(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0008】
以下、添付図面を参照しながら本発明の実施形態について説明する。
【0009】
(第1実施形態)
図1は、第1実施形態にかかる電力制御システム100の概略構成を説明する図である。
【0010】
図示のように、電力制御システム100は、電力生成装置としてのSOFC(固体酸化物形燃料電池:solid oxide fuel cell)10と、SOFC10が生成(発電)する電力で充電される高電圧バッテリ12と、SOFC10と高電圧バッテリ12の間に配置された電力変換器としてのFC絶縁コンバータ14と、高電圧バッテリ12から供給される電力で駆動する外部負荷としての走行モータ16と、を有している。
【0011】
SOFC10は、セラミック等の固体酸化物で形成された電解質層を、アノード(燃料極)とカソード(空気極)により挟み込んで得られるセルを積層してなるSOFCスタックとして構成される。SOFC10は、燃料極に燃料ガス(水素)の供給を受けるとともに、空気極に酸化ガス(酸素)の供給を受けることで発電する。
【0012】
本実施形態におけるSOFC10は、例えば高電圧バッテリ12の充電電力が要求に対して不足している場合などに、FC絶縁コンバータ14により要求電力に応じた所定の電流の出力(発電)が行われる。
【0013】
なお、SOFC10を構成する各単位セルは、1.0V程度の出力電圧となる。したがって、単位セルの積層数を適宜調整することで、SOFC10の出力電圧を任意に調節することができる。例えば、SOFC10の最大出力電圧が60V〜200Vの範囲となるように、単位セルの積層数を設定することができる。
【0014】
しかしながら、本実施形態では、より安全性を高める観点からSOFC10の電圧をできるだけ低くするように、単位セルの積層数を調節する。特に、SOFC10の最大出力電圧が60V未満となるように、単位セルの積層数を調節する。なお、SOFC10は、さらに燃料系補機及び空気系補機を含む燃料電池システムとして構成されていても良い。
【0015】
高電圧バッテリ12は、例えば、リチウムイオンバッテリー等の二次電池で構成される。また、高電圧バッテリ12は、FC絶縁コンバータ14により調整されたSOFC10の発電電力によって充電される。また、高電圧バッテリ12は、走行モータ16からの電力要求に基づき、走行モータ16に適宜電力を供給する。
【0016】
FC絶縁コンバータ14は、SOFC10の発電電力を高電圧バッテリ12に充電すべく、SOFC10の出力電圧を調節する絶縁型のDCDCコンバータにより構成される。FC絶縁コンバータ14は、SOFC10側の低電圧ライン20に接続する低圧側スイッチング部14aと、高電圧バッテリ12及び走行モータ16に結線される高電圧ライン22に接続する高圧側スイッチング部14bと、低圧側スイッチング部14aと高圧側スイッチング部14bの間を接続する絶縁トランス14cを有する。
【0017】
そして、絶縁トランス14cは、入力側の低電圧ライン20の電圧を所定の昇圧比で昇圧して高電圧ライン22に出力できるように、当該昇圧比に対応する巻数比が設定されている。以下では、絶縁トランス14cの巻数比に応じて定まる昇圧比を「基本昇圧比」とも称する。
【0018】
さらに、
図1には示していないが、FC絶縁コンバータ14は、絶縁トランス14cの巻数比に応じた基本昇圧比を微調整するためのコンデンサ又はリアクトル等で構成される共振回路を含んでいる。
【0019】
上記構成により、本実施形態の電力制御システム100では、FC絶縁コンバータ14の低圧側スイッチング部14a又は高圧側スイッチング部14bに対して所定のスイッチング制御を行うによって、高電圧バッテリ12に充電要求に応じて当該高電圧バッテリ12にSOFC10の発電電力を供給することができるように、SOFC10の出力電圧(低電圧ライン20の電圧)を調節することができる。
【0020】
そして、特に、FC絶縁コンバータ14が絶縁トランス14cを有していることで、当該FC絶縁コンバータ14を挟んだ低電圧ライン20(SOFC12側)と高電圧ライン22(高電圧バッテリ12側)を電気的に絶縁しつつも、SOFC10から高電圧バッテリ12への電力供給が可能となっている。
【0021】
一方、走行モータ16は、三相交流モータで構成されている。走行モータ16は、高電圧バッテリ12から供給される電力によって駆動される。また、走行モータ16には、高電圧バッテリ12から供給される直流電力を交流電力に変換するモータインバータ16aが設けられている。
【0022】
なお、電力制御システム100には、必要に応じて、SOFC10の停止中などにおいて、高電圧バッテリ12とSOFC10の接続を物理的に遮断するためのリレーを、低電圧ライン20などに設けても良い。
【0023】
上記構成の電力制御システム100によれば、FC絶縁コンバータ14により、高電圧側の高電圧バッテリ12及び走行モータ16と、低電圧側のSOFC10を電気的に絶縁しつつ、SOFC10の発電電力を高電圧バッテリ12に充電することができる。
【0024】
以上説明した第1実施形態にかかる電力制御システム100によれば、以下の作用効果を奏する。
【0025】
本実施形態の電力制御システム100は、低電圧の電力を生成する電力生成装置としてのSOFC10と、高電圧バッテリ12から電力の供給を受ける外部負荷としての走行モータ16と、SOFC10により生成される電力で充電される高電圧バッテリ12と、SOFC10と高電圧バッテリ12の間に接続された電力変換器と、を備える。そして、電力変換器は、絶縁型電力変換器としてのFC絶縁コンバータ14を含む。なお、本実施形態においてSOFC10が生成する「低電圧の電力」とは、SOFC10の出力電圧が高電圧バッテリ12の動作電圧と比べて低い電圧であることを意味する。
【0026】
このように、高電圧の高電圧バッテリ12と、低電圧のSOFC10の間にこれらを電気的に絶縁する絶縁型電力変換器としてのFC絶縁コンバータ14が配置されたことで、電気的な安全性を保ちつつ、SOFC10の出力電圧を低く設定することができる。すなわち、FC絶縁コンバータ14によって、高電圧バッテリ12からSOFC10への電流の流れる抑制することができるので、SOFC10の出力電圧を低くしても、当該SOFC10の電気的な安全性を確保することができる。
【0027】
なお、本実施形態の電力制御システム100においては、高電圧系の高電圧バッテリ12に高電圧ライン22を介して走行モータ16が接続されており、高電圧バッテリ12から走行モータ16への電力供給が可能となっている。
【0028】
これにより、上述のように電気的な安全性を向上させたSOFC10の発電電力で高電圧バッテリ12に充電しつつ、高電圧バッテリ12に充電された電力を走行モータ16に供給するいわゆるシリーズ方式のハイブリッドシステムを構成することができる。
【0029】
