷間樹脂であってもよい。この場合、熱間樹脂とは異なり、熱や圧力に弱い電子部品等を樹脂埋込するのに適する。また、多孔質素材の内部にも充分に浸透させることができる。また、冷間樹脂として、収縮率が小さく、浸透性に優れた低粘性、且つ光透過性の高いものを用いることが好ましい。浸透性に優れた低粘性の素材を用いることで光透過性に優れ、表示用電子部品の表示の認識が容易となる。
【0044】
また、樹脂封止体5は熱間埋込樹脂であってもよい。この場合、浸透性があるために、光透過性に優れ、表示用電子部品の表示の認識が容易となる。また、硬化時間が短く、縁部の樹脂ダレが少ない。熱間埋込樹脂は熱硬化樹脂であり、耐熱性、耐圧性に優れた電子回路基板や電子部品を樹脂埋込する場合に適する。
【0045】
《第2の実施形態》
第2の実施形態では、熱伝導シートを備える高周波電力回路モジュールの例について示す。
【0046】
図6は第2の実施形態に係る高周波電力回路モジュール102の断面図である。この高周波電力回路モジュール102は、屈曲部BSを有する電子回路基板1と、この電子回路基板1に形成された高周波電力回路2と、高周波電力回路2に接続された電池3と、この電池3よりも面積が大きい磁性体シート4と、電池3と磁性体シート4との間に配置された熱伝導シート6と、を備える。熱伝導シート6は、電池3と磁性体シート4との間だけでなく、高周波電力回路2の形成部と磁性体シート4との間にも配置されている。熱伝導シート6は例えば熱抵抗の低いフィラーを分散させたシリコーンゴムやポリマーのシートである。その他の構成は第1の実施形態で示したとおりである。
【0047】
本実施形態によれば、電池3と磁性体シート4との間に熱伝導シート6が配置されているので、電池3および高周波電力回路2の熱が熱伝導シート6を介して効果的に放熱される。
【0048】
《第3の実施形態》
第3の実施形態では、樹脂封止体の幾つかの構成例を示す。
【0049】
図7は第3の実施形態に係る高周波電力回路モジュール103Aの断面図であり、
図8は第3の実施形態に係る高周波電力回路モジュール103Bの断面図であり、
図9は第3の実施形態に係る高周波電力回路モジュール103Cの断面図である。
【0050】
図7に示す高周波電力回路モジュール103Aは、屈曲部BSを有する電子回路基板1と、この電子回路基板1に形成された高周波電力回路2と、高周波電力回路2に接続された電池3と、この電池3よりも面積が大きい磁性体シート4と、を備える。そして、電子回路基板1の第1リジッド部RP1と第2リジッド部RP2とで挟まれる空間に樹脂が充填されている。すなわち、この部分に樹脂封止体5が設けられている。その他の構成は第1の実施形態で示したとおりである。
【0051】
図8に示す高周波電力回路モジュール103Bは、電子回路基板1の第1リジッド部RP1と第2リジッド部RP2とで挟まれる空間を充填し、また高周波電力回路2を構成する部品を覆う樹脂封止体5が設けられている。その他の構成は第1の実施形態で示したとおりである。
【0052】
図9に示す高周波電力回路モジュール103Cは筐体を備える。
図9において、筐体10は樹脂成型体等の絶縁体による筐体であり、その内部に、
図2に示した積層構造体が収納され、さらに筐体10の内部に樹脂が充填されている。すなわち、筐体10内に樹脂封止体5が設けられている。その他の構成は第1の実施形態で示したとおりである。
【0053】
本実施形態で示したいずれの樹脂封止構造でも、高周波電力回路モジュールの熱容量が大きくなって、放熱効果が高まる。したがって、電池3やDC−DCコンバータ2Aの過熱が防止される。特に、
図9に示したように筐体を備えることにより熱容量が大きくなるだけでなく構造上の堅牢性が高まる。
【0054】
《第4の実施形態》
第4の実施形態では、接着層の位置がこれまでに示した実施形態とは異なる高周波電力回路モジュールの例を示す。また、高周波電力回路を構成する電子部品の実装位置がこれまでに示した実施形態とは異なる高周波電力回路モジュールの例を示す。
【0055】
図10は第4の実施形態に係る高周波電力回路モジュール104Aの断面図であり、
図11は第4の実施形態に係る高周波電力回路モジュール104Bの断面図である。
【0056】
図10に示す高周波電力回路モジュール104Aは、第1リジッド部RP1に高周波電力回路が形成されている。また、この第1リジッド部RP1に電池フォルダ3Fおよび電池3が設けられている。第2リジッド部RP2にはコイル7が形成されている。
【0057】
