特許第6791749号(P6791749)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日立製作所の特許一覧

特許6791749直流送電システム、および、その制御装置
<>
  • 特許6791749-直流送電システム、および、その制御装置 図000003
  • 特許6791749-直流送電システム、および、その制御装置 図000004
  • 特許6791749-直流送電システム、および、その制御装置 図000005
  • 特許6791749-直流送電システム、および、その制御装置 図000006
  • 特許6791749-直流送電システム、および、その制御装置 図000007
  • 特許6791749-直流送電システム、および、その制御装置 図000008
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6791749
(24)【登録日】2020年11月9日
(45)【発行日】2020年11月25日
(54)【発明の名称】直流送電システム、および、その制御装置
(51)【国際特許分類】
   H02M 7/48 20070101AFI20201116BHJP
【FI】
   H02M7/48 M
   H02M7/48 R
【請求項の数】11
【全頁数】13
(21)【出願番号】特願2016-254778(P2016-254778)
(22)【出願日】2016年12月28日
(65)【公開番号】特開2018-107982(P2018-107982A)
(43)【公開日】2018年7月5日
【審査請求日】2019年11月27日
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成27年度国立研究開発法人新エネルギー・産業技術総合開発機構 次世代洋上直流送電システム開発事業 システム開発/要素技術開発委託研究、産業技術力強化法第19条の適用を受ける特許出願
(73)【特許権者】
【識別番号】000005108
【氏名又は名称】株式会社日立製作所
(74)【代理人】
【識別番号】110000350
【氏名又は名称】ポレール特許業務法人
(72)【発明者】
【氏名】吉原 徹
(72)【発明者】
【氏名】畠山 智行
(72)【発明者】
【氏名】木村 守
【審査官】 麻生 哲朗
(56)【参考文献】
【文献】 特開2016−144348(JP,A)
【文献】 米国特許出願公開第2010/0085783(US,A1)
【文献】 特開2009−219238(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02M 7/48
(57)【特許請求の範囲】
【請求項1】
電力を発電する発電システムと、
該発電システムからの入力電力を直流電力に変換する第一の電力変換装置と、
該第一の電力変換装置から入力された直流電力を交流電力に変換するDC/AC電力変換装置と、
前記第一の電力変換装置と前記DC/AC電力変換装置を繋ぐ直流送電線と、
該直流送電線の直流電圧を検出する直流電圧検出装置と、
該直流電圧検出装置の出力に基づき前記発電システムを制御する制御装置と、
を具備する直流送電システムであって、
前記制御装置は、前記直流電圧検出装置が検出した直流電圧の時間変化率が第一の閾値を超えたときに第一の保護制御を実行し、
前記直流電圧検出装置が検出した直流電圧が第二の閾値を超えたときに第二の保護制御を実行することを特徴とする直流送電システム。
【請求項2】
請求項1に記載の直流送電システムにおいて、
前記発電システムは、交流発電システムであり、
前記第一の電力変換装置は、前記交流発電システムから入力された交流電力を直流電力に変換するAC/DC電力変換装置であり、
前記第一の保護制御は、前記交流発電システムが発電する交流電力を抑制する制御であり、
前記第二の保護制御は、前記交流発電システムが発電する交流電圧を高める制御であることを特徴とする直流送電システム。
【請求項3】
請求項1に記載の直流送電システムにおいて、
前記発電システムは、直流発電システムであり、