さらに、本実施形態の電力制御システム100は、車両(特に自動車)に搭載されており、外部負荷が走行モータ16として構成されている。すなわち、本実施形態の電力制御システム100を、一定の電気的安全性が要求される移動体としての車両に用いることで、電気的な安全性を向上させたSOFC10によるメリットをより好適に享受することができる。
【0030】
また、FC絶縁コンバータ14は、SOFC10から高電圧バッテリ12に供給される電力を所定の昇圧比で昇圧する昇圧回路としての低圧側スイッチング部14a、高圧側スイッチング部14b、及び絶縁トランス14cを有する。
【0031】
これにより、SOFC10の出力電圧をより好適に昇圧して高電圧バッテリ12を充電することができる。すなわち、上述のようにSOFC10の出力電圧をより低く構成すると、SOFC10と高電圧バッテリ12の間の電圧差が大きくなる。これに対して、本実施形態のFC絶縁コンバータ14の昇圧回路によって、SOFC10の出力電圧を高電圧バッテリ12への充電のために適切な電圧により好適に調整することができる。結果として、高電圧バッテリ12の電圧に対してより小さい出力電圧のSOFC10を構成することができる。
【0032】
特に、本実施形態の電力制御システム100では、FC絶縁コンバータ14の昇圧回路は、絶縁トランス14cを含んでいる。
【0033】
これにより、絶縁トランス14cによって上述したSOFC10と高電圧バッテリ12との間の電気的絶縁を確保しつつも、当該絶縁トランス14cの一次側コイル(SOFC10側)と二次側コイル(高電圧バッテリ12側)の間の巻数比を適宜設定することで、SOFC10の出力電圧の昇圧比を好適に設定することができる。すなわち、絶縁トランス14cを設けるという簡易な構成で、SOFC10と高電圧バッテリ12の電気的絶縁及び昇圧回路としての機能の双方を実現することができる。
【0034】
以上、説明した第1実施形態の電力制御システム100においては、種々の変更が可能である。例えば、SOFC10の出力電圧を電力制御システム100が搭載される装置の要求等に応じて適宜設定することが可能である。
【0035】
例えば、SOFC10は、電力制御システム100が搭載される装置(自動車及び鉄道車両等)において所定の安全要求が課される高電圧安全要求対象部品と判断される基準となる所定電圧未満の最大出力電圧をとるように構成されても良い。
【0036】
すなわち、電力制御システム100が搭載される装置によっては、人体等に対する電気的安全性を確保する観点から、当該装置内における配置位置や所定の絶縁処理を施す等のより厳しい安全対策が要求される高電圧安全要求対象部品が法規等によって定められている場合がある。そして、ある部品がこのような高電圧安全要求対象部品であるか否かの判断は、通常、当該部品の動作電圧の大きさを基準として行われる。
【0037】
このような事情に鑑みて、電力制御システム100が搭載される装置に応じて高電圧安全要求対象部品であると判断される基準となる電圧を上記所定電圧とすることで、SOFC10の最大出力電圧を高電圧安全要求対象部品と判断される電圧未満とすることができる。
【0038】
これにより、SOFC10を電力制御システム100が搭載される装置の電気的安全性の観点から定められる高電圧安全要求対象部品から外すことができる。
【0039】
特に、SOFC10は、最大出力電圧が60V未満となるように構成されても良い。このようにSOFC10の最大出力電圧を設定することで、本実施形態の電力制御システム100が特に自動車に搭載される場合において、当該SOFC10をより確実に高電圧安全要求対象部品から外すことができる。
【0040】
ここで、自動車においては、衝突時に比較的大きく損傷することが想定される車両の前方領域や後方領域(以下、単に「衝突領域」とも記載する)においては、安全上の観点から高電圧安全要求対象部品を設置しないことが要求されている。そして、高電圧安全要求対象部品と判断される基準となる電圧は、概ね60Vと定められている。
【0041】
このような状況に対して、SOFC10をその最大出力電圧が60V未満となるように構成して高電圧安全要求対象部品の対象から外していることで、高電圧安全要求対象部品であれば設置が想定されない車両の前方領域や後方領域においてもSOFC10を設置することができる。
【0042】
さらに、このようにSOFC10の最大出力電圧を60V未満としても、SOFC10を高電圧バッテリ12等の高電圧系統と直接電気的に接続させると、高電圧バッテリ12とともにSOFC10が高電圧安全要求対象部品に該当することとなる。
【0043】
しかしながら、本実施形態の電力制御システム100では、既に説明したように、FC絶縁コンバータ14によって、SOFC10と高電圧バッテリ12及び走行モータ16の間が相互に電気的に絶縁されている。これにより、SOFC10が高電圧バッテリ12を含む高電圧系統から独立した部品とすることができる。したがって、FC絶縁コンバータ14によりSOFC10をより確実に高電圧安全要求対象部品から外すことができる。結果として、SOFC10を、自動車の衝突領域を含めた任意の領域に設置することができるので、車両レイアウトの自由度を向上させることができる。
【0044】
(第2実施形態)
以下、第2実施形態について説明する。なお、第1実施形態と同様の要素には同一の符号を付し、その詳細な説明は省略する。
【0045】
図2は、第2実施形態における電力制御システム100の構成を説明する図である。
【0046】
図示のように、本実施形態の電力制御システム100は、2つのSOFC10−1,10−2が配置されている。また、2つのSOFC10−1,10−2のそれぞれに、第1実施形態で説明したFC絶縁コンバータ14が個別に接続されている。なお、以下では、SOFC10−1に接続されたFC絶縁コンバータ14を「FC絶縁コンバータ14−1」と称し、SOFC10−2に接続されたFC絶縁コンバータ14を「FC絶縁コンバータ14−2」と称する。
【0047】
ここで、本実施形態において、2つのSOFC10−1,10−2を配置した背景の一つについて説明する。しかしながら、以下で説明する背景は本実施形態の構成を限定するものではない。
【0048】
既に説明したように、出力電圧の小さいSOFC10を構成すれば、当該SOFC10の電気的安全性が向上することとなる。一方で、出力電圧の小さいSOFC10の場合、例えば高電圧バッテリ12の要求充電量が比較的大きい場合等のSOFC10に対する要求発電電力が大きい場合においては、当該要求発電電力を確保すべくSOFC10からの取り出し電流を増大させる必要がある。しかしながら、単体のSOFC10から取り出すことのできる電流の大きさには限度がある。
【0049】
これに対して、本実施形態の電力制御システム100では、出力電圧の小さいSOFC10を配置した場合であっても、より好適に要求発電電力を確保する観点から、2つのSOFC10−1,10−2を並列に配置している。
【0050】
さらに、2つのSOFC10−1,10−2を並列に配置する場合においても、一台のFC絶縁コンバータ14によって2つのSOFC10−1,10−2からの取り出し電流をまとめて制御することが可能である。しかしながら、2つのSOFC10−1,10−2の個体差などの要因でこれらの出力特性(IV特性)がばらつくことが想定される。
