特許第6791759号(P6791759)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ザ ジェネラル ホスピタル コーポレイションの特許一覧

<>
  • 特許6791759-螺旋状体積撮像のためのシステム 図000004
  • 特許6791759-螺旋状体積撮像のためのシステム 図000005
  • 特許6791759-螺旋状体積撮像のためのシステム 図000006
  • 特許6791759-螺旋状体積撮像のためのシステム 図000007
  • 特許6791759-螺旋状体積撮像のためのシステム 図000008
  • 特許6791759-螺旋状体積撮像のためのシステム 図000009
  • 特許6791759-螺旋状体積撮像のためのシステム 図000010
  • 特許6791759-螺旋状体積撮像のためのシステム 図000011
  • 特許6791759-螺旋状体積撮像のためのシステム 図000012
  • 特許6791759-螺旋状体積撮像のためのシステム 図000013
  • 特許6791759-螺旋状体積撮像のためのシステム 図000014
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6791759
(24)【登録日】2020年11月9日
(45)【発行日】2020年11月25日
(54)【発明の名称】螺旋状体積撮像のためのシステム
(51)【国際特許分類】
   A61B 5/055 20060101AFI20201116BHJP
【FI】
   A61B5/055 350
   A61B5/055 355
【請求項の数】29
【全頁数】16
(21)【出願番号】特願2016-556941(P2016-556941)
(86)(22)【出願日】2015年3月13日
(65)【公表番号】特表2017-507740(P2017-507740A)
(43)【公表日】2017年3月23日
(86)【国際出願番号】US2015020517
(87)【国際公開番号】WO2015138946
(87)【国際公開日】20150917
【審査請求日】2018年3月6日
【審判番号】不服2020-5609(P2020-5609/J1)
【審判請求日】2020年4月24日
(31)【優先権主張番号】61/953,370
(32)【優先日】2014年3月14日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】592017633
【氏名又は名称】ザ ジェネラル ホスピタル コーポレイション
(74)【代理人】
【識別番号】100134832
【弁理士】
【氏名又は名称】瀧野 文雄
(74)【代理人】
【識別番号】100165308
【弁理士】
【氏名又は名称】津田 俊明
(74)【代理人】
【識別番号】100115048
【弁理士】
【氏名又は名称】福田 康弘
(72)【発明者】
【氏名】ローゼン マシュー エス.
(72)【発明者】
【氏名】サルラカニ マチュー
(72)【発明者】
【氏名】サラーマ ナジャット
【合議体】
【審判長】 森 竜介
【審判官】 伊藤 幸仙
【審判官】 渡戸 正義
(56)【参考文献】
【文献】 特開2010−029313(JP,A)
【文献】 特開2010−124911(JP,A)
【文献】 韓国公開特許第10−2012−0097855(KR,A)
【文献】 特開2005−124692(JP,A)
【文献】 特表2005−503907(JP,A)
【文献】 特開昭60−253857(JP,A)
【文献】 特開2012−120836(JP,A)
【文献】 米国特許第10527689(US,B2)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/055
G01R 33/00 - 33/64
(57)【特許請求の範囲】
【請求項1】
磁気共鳴撮像(MRI)システムであって、
前記MRIシステム内に配置された対象の少なくとも関心領域(ROI)の周囲に静磁場を生成するように構成された磁気システムと、
前記静磁場に対する少なくとも1つの勾配磁場を達成するように構成された複数の勾配コイルと、
送信および受信コイルを含むラジオ周波数(RF)システムと、を備え、
前記送信および受信コイルが、
前記MRIシステムによって撮像される前記対象の部分の輪郭に沿うように構成された基板と、
前記基板に結合されているとともに半球形の螺旋パターンを形成する少なくとも1つのコイルと、を備え、
前記半球形の螺旋パターンが、前記少なくとも1つのコイルの隣接する部分の間の距離が等間隔であるよう構成さ
前記少なくとも1つのコイルが、前記対象の頭頂部にそろえられた中心から始まって外に螺旋状に向かうように構成され、
前記少なくとも1つのコイルが、前記対象の前記頭部の外縁を囲むように螺旋状に構成された、MRIシステム。
【請求項2】
前記静磁場は、低磁場の静磁場である、請求項1に記載のMRIシステム。
【請求項3】
前記静磁場は、10mT未満である、請求項1又は2に記載のMRIシステム。
【請求項4】
前記送信および受信コイルは、前記対象の外縁を撮像するようなサイズである、請求項1〜3のいずれか一項に記載のMRIシステム。