前記第一の電力変換装置は、前記直流発電システムから入力された直流電力を直流電力に変換するDC/DC電力変換装置であり、
前記第一の保護制御は、前記直流発電システムが発電する直流電力を抑制する制御であり、
前記第二の保護制御は、前記直流発電システムが発電する直流電圧を高める制御であることを特徴とする直流送電システム。
【請求項4】
請求項1から3何れか一項に記載の直流送電システムであって、
前記制御装置は、
前記直流送電線の直流電圧に基づき前記第一の電力変換装置の出力を制御するための電力指令値を生成する保護装置と、
該電力指令値に基づき、複数の前記発電システムの各々を制御する運転指令値を演算する発電システム群制御装置と、
からなることを特徴とする直流送電システム。
【請求項5】
請求項1から4何れか一項に記載の直流送電システムにおいて、
前記第一の保護制御を開始した後に、前記第二の保護制御を開始することを特徴とする直流送電システム。
【請求項6】
請求項1から4何れか一項に記載の直流送電システムにおいて、
前記第一の保護制御と前記第二の保護制御を同時に実行することを特徴とする直流送電システム。
【請求項7】
請求項4に記載の直流送電システムにおいて、
前記保護装置は、前記第の電力変換装置の出力側の直流電圧を検出し、予め定められた前記直流電圧と送電端電圧の運転特性に基づいて、前記発電システムの電圧指令を決定することを特徴とする直流送電システム。
【請求項8】
請求項4に記載の直流送電システムにおいて、
前記発電システムは、予め定められた前記第の電力変換装置の入力側の電圧と発電電力の運転特性に基づいて、前記発電システムの発電電力を制御することを特徴とする直流送電システム。
【請求項9】
請求項1から8何れか一項に記載の直流送電システムにおいて、
前記第一の電力変換装置の入力側に、電力吸収装置が接続されることを特徴とする直流送電システム。
【請求項10】
請求項1から8何れか一項に記載の直流送電システムにおいて、
前記第一の電力変換装置または前記DC/AC電力変換装置は、自己消弧素子を用いて構成される自励式電力変換装置であることを特徴とする直流送電システム。
【請求項11】
直流送電システムに用いられる発電システムを制御する制御装置であって、
前記直流送電システムは、
電力を発電する発電システムと、
該発電システムからの入力電力を直流電力に変換する第一の電力変換装置と、
該第一の電力変換装置から入力された直流電力を交流電力に変換するDC/AC電力変換装置と、
前記第一の電力変換装置と前記DC/AC電力変換装置を繋ぐ直流送電線と、
該直流送電線の直流電圧を検出する直流電圧検出装置と、
該直流電圧検出装置の出力に基づき前記発電システムを制御する制御装置と、
からなり、
前記直流電圧検出装置が検出した直流電圧の時間変化率が第一の閾値を超えたときに第一の保護制御を実行し、
前記直流電圧検出装置が検出した直流電圧が第二の閾値を超えたときに第二の保護制御を実行することを特徴とする制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、再生可能エネルギー電源などの発電システムを、電力変換所および直流送電線を介して連系する直流送電システム、および、その制御装置に関する。
【背景技術】
【0002】
近年、洋上に設置した複数の風車の発電電力を洋上変電所で集電し、直流送電システムを介して陸上に送電する洋上直流送電システムが注目されている。
【0003】
長距離送電や海底送電では、高効率化のために直流送電システムが用いられることが多いが、風力発電機などの一般の電力系統は交流系統であるので、直流送電システムに送電するためには、交流系統の電力を電力変換装置で直流に変換してから送電する必要があった(例えば、特許文献1の要約書など)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2015−80354号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1では、同文献の図1に示されるように、順変換器に少なくとも1つの発電システムが接続され、逆変換器に受電系統が接続されるような直流送電システムでは、直流送電システムの直流電圧がある閾値を超えたときに、直流送電システムの順変換器側の交流電圧を低下させる保護動作を順変換器に実行させ、それに対応して、発電システムからの無効電力の供給量を増大させる安定化動作を発電システムに実行させることで、順変換器の保護動作による発電システムの運転停止(「トリップ」とも言う)を回避している。