【0051】
このように出力特性がばらついた2つのSOFC10−1,10−2において、各SOFC10−1,10−2から同一の取り出し電流を取り出すと、それぞれの電圧の低下度合が異なるため、SOFC10−1,10−2の間の電圧がばらつくこととなる。特に、取り出し電流が大きくなると、出力特性の相違による電圧のばらつきが大きくなる(
図5参照)。
【0052】
したがって、一台のFC絶縁コンバータ14によって2つのSOFC10−1,10−2からの取り出し電流をまとめて制御する場合には、これらの内のより低い方の特性に合わせて電流の取り出しを行う必要がある。すなわち、2つのSOFC10−1,10−2の内の出力特性が低い方がボトルネックとなって、出力特性が高い方のパフォーマンスを十分に引き出せないという状況が想定される。
【0053】
本発明者らは、このような状況に着目して、各SOFC10−1,10−2に個別にFC絶縁コンバータ14−1及びFC絶縁コンバータ14−2を接続することで、SOFC10−1,10−2のそれぞれの出力特性に応じた取り出し電流の制御を行うことに想到した。これにより、いずれのSOFC10−1,10−2からも出力特性に応じた個別の好適な電流の取り出しを実行することができる。
【0054】
以上説明した第2実施形態にかかる電力制御システム100によれば、以下の作用効果を奏する。
【0055】
本実施形態の電力制御システム100では、SOFC10を2つ備え、それぞれのSOFC10−1,10−2にFC絶縁コンバータ14−1及びFC絶縁コンバータ14−2が個別に接続される。
【0056】
これにより、一つのSOFC10を設ける場合と比較して、要求発電電力に応じた取り出し電流をより好適に実現することができる。その上で、2つのSOFC10−1,10−2のそれぞれの出力特性に応じて好適に取り出し電流を設定することができる。
【0057】
さらに、本実施形態では、SOFC10−1及びFC絶縁コンバータ14−1と、SOFC10−2及びFC絶縁コンバータ14−2と、が別々の系統として構成されることとなる。したがって、1台のFC絶縁コンバータ14に2つのSOFC10−1,10−2を接続する場合と異なり、SOFC10−1及びFC絶縁コンバータ14−1と、SOFC10−2及びFC絶縁コンバータ14−2と、を適宜分散してレイアウトすることが可能となる。
【0058】
これにより、電力制御システム100を車両に搭載する場合において、これらSOFC10−1,10−2及びFC絶縁コンバータ14−1,14−2を配置レイアウトの自由度をより向上させることができる。
【0059】
さらに、本実施形態の電力制御システム100では、SOFC10−1とFC絶縁コンバータ14−1を接続する低電圧ライン20−1、及びSOFC10−2とFC絶縁コンバータ14−2を接続する低電圧ライン20−2が別々の配線系統で構成されている。これにより、1台のFC絶縁コンバータ14に2つのSOFC10−1,10−2を一つの配線系統で接続する場合と比較して各低電圧ライン20−1,20−2に導通させる電流が減少することとなる。
【0060】
これにより、低電圧ライン20−1及び低電圧ライン20−2の線径をより細く形成することができるため、より高い曲率で屈曲変形させることができる。したがって、配線レイアウトの自由度が向上するため、SOFC10及びFC絶縁コンバータ14の配置レイアウトの自由度のさらなる向上に資することとなる。
【0061】
また、1台のFC絶縁コンバータ14に2つのSOFC10−1,10−2を接続する場合であっても、各SOFC10−1,10−2の出力制御を行うために必要な回路素子等を構成する必要がある。
【0062】
一方で、本実施形態のように、2つのSOFC10−1,10−2ごとにFC絶縁コンバータ14−1及びFC絶縁コンバータ14−2を分散して構成する場合には、各SOFC10−1,10−2の出力制御に必要な回路素子等の構成も分散される。さらに、FC絶縁コンバータ14−1及びFC絶縁コンバータ14−2の回路を導通する電流は、1台のFC絶縁コンバータ14を2つのSOFC10−1,10−2に接続する場合と比べて小さくなる。
【0063】
したがって、各FC絶縁コンバータ14−1及びFC絶縁コンバータ14−2は、1台で構成されるFC絶縁コンバータ14に対してトータルの部品点数をほとんど増やすことなく構成することができ、それぞれの大きさを1台で構成される場合のFC絶縁コンバータ14よりも小型化することができる。
【0064】
したがって、本実施形態のように各SOFC10−1,10−2にFC絶縁コンバータ14−1及びFC絶縁コンバータ14−2を個別に接続する場合であっても、FC絶縁コンバータ14−1及びFC絶縁コンバータ14−2の全体的サイズの増加及びコストの増加を抑制することができる。
【0065】
(第3実施形態)
以下、第3実施形態について説明する。なお、第1実施形態又は第2実施形態と同様の要素には同一の符号を付し、その詳細な説明は省略する。本実施形態では、第2実施形態で説明した電力制御システム100の構成を前提とした電力制御について説明する。
【0066】
図3は、本実施形態における電力制御システム100の構成を説明する図である。図示のように、本実施形態における電力制御システム100は、
図2において説明した構成に加えて、SOFC10−1とFC絶縁コンバータ14−1の間の低電圧ライン20−1に配置された低圧側電流センサ30−1及び低圧側電圧センサ32−1と、SOFC10−2とFC絶縁コンバータ14−2の間の低電圧ライン20−2に配置された低圧側電流センサ30−2及び低圧側電圧センサ32−2と、FC絶縁コンバータ14−1及びFC絶縁コンバータ14−2の出力側の高電圧ライン22に配置された高圧側電圧センサ34と、を有している。
【0067】
低圧側電流センサ30−1は、SOFC10−1の取り出し電流に相当する低電圧ライン20−1の電流(以下では、単に「第1低圧側電流Ilow1」とも称する)を検出する。また、低圧側電圧センサ32−1は、SOFC10−1の出力電圧(FC絶縁コンバータ14−1の入力電圧)に相当する電圧(以下では、単に「第1低圧側電圧Vlow1」とも称する)を検出する。
【0068】
さらに、低圧側電流センサ30−2は、SOFC10−2の取り出し電流に相当する低電圧ライン20−2の電流(以下では、単に「第2低圧側電流Ilow2」とも称する)を検出する。また、低圧側電圧センサ32−2は、SOFC10−2の出力電圧(FC絶縁コンバータ14−2の入力電圧)に相当する電圧(以下では、単に「第2低圧側電圧Vlow2」とも称する)を検出する。
【0069】
また、高圧側電圧センサ34は、FC絶縁コンバータ14−1及びFC絶縁コンバータ14−2の出力電圧に相当する高電圧ライン22の電圧(以下では、単に「高圧側電圧Vhigh」とも記載する)を検出する。
【0070】