【請求項5】
前記MRIシステムは、撮像プロセスを実施するためにパルスシーケンスを実施するよう構成され、
前記少なくとも1つのコイルは、前記パルスシーケンスを実施する間に送信および受信動作を実施するように構成された、請求項1〜4のいずれか一項に記載のMRIシステム。
【請求項6】
前記パルスシーケンスは、定常自由歳差運動(b−SSFP)パルスシーケンスを含む、請求項5に記載のMRIシステム。
【請求項7】
前記基板がヘルメットを形成し、前記対象の前記部分が頭部であり、前記ヘルメットが、前記対象の前記頭部の輪郭に合うように構成されている、請求項1〜6のいずれか一項に記載のMRIシステム。
【請求項8】
前記基板が3次元(3D)プリンティングに適切な材料で形成された、請求項1〜のいずれか一項に記載のMRIシステム。
【請求項9】
MRIシステムを使用して磁気共鳴撮像(MRI)プロセスを実施するための送信および受信コイルシステムであって、
前記MRIシステムによって撮像される対象の部分の輪郭に沿うように構成された基板と、
前記基板に結合されているとともに前記基板にわたって延びる3次元螺旋パターンを形成する少なくとも1つの送信および受信コイルと、を備え、
前記3次元螺旋パターンは、前記少なくとも1つのコイルの隣接する部分の間の距離が等間隔であるよう構成さ
前記少なくとも1つの送信および受信コイルが、前記対象の頭頂部にそろえられた中心から始まって外に螺旋状に向かうように構成され、
前記少なくとも1つの送信および受信コイルが、前記対象の前記頭部の外縁を囲むように延びるように螺旋状に構成された、送信および受信コイルシステム。
【請求項10】
前記少なくとも1つのコイルは、前記対象の外縁を撮像するようなサイズである、請求項に記載の送信および受信コイルシステム。
【請求項11】
前記基板がヘルメットを形成し、前記対象の前記部分が頭部であり、前記ヘルメットが、前記対象の前記頭部の輪郭に合うように構成されている、請求項又は1に記載の送信および受信コイルシステム。
【請求項12】
前記基板が3次元(3D)プリンティングに適切な材料で形成された、請求項〜1のいずれか一項に記載の送信および受信コイルシステム。
【請求項13】
人間の解剖学的構造の部分のために構成された単一チャネルRF(ラジオ周波数)コイルであって、
関心領域の周囲に3次元形状に配置された導体を備え、
前記3次元形状パターンは、前記導体の隣接する部分の間の距離が等間隔であるよう構成され、
対象の前記人間の解剖学的構造の前記部分の磁気共鳴を実施することと併せて前記単一チャネルRFコイルが送信および受信コイルとして作動したときに、前記導体が、前記対象の体の長手軸にほぼ並行な磁場を生成および検出するよう構成さ
前記導体が、前記対象の頭頂部にそろえられた中心から始まって外に螺旋状に向かうように構成され、
前記導体が、前記対象の前記頭部の外縁を囲むように延びるように螺旋状に構成された、単一チャネルRFコイル。
【請求項14】
前記導体が、ほぼ螺旋状の形状に配置されている、請求項1に記載の単一チャネルRFコイル。
【請求項15】
前記単一チャネルRFコイルが、前記対象の頭部を収容するように形成された基板を備えたヘッドコイルとして構成され、
前記導体は、前記基板の表面にわたって前記3次元形状に配置された、請求項1又は1に記載の単一チャネルRFコイル。
【請求項16】
前記導体は、前記基板の少なくとも半球にわたって配置されている、請求項1に記載の単一チャネルRFコイル。
【請求項17】
前記導体は、前記3次元形状に配置されたワイヤによって形成された、請求項1〜1のいずれか一項に記載の単一チャネルRFコイル。
【請求項18】
前記ワイヤは単一撚り線である、請求項1に記載の単一チャネルRFコイル。
【請求項19】
前記ワイヤはリッツ線である、請求項1に記載の単一チャネルRFコイル。
【請求項20】
前記導体は1メートルより大の長さである、請求項1に記載の単一チャネルRFコイル。
【請求項21】
前記導体は5メートルより大の長さである、請求項2に記載の単一チャネルRFコイル。
【請求項22】
前記導体は10メートルより大の長さである、請求項2に記載の単一チャネルRFコイル。
【請求項23】
前記導体は、前記導体が少なくとも10の巻き数を形成するように、前記3次元形状に配置された、請求項1に記載の単一チャネルRFコイル。
【請求項24】
前記導体は、前記導体が少なくとも20の巻き数を形成するように、前記3次元形状に配置された、請求項1に記載の単一チャネルRFコイル。
【請求項25】
前記導体は、前記導体が少なくとも30の巻き数を形成するように、前記3次元形状に配置された、請求項1に記載の単一チャネルRFコイル。
【請求項26】
前記RFコイルは、0.2Tより小であるB0磁場に対応する周波数において送信および受信するように構成された、請求項1に記載の単一チャネルRFコイル。
【請求項27】
前記半球形の螺旋パターンは、撮像される前記対象の前記部分の輪郭の周りにおいて複数の螺旋状の巻数を有し、前記少なくとも1つのコイルの隣接する螺旋状の巻きの間の距離が等間隔であるよう構成された、請求項1に記載のMRIシステム。