電池フォルダ3Fおよび電池3には接着層8を介して磁性体シート4が接着されている。電子回路基板1の第1リジッド部RP1と第2リジッド部RP2とが屈曲部BSで屈曲されることにより、電池3は磁性体シート4に覆われる。また、電池3とコイル7との間に磁性体シート4が介在する。そして、電子回路基板1の第1リジッド部RP1と第2リジッド部RP2とで挟まれる空間に樹脂が充填されている。すなわち、この部分に樹脂封止体5が設けられている。その他の構成は第1の実施形態で示したとおりである。
【0058】
図11に示す高周波電力回路モジュール104Bは、上記高周波電力回路モジュール104Aが筐体10内に収納され、筐体10内に樹脂封止体5が設けられたものである。その他の構成は第1の実施形態で示したとおりである。
【0059】
本実施形態で示したように、磁性体シート4は電池側に接着してもよい。また、高周波電力回路を構成する電子部品はリジッド部の内側に実装されていてもよい。
【0060】
《第5の実施形態》
第5の実施形態では二つの屈曲部を有する高周波電力回路モジュールの例を示す。
【0061】
図12は第5の実施形態に係る高周波電力回路モジュールが備える電子回路基板を展開した状態での斜視図である。
図13はその高周波電力回路モジュールの断面図である。
【0062】
電子回路基板1は第1部分1A、第2部分1B、第3部分1C、第1屈曲部BS1および第2屈曲部BS2を有する。
図12において、第1部分1Aの上面に電池3が設けられている。第2部分1Bの上面に高周波電力回路2が構成されていて、下面に磁性体シート4が貼付されている。第3部分1Cにはコイル7が形成されている。
【0063】
第1屈曲部BS1、第2屈曲部BS2はそれぞれ
図12に示す方向に折り返される。
【0064】
図13に表れているように、電池3と第2部分1Bとの間には熱伝導シート6が配置される。したがって、熱伝導シート6は電池3と磁性体シート4との間に配置される。また、電池3とコイル7との間に磁性体シート4が配置される。
【0065】
図13に示した積層構造体は樹脂封止体5で樹脂封止される。その他の構成は第1の実施形態で示したとおりである。
【0066】
なお、コイル7が形成される、電子回路基板1の第3部分1Cはリジッド部であってもよいが、電子部品の実装が不要であるので、第2屈曲部BS2から連続するフレキシブル部であってもよい。
【0067】
《第6の実施形態》
第6の実施形態では、電子回路基板に対する磁性体シート4の配置位置が、
図12に示した例とは異なる高周波電力回路モジュールについて示す。また、二つの電池を備える高周波電力回路モジュールについて示す。
【0068】
図14、
図15はいずれも第6の実施形態に係る高周波電力回路モジュールが備える電子回路基板を展開した状態での斜視図である。
【0069】
図14に示す例では、電子回路基板1は、その第2部分1Bの上部に第3部分1Cが折り重ねられ、さらにその上に第1部分1Aが折り重ねられる。
【0070】
図15に示す例では、電子回路基板1は第1部分1A、第2部分1B、第3部分1C、第1屈曲部BS1および第2屈曲部BS2を有する。第1部分1Aの上面に電池3Bが設けられていて、第1部分1Aの下面に電池3Aが設けられている。第2部分1Bの下面にはコイルが形成されていて、第2部分1Bの上面には磁性体シート4が貼付されている。第3部分1Cの下面には高周波電力回路が構成されている。
【0071】
図15に示した電子回路基板1は、その第2部分1Bの上部に第1部分1Aが折り重ねられ、さらにその上に第3部分1Cが折り重ねられる。
【0072】
《第7の実施形態》
第7の実施形態では、電池フォルダを用いずに、回路を電池に接続する構造を備える高周波電力回路モジュール、および電池の電極を外部に取り出せるようにした高周波電力回路モジュールについて示す。
【0073】
図16は第7の実施形態に係る高周波電力回路モジュールが備える電子回路基板を展開した状態での平面図であり、
図17はその下面図である。また、
図18は第7の実施形態に係る高周波電力回路モジュール107の下面図である。
【0074】
電子回路基板1は第1部分1A、第2部分1B、第3部分1C、第1屈曲部BS1および第2屈曲部BS2を有する。第1部分1Aと第2部分1Bに高周波電力回路が構成されている。第2部分1Bには突出部1P1,1P2,1P3,1P4が形成されていて、突出部1P1,1P2,1P3,1P4の端部に電極11,12,13,14がそれぞれ形成されている。また、第3部分1Cにはコイル7が形成されている。電池3はコイン型の二次電池である。電極11,14は電池3の負極に接続して導通し、電極12,13は電池3の正極に接続して導通する。すなわち、電極11,14は電池3の負極に接続し、電極12,13は電池3の正極に接続する。