さらに、電力制御システム100は、FC絶縁コンバータ14−1及びFC絶縁コンバータ14−2を制御する変圧器個別制御ユニットとしてのコントローラ90を備えている。
【0071】
コントローラ90は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、及び入出力インタフェース(I/Oインタフェース)を備えたコンピュータ、特にマイクロコンピュータで構成される。そして、コントローラ90は、本実施形態の処理を実行可能にプログラムされている。なお、コントローラ90は一つの装置として構成されていても良いし、複数の装置に分けられ、本実施形態の各制御を当該複数の装置で分散処理するように構成されていても良い。
【0072】
そして、本実施形態においてコントローラ90は、低圧側電流センサ30−1、低圧側電圧センサ32−1、低圧側電流センサ30−2、及び低圧側電圧センサ32−2でそれぞれ検出される第1低圧側電流検出値Ilow1d、第1低圧側電圧検出値Vlow1d、第2低圧側電流検出値Ilow2d、第2低圧側電圧検出値Vlow2d、及び高圧側電圧検出値Vhighdに基づいてFC絶縁コンバータ14−1及びFC絶縁コンバータ14−2のそれぞれをスイッチング制御して昇圧比を制御する。以下、コントローラ90による制御をより詳細に説明する。
【0073】
図4は、本実施形態の電力制御システム100の制御態様を説明するフローチャートである。なお、本フローチャートで示す各ステップは必ずしも以下で説明する順番に限定されるものではなく、可能な範囲で各ステップの入れ替えが可能である。
【0074】
図示のように、ステップS110において、コントローラ190は、例えば図示しない充電量(SOC)センサの検出値に基づいて高電圧バッテリ12の受け入れ可能電力(要求充電電力)を演算する。
【0075】
ステップS120において、コントローラ190は、演算した高電圧バッテリ12の要求充電電力からSOFC10−1及びSOFC10−2のトータルの要求発電電力を演算する。
【0076】
ステップS130において、コントローラ90は、第1低圧側電流目標値Ilow1t及び第2低圧側電流目標値Ilow2tを演算する。具体的に、コントローラ90は、演算した要求発電電力を満たしつつ、取得した第1低圧側電圧検出値Vlow1dと第2低圧側電圧検出値Vlow2dの偏差が許容値ΔV以下となるように第1低圧側電流目標値Ilow1t及び第2低圧側電流目標値Ilow2tを演算する。
【0077】
すなわち、コントローラ90は、高電圧バッテリ12の要求充電電力を満たしつつ、第1低圧側電圧Vlow1(SOFC10−1の電圧)と第2低圧側電圧Vlow2(SOFC10−2の電圧)のばらつきを抑制する観点から、第1低圧側電流目標値Ilow1t(SOFC10−1の取り出し電流目標値)及び第2低圧側電流目標値Ilow2t(SOFC10−2の取り出し電流目標値)を演算する。
【0078】
図5は、相互に出力特性が異なる2つのSOFC10−1及びSOFC10−2のそれぞれのIV曲線の概要を示す図である。なお、図においては、SOFC10−1のIV曲線を実線で示し、SOFC10−2のIV曲線を破線で示す。すなわち、本実施形態では、SOFC10−1の出力特性がSOFC10−2の出力特性よりも高いと仮定する。
【0079】
図から理解されるように、相互に出力特性が異なるSOFC10−1及びSOFC10−2の場合には、同じ電流を取り出しでもそれに応じた出力電圧が相違することとなる。特に、取り出し電流が大きくなる領域では、第1低圧側電圧Vlow1と第2低圧側電圧Vlow2の差は大きくなる。したがって、本実施形態では、第1低圧側電圧Vlow1と第2低圧側電圧Vlow2の差を小さくする観点から、各SOFC10−1,10−2からの取り出し電流の目標値である第1低圧側電流目標値Ilow1t及び第2低圧側電流目標値Ilow2tをそれぞれの出力特性に応じて設定する。
【0080】
例えば、コントローラ90は、
図5の点線で示す第1低圧側電流Ilow1の値を第1低圧側電流目標値Ilow1tに設定した場合、当該第1低圧側電流目標値Ilow1tに相当する電流をSOFC10−1から取り出した場合の第1低圧側電圧検出値Vlow1dに対して、SOFC10−2の出力電圧に相当する第2低圧側電圧検出値Vlow2dが上記許容値ΔV以下の範囲に収まる領域(
図5のハッチングされた領域)から、上記トータルの要求発電電力を考慮した第2低圧側電流目標値Ilow2tを選択する。
【0081】
そして、ステップS140において、コントローラ90は、第1低圧側電流検出値Ilow1d及び第2低圧側電流検出値Ilow2dが、それぞれステップS130で演算した第1低圧側電流目標値Ilow1t及び第2低圧側電流目標値Ilow2tに近づくように、FC絶縁コンバータ14−1及びFC絶縁コンバータ14−2のそれぞれの昇圧比を制御する。
【0082】
以上説明したように、本実施形態では、2つのSOFC10−1,10−2のそれぞれの出力特性に応じた好適な取り出し電流の設定が可能となる各FC絶縁コンバータ14−1及びFC絶縁コンバータ14−2のスイッチング制御が実現される。
【0083】
以上説明した第3実施形態にかかる電力制御システム100によれば、以下の作用効果を奏する。
【0084】
本実施形態の電力制御システム100では、それぞれのSOFC10−1及びSOFC10−2に接続されるFC絶縁コンバータ14−1及びFC絶縁コンバータ14−2を個別に制御するコントローラ90をさらに備える。
【0085】
これにより、SOFC10−1及びSOFC10−2からの発電電力(出力電流)を、それぞれの出力特性の相違に応じて個別に調整する制御が実現されることとなる。
【0086】
特に、本実施形態では、それぞれのSOFC10−1及びSOFC10−2の出力電圧としての第1低圧側電圧Vlow1と第2低圧側電圧Vlow2の差が所定値(許容値ΔV)以下となるように、それぞれのSOFC10−1及びSOFC10−2の取り出し電流を設定する(
図4のステップS130)。
【0087】
これにより、SOFC10−1及びSOFC10−2の相互の出力特性の違いに起因する出力電圧のばらつきを抑制しつつ、SOFC10−1及びSOFC10−2の出力特性に応じた適切な取り出し電流を設定することができる。
【0088】
(第4実施形態)
以下、第4実施形態について説明する。なお、第1〜第3実施形態と同様の要素には同一の符号を付し、その詳細な説明は省略する。
【0089】
図6は、本実施形態に係る電力制御システム100の構成を説明する図である。なお、図面簡略化のため、
図6では電力制御システム100の要部構成のみを示している。
【0090】
図示のように、本実施形態の電力制御システム100の電力変換器は、第1実施形態で説明したFC絶縁コンバータ14に加えて、FC絶縁コンバータ14の出力電圧を所定の昇圧比で昇圧する補助昇圧器としての非絶縁型昇圧コンバータ40を有している。
【0091】
非絶縁型昇圧コンバータ40は、スイッチング制御により一定範囲で昇圧比を設定し得るチャージポンプ方式等の昇圧コンバータとして構成される。そして、本実施形態において、非絶縁型昇圧コンバータ40は、FC絶縁コンバータ14と高電圧バッテリ12の間に接続されている。