【請求項28】
前記3次元螺旋パターンは、撮像される前記対象の前記部分の輪郭の周りにおいて複数の螺旋状の巻数を有し、前記少なくとも1つのコイルの隣接する螺旋状の巻きの間の距離が等間隔であるよう構成された、請求項に記載の送信および受信コイルシステム。
【請求項29】
前記導体は、前記導体が前記関心領域の周りにおいて複数の螺旋状の巻数を形成するように3次元形状に配置され、前記導体の隣接する螺旋状の巻きの間の距離が等間隔であるよう構成された、請求項1に記載の単一チャネルRFコイル。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本出願は、2014年3月14日に出願された、「SYSTEM AND METHOD FOR SPIRAL VOLUME IMAGING」と題する米国仮出願第61/953,370号に基づくとともに、その優先権を主張する。この文献は、参照することにより、本明細書に組み込まれる。
【0002】
(連邦政府の支援による研究に関する言明)
本発明は、国防総省によって与えられたW81XWH−11−2−076の下での政府の支援を伴ってなされたものである。政府は、本発明における一定の権利を有する。
【0003】
本開示は、磁気共鳴撮像(MRI)のためのシステムおよび方法に関し、より詳細には、螺旋コイル構造および、撮像プロセス中にそのようなコイルを使用する方法に関する。
【背景技術】
【0004】
人間の組織などの物体が一様な磁場(偏向磁場B0)にさらされると、組織内の励起された核の個別の磁気モーメントが、この偏向磁場と整列しようとするが、この核の周りで固有ラーモア周波数でランダムに歳差運動する。物質または組織がx−y平面にあり、ラーモア周波数に近い磁場(励起磁場B1)を受けると、正味の整列されたモーメントMzは、x−y平面内に回転または「傾斜(tipped)」されて、正味の横断磁気モーメントMtを生成し得る。励起信号B1が遮断された後に、励起された核または「スピン」によって信号が発せられ、この信号が受信されるとともに処理されて、画像を形成し得る。
【0005】
これら「MR」信号を利用して画像を生成する場合、磁場勾配(Gx、Gy、およびGz)が採用される。通常、画像化される領域は、使用される特定のローカライゼーション方法に応じてこれら勾配が変化する測定サイクルのシーケンスによってスキャンされる。結果として得られた、受信されたMR信号のセットはデジタル化および処理がされて、多くの周知の再構成技術の一つを使用して画像を再構成する。
【0006】
MRIは、送信および受信コイル(しばしば、ラジオ周波数(RF)コイルと呼ばれる)を使用して、発せられたMR信号をそれぞれ励起および検出することによって実施される。送信/受信コイルは、送信と受信のための別々のコイル、送信および/もしくは受信用の複数のコイル、または送信および受信のための同じコイルを含む場合がある。送信/受信コイルはしばしば、Tx/RxまたはTx/Rxコイルとも呼ばれ、一般に、MRIシステムの磁気構成要素の送信および受信のための様々な構成に関する。これら用語は、本明細書において相互に交換可能に使用される。
【0007】
現在、臨床環境に配置されたMRIシステムは高磁場システムであり、この理由は、歴史上、高磁場システムのみが、臨床上使用可能な画像を提供することが可能なMRIの解決策であるためである。しかし、高磁場MRIシステムは大型で、費用がかかり、専用の設備が必要である。結果として、高磁場MRIシステムのサイズと費用により、高磁場MRIシステムの使用が制限され、MRIの利益を受ける可能性がある多くの臨床場所における高磁場MRIシステムの使用を不可能にしている。
【発明の概要】
【0008】
低磁場MRIにより、比較的低コストで有用性の高い、高磁場MRIに対する代替策が提供されている。しかし、低磁場MRIには、比較的弱いMR信号および低い信号対ノイズ比を含む、複数の問題がある。結果として、送信/受信コイルの設計が、満足のいく低磁場MRIの実施において重大な役割を果たす。このことに対処するために、本発明者は、低磁場状況に適切なMR信号の向上された励起および検出を促す送信/受信コイルの設計を開発した。
【0009】
いくつかの実施形態によれば、螺旋構造を有する3次元(3D)送信/受信コイルが提供される。この送信/受信コイルは、たとえば、ヘルメットなどの特定の解剖学的構造の輪郭に沿って形成され得る、ぴったり合うように形成された基板上に取り付けられてもよい。この構成により、3D体積に対して均一の磁場および高感度が得られる。
【0010】
本開示の一態様によれば、MRIシステム内に配置された患者の少なくとも関心領域(ROI)周りに静磁場を生成するように構成された磁気システムと、静磁場について少なくとも1つの磁気勾配磁場を達成するように構成された複数の勾配コイルとを含む磁気共鳴撮像(MRI)システムが提供される。本システムは、送信/受信コイルを含むラジオ周波数(RF)システムをも含んでいる。送信/受信コイルは、MRIシステムによって撮像される対象の部分の輪郭に沿うように構成された基板と、この基板に結合され、半球形の螺旋パターンを形成する少なくとも1つのコイルとを含んでいる。
【0011】