【0075】
電池3と各電極との接続には、導電性接着材を用いてもよい。常温で硬化する一液式導電性接着剤は、はんだの代替品として、高温を避けたい部品の接着や、はんだによる金属パターンの侵食を防止したい場合、はんだの利用が困難な場合、などに用いることができる。銀を配合したポリマーベースの変成シリコーン系弾性接着剤は、抵抗率が十分に低く、導電性が良く(体積抵抗率:3.5 × 10
-3 Ωcm)、はんだの代替としても利用できる。
【0076】
このような導電性接着剤を用いれば、熱を使わず常温で電池の実装が可能である。例えば、常温でも約24時間で硬化するため、加熱なしでも実装できる。また、底面を80℃で加温しながら静置すると、硬化時間が短縮できる。上記ポリマーベースの弾性接着剤では、硬化後も柔軟性を維持し、繰り返し曲げに対してもある程度の耐性があるため、電子回路の屈曲部分にも適用できる。また、適度な柔軟性があるので、衝撃に対しても耐性を持つ。
【0077】
この高周波電力回路モジュール107は、電力送電装置のコイルに磁界結合して高周波電力を受電し、整流平滑して内部の二次電池を充電する。そして、この二次電池の電圧がそのまま外部に取り出せるように構成されている。したがって、この高周波電力回路モジュール107は、充放電可能なコイン型電池として使用される。
【0078】
この高周波電力回路モジュール107の組立手順は次のとおりである。
【0079】
(1)
図16に示すように、第2部分1Bを中央とし、突出部1P4を第2部分1Bの上面に180度折り返すことで突出部1P4を第2部分1Bに接触させる。そして、電極14に電池3の正極を接触させるように電池3を配置する。
【0080】
(2)電池3の上面の負極に接触させるように、突出部1P3を約180度折り曲げる。
【0081】
(3)電池3の上面の突出部1P3の上面に電池3より一回り大きな円板状の磁性体シート4を、電池3を覆うように載置する。
【0082】
(4)第2屈曲部BS2を180度曲げて、円板状の磁性体シート4の上面にコイル7を配置する。
【0083】
(5)突出部1P2を上面に90度折り曲げて、電極12を電池3の側面に沿って配置する。このことで、電極12は高周波電力回路モジュール107の側面に露出し、高周波電力回路モジュール107を組み込む機器に対する正極の外部接続用電極として作用する。
【0084】
(6)第1屈曲部BS1を曲げて、第1部分1Aを下に180度折り返すようして、第2部分1Bの下面に接触するように重ねる。
【0085】
(7)突出部1P1を第1部分1Aの下面に接触させるように180度折り返す。このことで、電極11は、高周波電力回路モジュール107の下面に露出し、高周波電力回路モジュール107を組み込む機器に対する負極の外部接続用電極として作用する。
【0086】
以上の組立手順によって、充放電可能なコイン型電池として使用される高周波電力回路モジュール107が構成される。
【0087】
《その他の実施形態》
以上に示した各実施形態では、「磁性体層」を、磁性体シート4を配置することで構成したが、磁性体層を設ける箇所に液状磁性体を塗布し、その後硬化させることで「磁性体層」を形成してもよい。
【0088】
また、各実施形態では、コイルを電力受電用のコイルとして用いる例を示したが、1つのコイルを通信用と電力受電用とに兼用してもよい。
【0089】
また、各実施形態では、二次電池を備える高周波電力回路モジュールについて示したが、一次電池を備える高周波電力回路モジュールについても同様に適用できる。
【0090】
また、各実施形態では、単層のコイル導体パターンにより形成されたコイルを備える高周波電力回路モジュールについて示したが、コイル導体パターンが複数層に亘って形成されたコイルを備えてもよい。
【0091】
また、電子回路基板のコイル形成面等の導体パターン形成面やチップ部品の実装面にはレジスト膜を形成してもよい。このレジスト膜はシートを貼付して設けてもよいし、塗布形成してもよい。
【0092】
最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形および変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。