【0006】
しかし、直流送電システムの直流電圧の上昇速度が速い場合、閾値を超えてから前記保護動作および安定化動作を実行しても、各機器の通信や制御の遅延によって、直流電圧上昇を抑えきれない可能性があり、発電システムの運転停止より前に直流送電システムが運転停止してしまう場合があり、発電システムから受電系統への送電経路が断たれてしまうという問題があった。
【課題を解決するための手段】
【0007】
そこで、上記課題を解決するために本発明は、電力を発電する発電システムと、該発電システムからの入力電力を直流電力に変換する第一の電力変換装置と、該第一の電力変換装置から入力された直流電力を交流電力に変換するDC/AC電力変換装置と、前記第一の電力変換装置と前記DC/AC電力変換装置を繋ぐ直流送電線と、該直流送電線の直流電圧を検出する直流電圧検出装置と、該直流電圧検出装置の出力に基づき前記発電システムを制御する制御装置と、を具備する直流送電システムであって、前記制御装置は、前記直流電圧検出装置が検出した直流電圧の時間変化率が第一の閾値を超えたときに第一の保護制御を実行し、前記直流電圧検出装置が検出した直流電圧が第二の閾値を超えたときに第二の保護制御を実行する。
【発明の効果】
【0008】
本発明によると、直流送電システムの直流電圧が急激に上昇したときであっても、素早く保護制御を実行することができ、直流送電システムの運転停止を回避し、運転を継続することができる。
【図面の簡単な説明】
【0009】
図1】実施例1のシステム概念図を示す。
図2】実施例1における、電力系統への送電能力低下に伴う直流電圧上昇時の概念図を示す。
図3】実施例1のAC/DC電力変換装置と発電システムの運転特性図を示す。
図4】実施例2のシステム概念図を示す。
図5】実施例3のシステム概念図を示す。
図6】実施例4のシステム概念図を示す。
【発明を実施するための形態】
【0010】
以下、本発明の実施例を図面ともに説明する。なお、以下の実施例は本発明の一形態を示すものであり、本発明は要旨を逸脱しない限り、他の形態を含むものである。
【実施例1】
【0011】
まず、図1図3を用いて、本発明の実施例1の直流送電システム100を説明する。
【0012】
本実施例の直流送電システム100は、洋上に設置された風力発電システムなどの交流発電システム101で発電された交流電力を、交流発電システム101に近接設置されたAC/DC電力変換装置103(交流−直流電力変換装置)を用いて直流に変換してから長距離送電した後、陸上に設置されたDC/AC電力変換装置104(直流−交流電力変換装置)を用いて直流から交流に変換して電力系統105に送電するものであり、直流送電システム100の直流電圧上昇時に、直流送電システム100の運転停止を回避し、運転継続を図ることができるものである。
【0013】
図1は、直流送電システム100の概念図であり、電気回路を実線で示し、通信経路を点線で示している。ここに示すように、直流送電システム100は、交流発電システム101、交流母線102、AC/DC電力変換装置103、DC/AC電力変換装置104、電力系統105、発電システム群制御装置106、直流送電保護制御装置107、交流電圧検出装置108、電力検出装置109、直流電圧検出装置110、交流送電線A111、交流送電線B112、直流送電線113、交流送電線C114から構成される。以下、各々の構成を詳細に説明する。
【0014】
複数の交流発電システム101の各々は、交流送電線A111を介して、交流母線102と電気的に接続され、交流母線102は、交流送電線B112を介して、AC/DC電力変換装置103と電気的に接続される。また、AC/DC電力変換装置103は、直流送電線113を介してDC/AC電力変換装置104と電気的に接続され、DC/AC電力変換装置104は、交流送電線C114を介して電力系統105と電気的に接続される。