本開示の別の態様によれば、コイルシステムは、MRIシステムを使用した磁気共鳴撮像(MRI)プロセスを実施するために提供される。コイルシステムは、MRIシステムによって撮像される対象の部分の輪郭に沿うように構成された基板と、この基板に結合され、3次元の螺旋パターンを形成する少なくとも1つのコイルとを含んでいる。
【0012】
本発明の上述または他の利点が、以下の詳細な説明から明らかになる。
【図面の簡単な説明】
【0013】
図1】MRIシステムのブロック図である。
図2】MRIシステムのRFシステムのブロック図である。
図3A】本開示に係る、図1、2、および4に関して記載したようなシステムでの使用のために構成された送信/受信コイルの正面図である。
図3B図3Aの送信/受信コイルの側面斜視図である。
図3C図3Aおよび3Bの送信/受信コイルの後面斜視図である。
図4図3A、3B、および3Cの送信/受信コイルで使用され得る低磁場MRIシステムの概略図である。
図5A】いくつかの実施形態に係る送信/受信コイルの斜視図である。
図5B図5Aに示す送信/受信コイルの上面図である。
図5C図5Aおよび5Bに示す送信/受信コイルの側面図である。
図6】B0磁石のバイプレーナ配置の概略図である。
図7】体の長手軸を示す人体の外形を示す図である。
【発明を実施するための形態】
【0014】
上述のように、臨床MRIスキャナは高磁場システムが圧倒的多数であり、設置されているMRIスキャナの大多数は1.5または3テスラ(T)で動作している。磁場強度をさらに増大させて、画質の向上および/またはスキャン時間の短縮をすることがMRIの動向である。しかしながら、高磁場MRIは、高解像度の画像を比較的短いスキャン時間で提供することができる一方、高磁場MRIの設置の製造、配備、および維持の費用がしばしばひどく高く、高磁場MRIシステムの有用性が著しく制限され、多くの臨床用途における高磁場MRIシステムの使用を妨げることになる。
【0015】
低磁場MRI(たとえば、0.2T以下で作動するシステム)により、比較的低コストで有用性の高い、高磁場MRIに対する代替策が提供されている。しかしながら、低磁場MRIには、著しく低い信号対ノイズ比(SNR)を含む、低磁場強度が採用されていることによる複数の問題がある。より詳細には、MR信号のSNRは、高磁場MRIを駆動させる重要な要素であり、より高い磁場強度への動向である、主磁場B0の強度に関連する。低磁場MRIにより、実質的に低いSNRとなる比較的弱いMR信号が生成される。したがって、送信/受信コイルの設計は、できるだけ効率的に励起パルスシーケンスを送信することと、発せられたMR信号を検出することとにおいて重要な要素である。
【0016】
本発明者は、低磁場MRIに採用される低磁場強度により、高磁場の状況では適切ではなく、かつ/または実行できない送信/受信コイルの設計が促進されることを理解している。たとえば、励起パルスシーケンスを送信し、発せられたMR信号を検出するために、送信/受信コイルは、B0の磁場強度に応じた周波数で共鳴しなければならない。したがって、高磁場状況における送信/受信コイルは、低磁場状況における送信/受信コイルの周波数よりも著しく高い周波数で共鳴しなければならない。伝導路の長さと、共鳴回路における共鳴周波数/複数の共鳴周波数(すなわち、コイルが磁場を発生および検出できる周波数)の波長との間の逆数の関係のために、高磁場の送信/受信コイルの伝導路は、非常に短い必要がある。
【0017】
本発明者は、低磁場MRIに伴う低周波数により、送信/受信コイルの伝導路をかなり長くすることが許容され、高磁場MRIの伴う高周波数によって課される伝導路の長さの厳しい制約が原因で高磁場MRIに適切ではない(または使用できない)コイルの設計が可能になることを理解している。いくつかの実施形態によれば、関心領域に対応する3次元表面にわたって提供される単一の伝導路によって送信/受信コイルが形成される。たとえば、低磁場送信/受信ヘッドコイルは、ヘルメット(たとえば、3Dプリンティングを使用して制作されたヘルメット)として人に着用されるように製造された基板の周りに導体を巻き付けることによって提供されてもよい。いくつかの実施形態によれば、導体はヘルメットの表面の周りに螺旋形状で巻き付けられて、関心領域(たとえば、脳、または脳の一部分)にパルスシーケンスを提供するおよび/または関心領域から発せられたMR信号を検出するのに、十分な範囲(たとえば、半球形の螺旋)を提供する。
【0018】
さらに、臨床における高磁場MRIシステムは通常、撮像される患者が挿入される円筒状の穴の周りに巻かれたソレノイドコイルを介してB0磁場を生成している。そのように、B0磁場は、穴および穴に挿入された体の長手軸に沿って向けられる。MRIを実施するために、送信/受信コイルは、B0磁場に垂直なB1磁場を生成しなければならず、この横断方向において発せられたMR信号を検出しなければならない。これにより、高磁場MRI用に設計される送信/受信コイルの形状にさらなる制約が課される。
【0019】