【0092】
以上の構成を有する本実施形態の電力制御システム100では、FC絶縁コンバータ14は、低電圧ライン20におけるSOFC10の出力電圧を基本昇圧比で昇圧して中電圧ライン21に出力する。そして、非絶縁型昇圧コンバータ40は、中電圧ライン21の電圧を所定の昇圧比(以下では、「補助昇圧比」とも称する)で昇圧して高電圧ライン22に出力する。
【0093】
すなわち、本実施形態では、SOFC10の出力電圧が、FC絶縁コンバータ14及び非絶縁型昇圧コンバータ40の順で2段階昇圧された後に高電圧バッテリ12に供給されることとなる。
【0094】
特に、本実施形態では、SOFC10の出力電圧を第1段目のFC絶縁コンバータ14の昇圧回路(絶縁トランス14c)で比較的大きい基本昇圧比で昇圧しつつ、第2段目の非絶縁型昇圧コンバータ40の制御によって補助昇圧比を高精度に調節することができる。結果として、高電圧バッテリ12の要求充電電力等に応じて、FC絶縁コンバータ14及び非絶縁型昇圧コンバータ40による実質的なSOFC10の出力電圧に対する昇圧比(基本昇圧比×補助昇圧比)を好適に調節することが可能となる。
【0095】
より具体的には、本実施形態の電力制御システム100では、SOFC10の出力電圧が基本的にFC絶縁コンバータ14の基本昇圧によって、高電圧バッテリ12の要求充電電力に応じた所望の目標電圧付近まで昇圧される。
【0096】
しかしながら、例えば、高電圧バッテリ12の要求電力の変動等に起因して、SOFC10の出力電圧の昇圧比を比較的短い時間で適宜調節する必要が生じることが想定される。本実施形態では、非絶縁型昇圧コンバータ40によって、比較的短時間の間におけるSOFC10の出力電圧の実質的な昇圧比の調節にも好適に対応することができる。
【0097】
以上説明した第4実施形態にかかる電力制御システム100によれば、以下の作用効果を奏する。
【0098】
本実施形態の電力制御システム100における電力変換器は、SOFC10の出力電圧を所定の昇圧比で昇圧する補助昇圧器としての非絶縁型昇圧コンバータ40をさらに含む。
【0099】
これによれば、FC絶縁コンバータ14によって、SOFC10の出力電圧を高電圧バッテリ12の要求電力等に応じて定まる所望の電圧に概ね昇圧させつつも、非絶縁型昇圧コンバータ40によって、比較的短時間の間におけるSOFC10の出力電圧の実質的な昇圧比の調節にも好適に対応することができる。
【0100】
(第5実施形態)
以下、第5実施形態について説明する。なお、第1〜第4実施形態と同様の要素には同一の符号を付し、その詳細な説明は省略する。本実施形態では、第4実施形態で説明した電力制御システム100の構成を前提とした電力制御の一例について説明する。
【0101】
図7は、本実施形態における電力制御システム100の構成を説明する図である。図示のように、本実施形態における電力制御システム100は、
図6において説明した構成に加えて、低電圧ライン20に配置された低圧側電流センサ30及び低圧側電圧センサ32と、中電圧ライン21に配置された中電圧側電流センサ50及び中電圧側電圧センサ52と、高電圧ライン22に配置された高圧側電圧センサ34と、を有している。
【0102】
低圧側電流センサ30は、SOFC10の出力電流に相当する低圧側電流Ilowを検出する。また、低圧側電圧センサ32は、低電圧ライン20の電圧である低圧側電圧Vlowを検出する。
【0103】
また、中電圧側電流センサ50は、FC絶縁コンバータ14から非絶縁型昇圧コンバータ40への入力電流に相当する中電圧側電流Imedを検出する。また、中電圧側電圧センサ52は、中電圧ライン21の電圧である中電圧側電圧Vmedを検出する。
【0104】
さらに、高圧側電圧センサ34は、高電圧ライン22の電圧(高電圧バッテリ12の電圧に相当)である高圧側電圧Vhighを検出する。
【0105】
さらに、電力制御システム100は、FC絶縁コンバータ14及び非絶縁型昇圧コンバータ40を制御するコントローラ190を備えている。
【0106】
コントローラ190は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、及び入出力インタフェース(I/Oインタフェース)を備えたコンピュータ、特にマイクロコンピュータで構成される。そして、コントローラ90は、本実施形態の処理を実行可能にプログラムされている。なお、コントローラ190は一つの装置として構成されていても良いし、複数の装置に分けられ、本実施形態の各制御を当該複数の装置で分散処理するように構成されていても良い。
【0107】
そして、本実施形態においてコントローラ190は、低圧側電流センサ30、低圧側電圧センサ32、中電圧側電流センサ50、中電圧側電圧センサ52、及び高圧側電圧センサ34でそれぞれ検出される低圧側電流検出値Ilowd、低圧側電圧検出値Vlowd、中電圧側電流検出値Imedd、中電圧側電圧検出値Vmedd、及び高圧側電圧検出値Vhighdに基づいてFC絶縁コンバータ14及び非絶縁型昇圧コンバータ40を制御する。以下、本実施形態におけるコントローラ190による制御をより詳細に説明する。
【0108】
図8は、本実施形態の電力制御システム100の制御態様を説明するフローチャートである。なお、本フローチャートで示す各ステップは必ずしも以下で説明する順番に限定されるものではなく、可能な範囲で各ステップの入れ替えが可能である。
【0109】
図示のように、ステップS210において、コントローラ190は、例えば図示しない充電量(SOC)センサにより検出される高電圧バッテリ12の充電量検出値(又は推定値)に基づいて、高電圧バッテリ12の受け入れ可能電力(要求充電電力)を演算する。
【0110】
ステップS220において、コントローラ190は、演算した高電圧バッテリ12の要求充電電力からSOFC10に対する要求発電電力を演算する。
【0111】
ステップS230において、コントローラ190は、演算した要求発電電力、及び低圧側電圧検出値Vlowdに基づいてSOFC10の取り出し電流補正目標値(以下では、「第1取り出し電流目標値」とも称する)を演算する。すなわち、第1取り出し電流目標値は、高電圧バッテリ12の充電電力の要求を満たしつつも、低電圧ライン20の電圧(低圧側電圧Vlow)がある上限値を超えないように制限する観点から演算されるSOFC10の取り出し電流(低圧側電流Ilow)の目標値である。
【0112】
具体的に、本実施形態において、コントローラ190は、先ず、演算した要求発電電力に基づいてSOFC10の基本取り出し電流目標値を演算する。そして、SOFC10の出力特性(IV特性)に基づいて低圧側電圧検出値Vlowdが所定の上限電圧Vlim(例えば60V)未満となるように基本取り出し電流目標値を補正した値を第1取り出し電流目標値として設定する。
【0113】