【0015】
交流電圧検出装置108は、交流母線102の交流電圧Vacを検出し、直流送電保護制御装置107に送信する。また、電力検出装置109は、交流送電線B112を流れる入力電力PG1を検出し直流送電保護制御装置107に送信する。さらに、直流電圧検出装置110は、直流送電線113の直流電圧Vdcを検出し、直流送電保護制御装置107に送信する。
【0016】
AC/DC電力変換装置103とDC/AC電力変換装置104は、自己消弧素子を用いて構成される2レベル変換器やモジュラーマルチレベル変換器など、一般に自励式交直電力変換装置と呼ばれる電力変換装置に加え、変圧器や遮断器、保護機器などの電気設備や、センサ、制御装置、通信機器から構成される。
【0017】
発電システム群制御装置106は、交流発電システム101の集中制御を行う制御装置であり、交流発電システム101との相互通信手段を備え、交流発電システム101の運転状態の監視や、交流発電システム101への運転指令や運転動作点の送信を行う。また、直流送電保護制御装置107は、事故時などの緊急時に、交流電圧検出装置108、電力検出装置109、直流電圧検出装置110などからの信号に基づいて、直流送電システム100全体の保護制御を行う制御装置である。なお、直流送電保護制御装置107は、直流電圧Vdc、入力電力PG1、交流電圧Vacの3つの状態量を検出し、AC/DC電力変換装置103と発電システム群制御装置106に指令を与えることを想定しているが、上記以外の状態量の検出や、他の制御装置および機器との通信手段を備えていてもよい。
【0018】
ここで、定常状態の電力潮流を、図1を用いて説明する。定常状態時には、交流発電システム101で発電された交流電力を、AC/DC電力変換装置103で一旦直流に変換して直流送電線113に送電し、DC/AC電力変換装置104で再度交流に変換して、電力系統105に送電する。各機器や送電線の損失を無視すれば、電力変換前の入力電力PG1と、電力変換後に電力系統105に送電された出力電力PG2の大きさは大略等しく、また、この時、直流送電線113での直流電圧Vdcは大略一定に保たれている。
【0019】
これに対し、落雷等の影響によって交流送電線C114の電圧が零まで低下し、電力系統105への送電能力が低下したことに伴う、直流送電線113の直流電圧Vdc上昇時の運転継続制御について、図2図3を用いて説明する。
【0020】
図2は、落雷などの事故によって、電力系統105への送電能力低下が発生した時の、(a)交流送電線C114の電圧、(b)入力電力PG1と出力電力PG2、(c)直流送電線113の直流電圧Vdc、(d)交流母線102の交流電圧Vacの時間変化の各概念図であり、縦軸は各要素の大きさ、横軸は時間を示す。なお、縦軸、横軸は共に任意単位(arbitrary unit、以下「a.u.」と称呼する。)で表記している。
【0021】
図2において、時刻T0は、落雷などの事故が発生した時刻であり、この前が定常状態、この後が非定常状態である。本実施例では、非定常状態時であっても交流発電システム101の動作を継続すべく、後述する、第1の保護制御と第2の保護制御の2つの保護制御を実施する。なお、以下、時刻T1は第1の保護制御を開始する時刻であり、時刻T2は第2の保護制御を開始する時刻である。
【0022】
時刻T0前の定常状態時には、交流送電線C114の電圧、入力電力PG1、出力電力PG2、直流電圧Vdc、交流電圧Vacは何れも1.0[a.u.]である。
【0023】
時刻T0から始まる非定常状態では、図2(a)に示すように、交流送電線C114の電圧が0.0[a.u.]に低下する。また、図2(b)に示すように、入力電力PG1に変化はないが、交流送電線C114の電圧低下に伴い、出力電力PG2が0.0[a.u.]に低下する。すなわち、入力電力PG1が出力電力PG2よりも大きくなる。
(第1の保護制御)