低磁場MRIにより、たとえばB0磁場が体の長手軸に対して垂直に向けられるように、撮像される患者を間に配置するバイプレーナコイルを使用してB0磁場が生成される「オープン」システムの設計を容易にする。したがって、送信/受信コイルは、このB0磁場を横断する磁場を生成および/または検出するように配置され、典型的な高磁場MRIシステムには不可能である形状を許容する。結果として、バイプレーナB0磁石(または、体の軸を横切るB0磁場を生成する他の構成)により、体の軸の方向の磁場を生成/検出する送信/受信コイルの設計が可能になる。このコイルのいくつかの例を、以下にさらに詳細に記載する。そのように構成された送信/受信コイルは、高磁場MRIで一般に使用されるコイルなどの、体の軸に対して整列された磁場を生成するB0コイルとともに使用することはできない。
【0020】
本発明者はさらに、低磁場状況が送信/受信コイルを提供するための様々な材料の使用を容易にすることを理解している。たとえば、高磁場MRI用の送信/受信コイルにおける伝導路は、通常は銅板から制作される。低磁場状況では、伝導路は、たとえば単一撚り線、複数撚り線(たとえばリッツ線)などのワイヤを使用して形成されてもよい。本明細書において「ワイヤ」との用語は銅板のフライス削りまたは切り出しによって形成される導体とは対照的に、断面が対称軸を有する(たとえば、概して円形の断面、矩形の断面など)ように、押出し成形の断面特性を有する導体を記載するのに使用される。ワイヤは、適切なゲージの単一撚り線、またはリッツ線などの複数撚り線であってもよい。結果として、低磁場MRI用の送信/受信コイルは、単純に、かつ安価に提供される。本明細書に記載の送信/受信コイル用の導体は、この点で本態様が限定されないことから、ワイヤベースの設計だけでなく、従来の導体シートからコイルを形成する高磁場技術をも含む、任意の適切な方法で提供され得ることを理解されたい。
【0021】
本発明者はさらに、上述の要素(たとえば、伝導路の長さの著しくゆとりのある制約、B0磁場の異なる向き、および/または利用できる材料に関するより高い柔軟性など)により、多種多様なコイルの設計が可能になり、撮像される特定の解剖学的構造に適合するコイルの提供が容易になることを理解している。結果として、送信/受信コイルは、撮像される解剖学的構造の周りの3次元構成の伝導路を提供することによって形成されてもよく、したがってほぼぴったり合う形状の送信/受信コイルが提供される。
【0022】
以下に、MRIでの使用のための送信/受信コイルを提供するための方法および装置に関する様々なコンセプト、ならびに方法および装置の実施形態のより詳細な説明を記載する。本明細書に記載の実施形態は、任意の多くの方法で実施されてもよいことを理解されたい。特定の実施の例は、説明目的のためにのみ、以下に記載される。記載される実施形態および特徴/能力は、個別に、全体で、または、この点において、本明細書に記載の技術の態様が限定されないように、任意の組合せで使用されてもよいことを理解されたい。
【0023】
ここで、特に図1を参照すると、磁気共鳴撮像(MRI)システム100の例が示されている。MRIシステム100は、通常はディスプレイ104、キーボードおよびマウスなどの1つまたは複数の入力デバイス106、ならびにプロセッサ108を含むオペレータワークステーション102を含んでいる。プロセッサ108は、市販のオペレーティングシステムを作動させる市販のプログラム可能な機械を含んでもよい。オペレータワークステーション102は、オペレータに、MRIシステム100に入力されるスキャン指示を可能にするオペレータインターフェースを提供する。通常は、オペレータワークステーション102は、パルス・シーケンス・サーバ110、データ取得サーバ112、データ処理サーバ114、およびデータ格納サーバ116の4つのサーバに結合されてもよい。オペレータワークステーション102ならびに各サーバ110、112、114、および116は、相互に通信するために接続されている。たとえば、サーバ110、112、114、および116は、有線、無線、またはその両方の組合せのいずれかの任意の適切なネットワーク接続を含み得る通信システム117を介して接続されてもよい。例として、通信システム117は、固有ネットワークまたは専用ネットワークと、インターネットなどのオープンネットワークとの両方を含んでもよい。
【0024】
パルス・シーケンス・サーバ110は、オペレータワークステーション102からダウンロードされた指示に応じて機能して、勾配システム118およびラジオ周波数(「RF」)システム120を作動させる。指示されたスキャンを実施するのに必要な勾配波形は、アセンブリ122内の勾配コイルを励起して磁気共鳴信号をエンコードする位置に使用される磁場勾配Gx、Gy、Gzを生成する勾配システム118に提供および適用される。勾配コイルアセンブリ122は、偏向磁石126および全身RFコイル128、ならびに/またはヘッドコイル129などの送信/受信コイルを含む磁気アセンブリ124の一部を形成する。
【0025】