なお、第1取り出し電流目標値は、要求発電電力を満たしつつも低圧側電圧検出値Vlowdを制限する観点から演算される目標値であるので、本来の第1取り出し電流目標値に基づいて定まる基本取り出し電流目標値以上の値に設定されることとなる。
【0114】
ステップS240において、コントローラ190は、ステップS230で演算した第1取り出し電流目標値及び高圧側電圧検出値Vhighdに基づいて、FC絶縁コンバータ14及び非絶縁型昇圧コンバータ40を制御する。
【0115】
具体的には、コントローラ190は、低圧側電流検出値Ilowdが第1取り出し電流目標値に近づくように、FC絶縁コンバータ14及び非絶縁型昇圧コンバータ40をスイッチング制御してトータルの昇圧比(基本昇圧比+補助昇圧比)を調節する。
【0116】
したがって、本実施形態によれば、低圧側電圧Vlowを上限電圧Vlim未満に維持しつつ、高電圧バッテリ12に所望の電力を充電し得る各コンバータの制御の一態様が提供されることとなる。
【0117】
以上説明した第5実施形態にかかる電力制御システム100によれば、以下の作用効果を奏する。
【0118】
本実施形態の電力制御システム100では、非絶縁型昇圧コンバータ40は、FC絶縁コンバータ14と高電圧バッテリ12の間に配置される。すなわち、SOFC10の出力電圧を、FC絶縁コンバータ14及び非絶縁型昇圧コンバータ40の順に2段階で昇圧しつつ、高電圧バッテリ12に供給できるシステムが提供される。
【0119】
そして、本実施形態では、FC絶縁コンバータ14及び非絶縁型昇圧コンバータ40を制御する昇圧制御ユニットとしてのコントローラ190をさらに有する。また、コントローラ190は、少なくともSOFC10の出力電圧(低圧側電圧Vlow)及び高電圧バッテリ12の電圧(高圧側電圧Vhigh)に基づいて、非絶縁型昇圧コンバータ40の昇圧比を制御する。
【0120】
これにより、高電圧バッテリ12の要求充電電力に応じて、FC絶縁コンバータ14及び非絶縁型昇圧コンバータ40によるSOFC10の出力電圧の2段階の昇圧を非絶縁型昇圧コンバータ40の制御によって好適に実行することができる。
【0121】
さらに、本実施形態のコントローラ190は、SOFC10の出力電圧に相当する低圧側電圧Vlowを所定値(上限電圧Vlim)未満に制限する(
図8のステップS230)。
【0122】
これにより、高電圧バッテリ12に対して要求充電電力に応じた電力の供給を可能としつつも、低圧側電圧Vlowを一定値未満に維持することのできる具体的な制御態様の一例が提供されることとなる。
【0123】
ここで、本実施形態の電力制御システム100は、FC絶縁コンバータ14の絶縁トランス14cにより低電圧ライン20と中電圧ライン21の間が電気的に絶縁されている。したがって、低電圧ライン20の電圧である低圧側電圧Vlowが上限電圧Vlim未満に維持されると、FC絶縁コンバータ14の入力側の低電圧ライン20及びSOFC10の動作電圧を実質的に上限電圧Vlim未満とすることができる。すなわち、低電圧ライン20及びSOFC10の電気的安全性をより向上させることができる。
【0124】
特に、本実施形態の電力制御システム100が自動車に搭載される場合であって、上限電圧Vlimを60V未満の値に設定すれば、低電圧ライン20及びSOFC10を実質的に動作電圧が60V未満の部品に設定できるので、これらを既に説明した高電圧安全要求対象部品から外すことができる。
【0125】
結果として、本実施形態における電力制御システム100を自動車に搭載する際において、低電圧ライン20及びSOFC10の車両上の配置レイアウト自由度を向上させることができる。
【0126】
なお、さらに、本実施形態の電力制御システム100において、SOFC10の実質的な最大出力電圧が60V未満となるように当該SOFC10を構成しても良い。これにより、上述の低圧側電圧Vlowが60V未満に維持される制御と相まってより確実に、SOFC10及び低電圧ライン20を含む低電圧系の部品を60V未満に維持することができるので、これら部品の電気的な安全性をより一層高めることができる。
【0127】
(第6実施形態)
以下、第6実施形態について説明する。なお、第1〜第5実施形態と同様の要素には同一の符号を付し、その詳細な説明は省略する。
【0128】
図9は、本実施形態に係る電力制御システム100の構成を説明する図である。なお、図面簡略化のため、
図9では電力制御システム100の要部構成のみを示している。
【0129】
図示のように、本実施形態では第4実施形態に係る電力制御システム100に対して、非絶縁型昇圧コンバータ40とFC絶縁コンバータ14の配置位置が入れ替わった構成をとっている。すなわち、本実施形態の電力制御システム100では、SOFC10とFC絶縁コンバータ14の間に非絶縁型昇圧コンバータ40が配置されている。なお、他の構成については第4実施形態に係る電力制御システム100と同様である。
【0130】
以上の構成を有する本実施形態の電力制御システム100では、非絶縁型昇圧コンバータ40は、低電圧ライン20におけるSOFC10の出力電圧を昇圧して中電圧ライン21に出力する。そして、FC絶縁コンバータ14は、中電圧ライン21の電圧を昇圧して高電圧ライン22に出力する。すなわち、本実施形態においては、SOFC10の出力電圧が、非絶縁型昇圧コンバータ40及びFC絶縁コンバータ14の順で2段階昇圧された後に高電圧バッテリ12に供給されることとなる。
【0131】
特に、本実施形態では、SOFC10の出力電圧を第1段目の非絶縁型昇圧コンバータ40の制御に応じて高電圧バッテリ12の要求に応じた補助昇圧比の調節を行いつつ、当該非絶縁型昇圧コンバータ40により昇圧された中電圧ライン21の電圧をさらに第2段目のFC絶縁コンバータ14によって昇圧することで、FC絶縁コンバータ14から高電圧ライン22への出力電圧を適切に調整することができる。
【0132】
また、本実施形態においても、第5実施形態と同様に、高電圧バッテリ12の要求電力の変動等に応じた非絶縁型昇圧コンバータ40及びFC絶縁コンバータ14の2段昇圧におけるトータルの昇圧比(補助昇圧比×基本昇圧比)を、応答性の良い非絶縁型昇圧コンバータ40に対するスイッチング制御によって好適に調節することができる。
【0133】
以上説明した第6実施形態にかかる電力制御システム100によれば、以下の作用効果を奏する。
【0134】
本実施形態の電力制御システム100では、補助昇圧器としての非絶縁型昇圧コンバータ40は、SOFC10とFC絶縁コンバータ14の間に配置される。
【0135】
これにより、高電圧バッテリ12の要求充電電力に応じて、SOFC10の出力電圧を非絶縁型昇圧コンバータ40及びFC絶縁コンバータ14による2段階の昇圧制御によって好適に調節することができる。
【0136】
さらに、本実施形態の電力制御システム100では、非絶縁型昇圧コンバータ40の入力側にSOFC10が配置されている構成をとっているので、SOFC10の出力電力の大きさによってはSOFC10から非絶縁型昇圧コンバータ40へ入力される電流が比較的大きくなること状況が想定される。
【0137】