次に、時刻T1に実施される第1の保護制御について説明する。第1の保護制御開始前の時刻T0〜時刻T1の時間帯では、入力電力PG1が出力電力PG2よりも大きいため、その差分の電力がAC/DC電力変換装置103、DC/AC電力変換装置104、直流送電線113それぞれのキャパシタンス成分に蓄えられ、結果として、図2(c)のように、直流送電線113の直流電圧Vdcが上昇する。
【0024】
このとき、直流送電保護制御装置107は、直流電圧検出装置110を介して直流電圧Vdcを検出し、直流電圧Vdcの時間変化率dVdcを演算する。この時間変化率dVdcは、例えば、(式1)で計算される。
【0025】
【数1】
【0026】
dc[T]:時刻Tにおける直流電圧Vdcの検出値
dc[T−ΔT]:時刻TからΔTだけ前の直流電圧Vdcの検出値
なお、(式1)中のΔTは、本発明の要旨を逸脱しない範囲で任意に設定可能であり、ΔTを短くすると、直流電圧Vdcの検出系に含まれるノイズの影響が大きくなる懸念があるが、この場合には、直流電圧Vdcの検出値をそのまま(式1)に用いるのではなく、ローパスフィルタなどのノイズ低減処理を行うことで、その影響を解消することが可能である。
【0027】
時刻T0〜T1の時間変化率dVdcが、直流送電保護制御装置107内で予め定められた閾値dVdcthよりも大きい場合、直流送電保護制御装置107は発電システム群制御装置106に、事故発生フラグFlgと、入力電力PG1と出力電力PG2を一致させたいときに用いる事故中の電力指令値PG1refを送信する。以下では、事故中の電力指令値PG1refを0.2[a.u.]とした場合を例に説明を続ける。
【0028】
図2(c)に示す時刻T0〜T1の時間変化率dVdc(直流電圧Vdcの傾き)が閾値dVdcthよりも大きい場合、直流送電保護制御装置107から事故発生フラグFlgと電力指令値PG1ref(0.2[a.u.])を受け取った発電システム群制御装置106は、定常状態の交流発電システム101の運転状態に基づいて、各交流発電システム101の運転指令値を算出し、各交流発電システム101に送信する。これにより、通常は、各交流発電システム101の発電の総和である入力電力PG1と出力電力PG2が一致するので、交流発電システム101の運転停止を回避することができる。
【0029】
なお、運転指令値の算出方法については、たとえば、予め、事故前の各交流発電システム101の発電電力の大きさに基づいて、交流発電システム101をランキング化し、入力電力PG1=電力指令値PG1refを満たすように、発電電力の大きいものから順に、発電電力を減少させるように運転指令値を作成する方法が考えられる。交流発電システム101の発電電力の制御については、連続的に発電電力制御を行うほか、緊急解列を行うことも有効である。
【0030】
本実施例においては、入力電力PG1=電力指令値PG1refを満たすように、発電システム群制御装置106で各交流発電システム101の発電電力が制御されればよく、具体的な運転指令値の算出方法は、上記の手法に限定されない。
(第2の保護制御)
上述したように、通常であれば、第1の保護制御を実施することで、入力電力PG1と出力電力PG2が一致し、直流電圧Vdcが一定に保たれるため、直流送電システム100の運転停止は回避されるが、ある条件下では、電力指令値PG1refに基づく制御を行っても入力電力PG1と出力電力PG2が一致せず、そのまま放置すると直流送電線113の直流電圧Vdcが上昇し続け、直流送電システム100が運転停止する場合がある。これを回避するため、本実施例では、一定条件下で、第1の保護制御を実行した後、第2の保護制御を実行する。以下、この第2の保護制御について詳細に説明する。
【0031】
図2(b)の時刻T1〜T2に例示するように、第1の保護制御によっても、入力電力PG1と出力電力PG2が等しくならなかった場合、直流送電線113に含まれるキャパシタンス成分などの影響により、直流電圧Vdcの上昇は継続する。図2(b)の場合、入力電力PG1=0.2[a.u.]に対し、出力電力PG2=0.0[a.u.]であるため、図2(c)に示すように直流電圧Vdcの上昇が継続し、これを放置すると直流送電システム100の運転停止に繋がる。
【0032】