RF波形は、指示された磁気共鳴パルスシーケンスを実施するために、RFシステム120により、RFコイル128、またはヘッドコイル129などの別の送信/受信コイルに適用される。RFコイル128、またはヘッドコイル129などの別の送信/受信コイルによって検出された応答磁気共鳴信号は、RFシステム120によって受信され、そこで信号がパルス・シーケンス・サーバ110によって与えられるコマンドの指示の下で増幅され、復調され、フィルタリングされ、デジタル化される。RFシステム120は、MRIパルスシーケンスにおいて使用される多種多様なRFパルスを生成するためのRFトランスミッタを含んでいる。RFトランスミッタは、パルス・シーケンス・サーバ110からのスキャン指令および指示に応じて、所望の周波数、位相、およびパルス振幅波形のRFパルスを提供する。生成されたRFパルスは、全身RFコイル128、または、ヘッドコイル129などの、1つもしくは複数の送信/受信コイルもしくはコイルアレイに与えられてもよい。
【0026】
RFシステム120は、1つまたは複数のRFレシーバチャネルを含む。各RFレシーバチャネルは、このRFレシーバチャネルが接続されているコイル128/129によって受信される磁気共鳴信号を増幅するRF前置増幅器と、受信される磁気共鳴信号のIおよびQの直交成分を検出し、デジタル化する検出器とを含んでいる。したがって、受信された磁気共鳴信号の大きさは、IとQとの構成要素の2乗の合計の平方根により、任意のサンプリングされたポイントで決定される。
【数1】
【0027】
そして、受信された磁気共鳴信号の位相は、以下の関係に従って決定することができる。
【数2】
【0028】
パルス・シーケンス・サーバ110は、オプションで、生理学的取得コントローラ130から患者のデータを受信する。例として、生理学的取得コントローラ130は、電極からの心電計(「ECG」)信号、または呼吸ベローズもしくは他の呼吸監視デバイスからの呼吸信号などの、患者に接続された複数の様々なセンサから信号を受信してもよい。そのような信号は通常、パルス・シーケンス・サーバ110によって使用されて、スキャンのパフォーマンスを対象の心拍または呼吸と同調または「ゲート」させる。
【0029】
パルス・シーケンス・サーバ110は、患者および磁気システムの条件に関連する様々なセンサからの信号を受信するスキャン・ルーム・インターフェース回路132にも接続されている。患者位置決めシステム134が、スキャン中に患者を所望の位置に移動させるコマンドを受信するのも、スキャン・ルーム・インターフェース回路132を介してである。
【0030】
RFシステム120によって提供された、デジタル化された磁気共鳴信号のサンプルは、データ取得サーバ112によって受信される。データ取得サーバ112は、オペレータワークステーション102からダウンロードされた指示に応じて作動して、リアルタイムの磁気共鳴データを受信し、データのオーバーランによってデータが失われないように、バッファストレージを提供する。いくつかのスキャンでは、データ取得サーバ112は、取得された磁気共鳴データをデータ・プロセッサ・サーバ114に渡す以上のことはほとんどしない。しかし、取得された磁気共鳴データから得られた情報を、スキャンのさらなるパフォーマンスを制御するために必要とするスキャンでは、データ取得サーバ112は、そのような情報を提供し、その情報をパルス・シーケンス・サーバ110に搬送するようにプログラムされている。たとえば、プリスキャンの間、磁気共鳴データが取得され、パルス・シーケンス・サーバ110によって実施されるパルスシーケンスをキャリブレートするのに使用される。別の例としては、ナビゲータ信号が取得され、RFシステム120または勾配システム118の作動パラメータを調整するか、k空間がサンプリングされるビューの順番を制御するのに使用されてもよい。さらに別の例では、データ取得サーバ112は、磁気共鳴血管造影(MRA)のスキャンにおいて造影剤の到達を検出するのに使用される磁気共鳴信号を処理するために採用されてもよい。例として、データ取得サーバ112は、磁気共鳴データを取得し、このデータを、スキャンを制御するのに使用される情報を提供するためにリアルタイムで処理する。
【0031】
データ処理サーバ114は、磁気共鳴データをデータ取得サーバ112から受信し、このデータを、オペレータワークステーション102からダウンロードされた指示に応じて処理する。そのような処理は、たとえば、加工前のk空間データのフーリエ変換を実施することによる2次元または3次元画像の再構成、反復または逆投影法の再構成アルゴリズムなどの他の画像再構成アルゴリズムの実施、加工前のk空間データまたは再構成画像へのフィルタの適用、機能的磁気共鳴画像の生成、モーションまたはフロー画像の計算などのうちの1つまたは複数を含んでもよい。
【0032】
データ処理サーバ114によって再構成された画像は、オペレータワークステーション102に戻され、ここに格納される。リアルタイム画像は、データベースのメモリキャッシュ(図1には図示せず)に格納され、そこから、オペレータのディスプレイ112、または、主治医によって使用される磁気アセンブリ124の近くに位置するディスプレイ136に出力されてもよい。バッチモード画像または選択されたリアルタイム画像は、ディスクストレージ138上のホストデータベース内に格納される。そのような画像が再構成され、ストレージに搬送されると、データ処理サーバ114がオペレータワークステーション102上のデータ格納サーバ116に通知する。オペレータワークステーション102は、オペレータによって使用されて、画像をアーカイブし、フィルムを提供し、またはネットワークを介して他の施設に画像を送ってもよい。