このような状況に対して本実施形態では、非絶縁型昇圧コンバータ40の回路に絶縁トランス14cが用いられない非絶縁型コンバータとして構成されるので、SOFC10からの入力電流が大きくなることによる非絶縁型昇圧コンバータ40のサイズの大型化が抑制される。
【0138】
より詳細に説明すると、絶縁トランス14cを有するFC絶縁コンバータ14にSOFC10から直接的に電流が入力される構成の場合、当該入力電流が大きくなるとそれを許容すべく絶縁トランス14cの構成部品(巻線及び鉄心等)が大型に構成されることとなり、FC絶縁コンバータ14全体のサイズアップに繋がる。
【0139】
これに対して、非絶縁型昇圧コンバータ40は、主としてインダクタ又はコンデンサ等の回路素子で構成されるので、入力電流が大きくなってもこれら回路素子のサイズアップはFC絶縁コンバータ14と比べると限定的にすることができる。したがって、本実施形態のように非絶縁型昇圧コンバータ40をSOFC10とFC絶縁コンバータ14の間に配置することで、非絶縁型昇圧コンバータ40を含みシステム全体の大型化も抑制することができる。
【0140】
結果として、本実施形態の電力制御システム100において出力の比較的大きいSOFC10を配置しても、出力が大きいことに起因する非絶縁型昇圧コンバータ40への入力電流の増大に対するシステムのサイズアップの度合いがより小さくなるので、システムの大型化を抑制しつつ、より出力の大きいSOFC10を採用することができる。
【0141】
(第7実施形態)
以下、第7実施形態について説明する。なお、第1〜第6実施形態と同様の要素には同一の符号を付し、その詳細な説明は省略する。本実施形態では、第6実施形態で説明した電力制御システム100の構成を前提とした電力制御の一例について説明する。
【0142】
図10は、本実施形態における電力制御システム100の構成を説明する図である。図示のように、本実施形態における電力制御システム100には、
図9において説明した構成に加えて、第5実施形態と同様に低圧側電流センサ30及び低圧側電圧センサ32と、中電圧側電流センサ50及び中電圧側電圧センサ52と、高圧側電圧センサ34と、が配置されている。
【0143】
ここで、本実施形態の低圧側電流センサ30が検出する低圧側電流Ilowは、SOFC10から非絶縁型昇圧コンバータ40への入力電流に相当する。また、本実施形態の中電圧側電流センサ50が検出する中電圧側電流Imedは、非絶縁型昇圧コンバータ40からFC絶縁コンバータ14への入力電流に相当する。
【0144】
さらに、電力制御システム100は、低圧側電流センサ30、低圧側電圧センサ32、中電圧側電流センサ50、中電圧側電圧センサ52、及び高圧側電圧センサ34によってそれぞれ検出される低圧側電流検出値Ilowd、低圧側電圧検出値Vlowd、中電圧側電流検出値Imedd、中電圧側電圧検出値Vmedd、及び高圧側電圧検出値Vhighdに基づいて非絶縁型昇圧コンバータ40及びFC絶縁コンバータ14を制御する第5実施形態と同様のハードウェア構成を有するコントローラ190を備えている。以下、本実施形態におけるコントローラ190による制御をより詳細に説明する。
【0145】
図11は、本実施形態の電力制御システム100の制御態様を説明するフローチャートである。なお、本フローチャートで示す各ステップは必ずしも以下で説明する順番に限定されるものではなく、可能な範囲で各ステップの入れ替えが可能である。
【0146】
図示のように、ステップS210において、コントローラ190は、第5実施形態と同様に、高電圧バッテリ12の充電量検出値(又は推定値)に基づいて、高電圧バッテリ12の要求充電電力を演算する。
【0147】
ステップS320において、コントローラ190は、演算した高電圧バッテリ12の要求充電電力からSOFC10に対する要求発電電力を演算する。
【0148】
ステップS330において、コントローラ190は、演算した要求発電電力、及び低圧側電圧検出値Vlowdに基づいてSOFC10の取り出し電流補正目標値(以下では、「第2取り出し電流目標値」とも称する)及び中電圧側電流目標値を演算する。
【0149】
ここで、第2取り出し電流目標値は、高電圧バッテリ12の充電電力の要求を満たしつつも、低電圧ライン20の電圧(低圧側電圧Vlow)がある上限値を超えないように制限する観点から演算されるSOFC10の取り出し電流(低圧側電流Ilow)の目標値である。
【0150】
したがって、本実施形態において、コントローラ190は、第5実施形態で説明した第1取り出し電流目標値の演算と同様の演算によって、第2取り出し電流目標値を演算する。
【0151】
さらに、ステップS340において、コントローラ190は、低圧側電圧検出値Vlowd、中電圧側電圧検出値Vmedd、及び演算した第2取り出し電流目標値に基づいて中電圧側電流目標値を演算する。
【0152】
ここで、中電圧側電流目標値は、中電圧ライン21の電圧(中電圧側電圧Vmed)がある上限値を超えないように制限する観点から演算される中電圧側電流Imed(非絶縁型昇圧コンバータ40の出力電流に相当)の目標値である。
【0153】
具体的に、コントローラ190は、低圧側電圧検出値Vlowdと演算された第2取り出し電流目標値を乗算して供給電力Pを演算する。そして、コントローラ190は、演算した供給電力Pに基づいて基本中電圧側電流目標値を演算する。さらに、コントローラ190は、中電圧側電圧検出値Vmeddが上限電圧Vlim未満となるように基本中電圧側電流目標値を補正した値を中電圧側電圧目標値として設定する。
【0154】
そして、ステップS350において、コントローラ190は、演算した第2取り出し電流目標値及び中電圧側電流目標値に基づいて、非絶縁型昇圧コンバータ40及びFC絶縁コンバータ14を制御する。
【0155】
具体的には、コントローラ190は、低圧側電流検出値Ilowd及び中電圧側電圧検出値Vmeddがそれぞれ第1取り出し電流目標値及び中電圧側電流目標値に近づくように、非絶縁型昇圧コンバータ40及びFC絶縁コンバータ14をスイッチング制御してトータルの昇圧比(基本昇圧比+補助昇圧比)を調節する。
【0156】
したがって、本実施形態では、上記各ステップ、特にステップS330〜ステップS350の処理によって、低圧側電圧Vlow及び中電圧側電圧Vmedはいずれも上限電圧Vlim未満に制御されることとなる。
【0157】
以上説明した第7実施形態にかかる電力制御システム100によれば、以下の作用効果を奏する。
【0158】
本実施形態の電力制御システム100では、非絶縁型昇圧コンバータ40及びFC絶縁コンバータ14を制御する昇圧制御ユニットとしてのコントローラ190をさらに有する。また、コントローラ190は、少なくともSOFC10の出力電圧(低圧側電圧Vlow)及び高電圧バッテリ12の電圧(高圧側電圧Vhigh)に基づいて、非絶縁型昇圧コンバータ40の昇圧比を制御する。
【0159】
これにより、高電圧バッテリ12の要求充電電力に応じて、非絶縁型昇圧コンバータ40及びFC絶縁コンバータ14によるSOFC10の出力電圧の2段階の昇圧を、非絶縁型昇圧コンバータ40の制御によって好適に実行することができる。