そこで、第1の保護制御を開始した後も、直流電圧Vdcを監視しておき、これが予め定められた閾値Vdcthよりも大きくなった場合、第2の保護制御を開始する。本実施例では、予め閾値Vdcth=1.1[a.u.]と設定されており、直流電圧Vdcが1.1[a.u.]に達した時刻T2に第2の保護制御、すなわち、図2(d)に示す、直流電圧Vdcの基準値からの上昇幅に応じてAC/DC電力変換装置103に入力される交流電圧Vacを上昇させる制御、を開始する。
【0033】
ここで、図3を用いて、AC/DC電力変換装置103と交流発電システム101の運転特性を説明する。図3左図はAC/DC電力変換装置103の運転特性図であり、縦軸に交流電圧Vacの基準動作点からの変化幅ΔVacを取り、横軸に直流電圧Vdcの基準動作点からの変化幅ΔVdcを取ったものである。また、図3右図は交流発電システム101の運転特性図であり、縦軸に交流電圧Vacの基準動作点からの変化幅ΔVacを取り、横軸に出力電力PGの基準動作点からの変化幅ΔPGを取ったものである。ここに示した運転特性を、AC/DC電力変換装置103と交流発電システム101の夫々に予め持たせることで、第2の保護制御中は、各機器が定められた運転特性に従って自立的に動作することが可能となる。なお、図3では、交流電圧Vac、直流電圧Vdc、電力PGの全てが1.0[a.u.]の場合を基準動作点として例示したが、本発明の要旨を逸脱しない限り、運転状況に合わせて任意の基準動作点に設定可能である。
【0034】
図2(c)に示したように、時刻T2において直流電圧Vdcが1.1[a.u.]に到達し、その後、直流電圧Vdcが更に上昇すると、図3左図の運転特性図に従って、AC/DC電力変換装置103は、交流電圧Vacを所定量だけ上昇させる。
【0035】
これを図3左図を用いて説明すると、変化幅ΔVdcが0.1[a.u.]上昇すると(直流電圧Vdcが1.1[a.u.]に上昇すると)、AC/DC電力変換装置103は、図3左図の運転特性に示されるように、変化幅ΔVacを0.1[a.u.]だけ上昇させる(交流電圧Vacを1.1[a.u.]に上昇させる)。
【0036】
また、図3右図に示すように、変化幅ΔVacが0.1[a.u.]上昇すると、各々の交流発電システム101は図3右図の運転特性図に従って、各々が発電する電力PGを0.2[a.u.]だけ減少させる。そして、各々の電力PGが減少することで、それらの総和である入力電力PG1も所定量だけ減少する。この第2の保護制御は、直流電圧Vdcが1.1[a.u.]を超える間、繰り返されるため、入力電力PG1が漸減し、入力電力PG1と出力電力PG2の差分が0に近づき、最終的には入力電力PG1=出力電力PG2となる動作平衡点で直流電圧Vdcは一定となる。
【0037】
以上で説明したように、第1の保護制御によっても、入力電力PG1と出力電力PG2が一致しない場合は、第2の保護制御を実施することによって、直流電圧Vdcを一定に保つことができ、直流発電システム101の運転停止を回避することができる。
【0038】
以上が実施例1における運転継続制御であり、電力系統105への送電能力が回復した場合には、第1の保護制御および第2の保護制御を停止し、時刻T0以前の状態に戻すように直流送電システム100内の各機器を制御すればよい。
【0039】
なお、実施例1では、図3に示したように、第2の保護制御として交流発電システム101の運転特性を、交流母線102の交流電圧Vacに基づいて決定していたが、交流電圧Vacに代わって、交流発電システム101と交流送電線A111の接続点の電圧に基づいて決定してもよい。
【0040】
また、実施例1では、第1の保護制御を行った後、第2の保護制御を行うという形態を取っているが、第1の保護制御と第2の保護制御を同時に行うような形態であってもよい。この場合、第1の保護制御における交流発電システム101の運転指令値を演算する際に、図3の運転特性図を考慮して演算することで、第1の保護制御と第2の保護制御の干渉を避けることが可能である。
【実施例2】
【0041】