【0033】
MRIシステム100は、1つまたは複数のネットワーク化されたワークステーション142を含んでもよい。例として、ネットワーク化されたワークステーション142は、ディスプレイ144、キーボードおよびマウスなどの1つまたは複数の入力デバイス146、およびプロセッサ148を含んでもよい。ネットワーク化されたワークステーション142は、オペレータワークステーション102と同じ施設内に位置するか、異なる健康管理機関またはクリニックなどの異なる施設内に位置してもよい。
【0034】
ネットワーク化されたワークステーション142は、オペレータワークステーション102と同じ施設内にあるか異なる施設内にあるかにかかわらず、通信システム117を介してデータ処理サーバ114またはデータ・ストア・サーバ116へのリモートアクセスを得てもよい。したがって、複数のネットワーク化されたワークステーション142は、データ処理サーバ114およびデータ・ストア・サーバ116へのアクセスを有してもよい。このように、磁気共鳴データ、再構成された画像、または他のデータは、データまたは画像がネットワーク化されたワークステーション142によって離れた場所から処理できるように、データ処理サーバ114またはデータ・ストア・サーバ116と、ネットワーク化されたワークステーション142との間で交換されてもよい。このデータは、伝送制御プロトコル(TCP)、インターネットプロトコル(IP)、または他の既知または適切なプロトコルなどに従って、任意の適切なフォーマットで交換されてもよい。
【0035】
図2を参照すると、図1のRFシステム120についてさらに記載されている。RFシステム120は、所定のRF励起磁場を生成する送信チャネル202を含んでいる。このRF励起磁場のベース、またはキャリア周波数は、パルス・シーケンス・サーバ110からのデジタル信号のセットを受信する周波数合成器210の制御下で生成される。これらのデジタル信号は、出力212において提供されたRFキャリア信号の周波数および位相を示している。RFキャリアは、パルス・シーケンス・サーバ110からも受信される信号R(t)に応じて振幅が調節されるモジュレータおよびアップコンバータ214に適用される。信号R(t)により、生成されるRF励起パルスの包絡線が規定され、格納された一連のデジタル値を継続的に読み出すことによって提供される。これら格納されたデジタル値は、任意の所望のRFパルスの包絡線の生成を可能にするように変更されてもよい。
【0036】
出力216において生成されるRF励起パルスの大きさは、パルス・シーケンス・サーバ110からのデジタルコマンドを受信する励起子減衰回路218によって減衰される。減衰されたRF励起パルスは次いで、RF送信コイル204を駆動する電力増幅器220に適用される。
【0037】
対象から発せされたMR信号は、RF受信コイル208によって取得され、前置増幅器222を通してレシーバ減衰器224の入力に適用される。レシーバ減衰器224はさらに、パルス・シーケンス・サーバ110から受信したデジタル減衰信号によって決定される量だけ信号を増幅する。受信された信号は、ラーモア周波数であるか、ラーモア周波数付近の周波数であり、この高周波数信号は、ダウンコンバータ226による2ステップのプロセスでダウンコンバートされる。ダウンコンバータ226はまず、ライン212上のMR信号をキャリア信号と混合し、次いで、結果として得られる差分信号を、リファレンス周波数生成器230によって生成されたライン228上のリファレンス信号と混合する。ダウンコンバートされたMR信号は、アナログ信号をサンプリングするとともにデジタル化するアナログ−デジタル(「A/D」)コンバータ232の入力に適用される。サンプリングされデジタル化された信号は次いで、デジタル検出器および、受信した信号に対応する16ビットの同位相(I)値および16ビットの直角位相(Q)値を生成する信号プロセッサ234に適用される。受信信号のデジタル化されたIおよびQの値の結果として得られる流れは、データ取得サーバ112に出力される。リファレンス周波数生成器230は、ライン228上のリファレンス信号を生成するのに加え、A/Dコンバータ232に適用されるライン236上のサンプリング信号をも生成する。
【0038】
図3Aから3Cを参照すると、ぴったり合う形状の螺旋状(FFS)送信/受信コイル300として示されている送信/受信コイルの設計が示されている。以下に記載するように、FFS送信/受信コイル300により、3次元体積にわたって、均一な磁場と高い感度が提供される。FFS送信/受信コイル300は、基板またはハウジング302を含んでおり、この基板またはハウジング302に対し、またはその上に、螺旋コイル304が結合されている。基板302は、非常にぴったりと合う形状に形成されてもよい。たとえば、基板302は、図示の例での頭部などの解剖学的構造の輪郭に特に合うように、3次元(3D)プリンタを使用して形成されてもよい。したがって、基板302は、3Dプリンティングに適する材料で形成されてもよい。同様に、コイル304の巻回は、下層の解剖学的構造(この例では、頭部)に楽にフィットし、最大化された曲線因子でもよい所望の曲線因子を達成するように適応されてもよい。