【0160】
さらに、本実施形態のコントローラ190は、SOFC10の出力電圧に相当する低圧側電圧Vlow及び非絶縁型昇圧コンバータ40の出力電圧に相当する中電圧側電圧Vmedを所定値(上限電圧Vlim)未満に制限する(
図11のステップS330〜ステップS350)。
【0161】
これにより、に対して要求充電電力に応じた電力の供給を可能としつつも、低圧側電圧Vlow及び中電圧側電圧Vmedの双方が一定値以下に維持される具体的な制御態様の一例が提供されることとなる。
【0162】
ここで、本実施形態の電力制御システム100は、FC絶縁コンバータ14の絶縁トランス14cにより中電圧ライン21と高電圧ライン22の間が電気的に絶縁されている。したがって低圧側電圧Vlow及び中電圧側電圧Vmedの双方が上限電圧Vlim未満に維持されると、中電圧ライン21、非絶縁型昇圧コンバータ40、低電圧ライン20、及びSOFC10の動作電圧を実質的に上限電圧Vlim未満とすることができる。すなわち、これら各部品の電気的安全性をより向上させることができる。
【0163】
特に、本実施形態の電力制御システム100が自動車に搭載される場合であって、上限電圧Vlimを60V未満の値に設定すれば、中電圧ライン21、非絶縁型昇圧コンバータ40、低電圧ライン20、及びSOFC10を実質的に動作電圧が60V未満の部品に設定できるので、これらを既に説明した高電圧安全要求対象部品から外すことができる。
【0164】
結果として、本実施形態における電力制御システム100を自動車に搭載する際において、中電圧ライン21、非絶縁型昇圧コンバータ40、低電圧ライン20、及びSOFC10というより多くの種類の部品に対して、車両上の配置レイアウト自由度を向上させることができる。
【0165】
なお、さらに、本実施形態の電力制御システム100において、SOFC10の実質的な最大出力電圧が60V未満となるように当該SOFC10を構成しても良い。これにより、上述の低圧側電圧Vlow及び中電圧側電圧Vmedが60V未満に維持される制御と相まってより確実に、SOFC10、低電圧ライン20を含む低電圧系の部品、及び中電圧ライン21を含む中電圧系の部品を60V未満に維持することができるので、これら部品の電気的な安全性をより一層高めることができる。
【0166】
以上、本発明の各実施形態について説明したが、上記各実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記各実施形態の具体的構成に限定する趣旨ではない。
【0167】
例えば、上記第3実施形態、第5実施形態、及び第7実施形態で説明したFC絶縁コンバータ14又は非絶縁型昇圧コンバータ40の制御態様は何れも一例であり、種々変更が可能である。すなわち、第3実施形態のFC絶縁コンバータ14−1,14−2の制御においては、各SOFC10−1,10−2の出力特性に応じてそれぞれの出力電流を調節することが可能であるならば、FC絶縁コンバータ14−1,14−2の制御に用いた高圧側電圧Vhigh等のパラメータに代えて、又はこれとともに適宜任意のパラメータを用いても良い。
【0168】
同様に、第5実施形態及び第7実施形態におけるFC絶縁コンバータ14又は非絶縁型昇圧コンバータ40の制御においても、高電圧バッテリ12にその要求充電電力に応じた電力を供給しつつ、低圧側電圧Vlow、又は低圧側電圧Vlow及び中電圧側電圧Vmedを上限電圧Vlim未満に制御することが可能であるならば、これら第5実施形態及び第7実施形態の制御に用いた各パラメータに代えて、又はこれとともに適宜任意のパラメータを用いても良い。
【0169】
さらに、上記各実施形態では、絶縁型電力変換器を含むFC絶縁コンバータ14が、絶縁トランス14cにより絶縁機能を実現した例について説明した。
【0170】
しかしながら、上記各実施形態のFC絶縁コンバータ14に代えて、入出力の間で実質的な電気的絶縁を維持しながら、高電圧バッテリ12への供給すべき電力に相当するエネルギーを入力から出力へ伝達可能な任意の構成(回路素子等)を備えた絶縁型電力変換器を用いても良い。
【0171】
すなわち、上記各実施形態で説明した絶縁トランス14cの機能を代替する回路素子等の任意の構成については、本出願の出願日以前に存在していた技術はもとより、出願日以降において新規に見出される技術であっても、既に説明した本発明で要求される絶縁トランス14cの機能を奏する範囲において本発明の技術的範囲から除外されるものではない。
【0172】
また、第2〜第4実施形態において、2つのSOFC10−1,10−2を設け、それぞれに個別にFC絶縁コンバータ14−1,14−2を接続した例を説明した。これら実施形態に代えて、n個(n≧3)のSOFC10を配置し、これらn個のSOFC10に個別にn個のFC絶縁コンバータ14を接続するようにしても良い。これにより、n個のSOFC10の各出力特性に応じて、個別に取り出し電流を制御するようにしても良い。
【0173】
さらに、n個のSOFC10の内の所定個数ごとのSOFC10のグループを形成し、当該グループに対して1つのFC絶縁コンバータ14を接続し、グループ単位でSOFC10の取り出し電流を制御するようにしても良い。
【0174】
また、第2〜第4実施形態の構成と第5〜第7実施形態の構成を任意に組み合わせても良い。例えば、第2〜第4実施形態に係る2つのSOFC10−1,10−2にそれぞれ個別にFC絶縁コンバータ14−1,14−2が接続された電力制御システム100において、非絶縁型昇圧コンバータ40を設けても良い。
【0175】
より詳細には、第2〜第4実施形態における電力制御システム100において、SOFC10−1(10−2)とFC絶縁コンバータ14−1(14−2)の間又はFC絶縁コンバータ14−1(14−2)と高電圧バッテリ12の間に非絶縁型昇圧コンバータ40−1(40−2)を設け、FC絶縁コンバータ14−1(14−2)及び非絶縁型昇圧コンバータ40−1(40−2)に対して第5実施形態及び第7実施形態で説明した制御を実行するようにしても良い。
【0176】
さらに、第5〜第7実施形態においてFC絶縁コンバータ14の絶縁トランス14cを、電気的な絶縁機能のみに用いて巻数による昇圧を行わない構成としても良い。すなわち、絶縁トランス14cの一次側コイルの巻数と二次側コイルの巻数を等しくするなどして絶縁トランス14cによる昇圧比を1:1とした上で、FC絶縁コンバータ14における絶縁トランス14c以外の素子からなる昇圧回路、及び非絶縁型昇圧コンバータ40によってSOFC10の出力電圧の昇圧を行う構成としても良い。
【0177】
また、上記各実施形態では、電力生成装置がSOFC10である例について説明したが、内燃機関及びオルタネーター等の他の電力生成装置を採用しても良い。さらに、上記各実施形態の電力制御システム100は、自動車以外の鉄道車両等の電力の供給を受けて駆動する外部負荷(モータ)を備えた任意の車両又はその他の電力で駆動される外部負荷を備えた装置に適用することができる。