次に、図4を用いて実施例2の直流送電システム200について説明する。本実施例の直流送電システム200は、実施例1の交流母線102に電力吸収装置401を接続したものであり、それ以外の構成は、図1と同様であるため重複説明を省略する。
【0042】
実施例1では、交流発電システム101の発電電力を減少させることで、直流電圧Vdcの上昇時に、直流送電システム100の運転継続を実現したが、実施例2では、電力吸収装置401で交流発電システム101からの入力電力PG1を吸収させ、直流電圧Vdcの上昇時に直流送電システム200の運転継続を図っている。以下では、実施例2における、電力系統105への送電能力低下に伴う直流電圧上昇時の運転継続制御の詳細を説明する。
【0043】
実施例1では、第1の保護制御で発電システム群制御装置106から交流発電システム101に運転指令値を送っていたが、実施例2では、交流発電システム101に運転指令値を送信するのに代え、電力吸収装置401に吸収電力指令値を送信し、電力吸収装置401での吸収電力量を制御することで、実施例1における第1の保護制御と同等の効果を得ることができる。
【0044】
また、第2の保護制御について、図3右の運転特性と同様の特性を、交流発電システム101に代わって電力吸収装置401に持たせることで、実施例1における第2の保護制御と同等の効果を得ることができる。
【0045】
以上より、実施例2のように電力吸収装置401を備えていた場合でも、実施例1と同等の効果を得ることができる。
【0046】
なお、図4では、電力吸収装置401は交流母線102の1か所にのみ接続されていたが、交流発電システム101ごとに分散して接続し、発電システム群制御装置106で、複数の蓄電池を集中制御するような形態であってもよい。
【実施例3】
【0047】
次に、図5を用いて実施例3の直流送電システム300について説明する。本実施例の直流送電システム300は、実施例1の発電システム群制御装置106と直流送電保護制御装置107に代わって、それらの機能を統合したシステム保護制御装置501を設けたものであり、それ以外の構成は、図1と同様であるため重複説明を省略する。
【0048】
実施例3では、実施例1と比較し、発電システム群制御装置106と直流送電保護制御装置107の通信遅延を削減することで、保護制御の応答性を更に向上させることができるものである。すなわち、実施例1では、第1の保護制御において、直流送電保護制御装置107から事故発生フラグFlgと電力指令値PG1refを送信し、それを受け取った発電システム群制御装置106が交流発電システム101の運転指令値を演算していたが、実施例3では、システム保護制御装置501内で事故発生フラグFlgと電力指令値PG1refの計算と、発電システム101の運転指令値の演算を行うことで、通信遅延を削減し、実施例1と同様の効果を更に素早く得ることができる。
【0049】
なお、実施例3でも、実施例1の図3と同様に、第2の保護制御として交流発電システム101の運転特性を、交流母線102の交流電圧Vacに基づいて決定するが、交流電圧Vacに代わって、交流発電システム101と交流送電線A111の接続点の電圧に基づいて決定してもよい。
【0050】
また、実施例3でも、実施例1と同様に、第1の保護制御を行った後、第2の保護制御を行うという形態を取っているが、第1の保護制御と第2の保護制御を同時に行うような形態であってもよい。
【0051】
この場合、第1の保護制御における交流発電システム101の運転指令値を演算する際に、図3の運転特性図を考慮して演算することで、第1の保護制御と第2の保護制御の干渉を避けることが可能である。
【0052】
また、実施例3でも、実施例2と同様に、電力吸収装置401が交流母線102や交流発電システム101に接続されるような構成であってもよい。
【実施例4】
【0053】
次に、図6を用いて実施例4の直流送電システム400について説明する。
【0054】
実施例1〜実施例3の直流送電システムは、風力発電システムなどの交流発電システム101で発電された交流電力を、AC/DC電力変換装置103を用いて直流に変換して送電し、再度、直流から交流に変換して電力系統105に送電するものであったが、実施例4の直流送電システム400は、太陽光発電システムなどの直流発電システム601で発電された直流電力を、DC/DC電力変換装置603(直流―直流電力変換)で昇圧してから送電し、DC/AC電力変換装置104再度、直流から交流に変換して電力系統105に送電するものである。この直流送電システム400に第1、第2の保護制御を適用した場合でも、実施例1〜実施例3と同様の効果を得ることができることを説明する。
【0055】
図6は実施例4の直流送電システム400のシステム概念図であり、図1の交流発電システム101が直流発電システム601に代わり、交流母線102が直流母線602に代わり、AC/DC電力変換装置103がDC/DC電力変換装置603に代わり、交流送電線A111が直流送電線A604に代わり、交流電圧検出装置108が直流電圧検出装置605に代わり、交流送電線B112が直流送電線B606に代わったものである。
【0056】
実施例1の第1の保護制御では、直流送電線113の時間変化率dVdcに基づいて、交流発電システム101の発電電力を制御したが、本実施例の構成であっても、同等の第1の保護制御により直流発電システム601の運転停止を防止することができる。また、実施例1の第2の保護制御では、直流電力Vdcの大きさに基づいて、交流発電システム101の発電電力を制御したが、本実施例の構成であっても、同等の第2の保護制御により直流発電システム601の運転停止を防止することができる。
【0057】
なお、第2の保護制御については、実施例1の図3では、交流発電システム101の特性として、交流母線102の交流電圧Vacに基づいて、発電電力を制御できるものとしたが、実施例4では、直流発電システム601の特性として、交流電圧Vacに代わって、直流母線602の直流電圧Vdc2に基づいて、発電電力を制御できるものとすることで、実施例1と同様の効果を得ることができる。
【0058】
ゆえに実施例4でも、実施例1と同様の保護制御を実施することで、実施例1と同様の効果を得ることができる。
【0059】
なお、実施例4では、実施例1の図3に倣い、第2の保護制御として直流発電システム601の運転特性を、直流母線602の直流電圧Vdc2に基づいて決定するが、直流電圧Vdc2に代わって、直流発電システム601と直流送電線A604の接続点の電圧に基づいて決定してもよい。
【0060】
また、実施例4では、実施例1と同様に、第1の保護制御を行った後、第2の保護制御を行うという形態を取っているが、第1の保護制御と第2の保護制御を重複して行うような形態であってもよい。
【0061】
この場合、第1の保護制御における直流発電システム601の運転指令値を演算する際に、図3の運転特性図を考慮して演算することで、第1の保護制御と第2の保護制御の干渉を避けることが可能である。
【0062】
また、実施例4でも、実施例2と同様に、電力吸収装置401が直流母線602や直流発電システム601に接続されるような構成であってもよい。さらに、実施例4でも、実施例3と同様に、発電システム群制御装置106と直流送電保護制御装置107の機能を一体化したシステム保護制御装置501を用いることで両者間の信号の遅延を抑制する構成としてもよい。
【符号の説明】
【0063】
100、200、300、400 直流送電システム
101 交流発電システム
102 交流母線
103 AC/DC電力変換装置
104 DC/AC電力変換装置
105 電力系統
106 発電システム群制御装置
107 直流送電保護制御装置
108 交流電圧検出装置
109 電力検出装置
110 直流電圧検出装置
111 交流送電線A
112 交流送電線B
113 直流送電線
114 交流送電線C
401 電力吸収装置
501 システム保護制御装置
601 直流発電システム
602 直流母線
603 DC/DC電力変換装置
604 直流送電線A
605 直流電圧検出装置
606 直流送電線B
Flg 事故発生フラグ
ac 交流電圧
dc、Vdc2 直流電圧
dVdc 時間変化率
dVdcth 閾値
PG1 入力電力
PG1ref 電力指令値
PG2 出力電力
T0、T1、T2 時刻
図1
図2
図3
図4
図5
図6