【0039】
図示のように、コイル304は螺旋を形成する。コイル304は、対象の頭頂部にそろえられた中心306から外側に螺旋状に、対象の頭部を囲む外縁308に向かって形成されてもよい。したがって、コイル304は、中心306から外側に外縁308に向かって螺旋状になるように構成されてもよい。コイル304は、螺旋の隣接する部分と均等または実質的に均等の距離(D)だけ間隔を空けて配置されてもよい。他の構成では、距離Dは均等でなくてもよく、螺旋が中心306から外縁308に向かうにつれて変化してもよい。いずれの場合でも、コイル304は、高い磁場均一性を提供する半球形の螺旋パターンを形成する。有利なことに、螺旋パターンは、多くの送信/受信コイルによくあるコイル分離ストラテジーの必要性を制御または除去する。高感度ではあるものの高い磁場非同一性を被り送信動作のために別のコイルを必要とする従来の表面コイルとは対称的に、本開示の上述の螺旋コイルは、流線型の設計における広い視野にわたって高い感度を維持しつつ、高い均一性を提供するようにチューニングすることができる。FFS送信/受信コイル300は、送信動作と受信動作の両方のために使用することができる。
【0040】
上述のFFS送信/受信コイル300、および、他の解剖学的構造またはROIに適応する他のFFSコイルは、グラジエントエコーベース、スピンエコーベースのシーケンス、および定常自由歳差運動(b−SSFP)などの完全に焦点を再び合わせるシーケンスを含む高感度の任意のMRIシーケンスを提供するために、頭部、腕部、脚部、手、または任意の四肢などの人体の部分のNMRまたはMRIに使用することができる。とりわけ、基板またはROIの下層の形状にかかわらず、本開示のFFS送信/受信コイルは、b−SSFPパルスシーケンスなどの、高いフリップ角均一性を利用するMRIシーケンスのために使用されることが特に有利である。
【0041】
これらFFS送信/受信コイルは、低磁場磁気共鳴撮像(lfMRI)システムにも使用することができる。たとえば、lfMRIは、金属のインプラント、ペースメーカなどが原因で従来のMRIから除外された対象の撮像に有利である。FFS送信/受信コイルは、人通りの密集したエリアでのMRIベースのセキュリティ・チェック・ユニットに使用することができる。たとえば、図4を参照すると、基本のMRシステムおよび上述の原理は、同様の構成要素を共有するものの大きく異なるパラメータで動作する他のMRシステムの設計を知らせるのに使用されてもよい。一例では、低磁場磁気共鳴撮像(lfMRI)システムは、上述のハードウェアのほとんどを利用するが、ハードウェア要件が大幅に低減され、ハードウェアのフットプリントがより小さくなる。たとえば、図4を参照すると、1.5T以上の静磁場の代わりに、かなり小さい磁場を利用するシステムが記載されている。すなわち、図4では、非限定的な例として、システム400で使用されている磁場は、10mT未満であってもよい。1つの特定の例として、システム400は、たとえば直径が15.6cm以下の対象の撮像が可能である、6.5mTの電磁ベースのスキャナでもよい。システム400は、図3について上述したような送信/受信コイル402を使用してもよい。
【0042】
図5Aから5Cは、いくつかの実施形態に係る、低磁場MRIでの使用のための送信/受信ヘッドコイルの別の設計を示すいくつかの図である。送信/受信コイル500は、撮像される対象の頭部を収容するように形成された基板520を含んでいる。基板は、所望の形状に従ってなかに導体510が設けられた(たとえば、巻かれた)溝を有して形成されてもよい。基板は、たとえば、計算機援用設計(CAD)を介して形成され、次いで3Dプリンティング技術を使用して形成されてもよい。または、基板は、任意の他の適切な技術を使用して形成されてもよい。基板は、頭部を収容するヘルメット部と、支持ベースとを含み、それにより、患者は、背位で楽に頭部をヘルメット内にもたれさせることができる。
【0043】
図示のように、導体510は螺旋形状で基板520の周りに巻かれており、それにより、作動時に、コイルが矢印505で示す向きの磁場を生成し、同じ方向を向いた磁場を検出することができるようになっている。いくつかの実施形態によれば、導体510は、単一チャネルの送信および受信コイルを形成する単一の連続したワイヤを備えている。いくつかの実施形態では、導体510は、適切なゲージの単一撚り線である。いくつかの実施形態では、導体510は、リッツ線などの複数撚り線である。リッツ線は、束ねられ、撚られ、またはともに編み込まれた、個別に絶縁されたワイヤ導体の束である。本発明者は、リッツ線の使用により、同じゲージの単一撚り線と同じインダクタンスを有するが、低磁場MRIの作動周波数特性では抵抗がわずかであるコイルを提供することができることを理解している。結果として、抵抗損失が著しく低減され、それにより、送信/受信コイルのノイズを低減し、SNRを増大させる。
【0044】
上述のように、高磁場MRIは高周波数(たとえば、64Mhzより大)で作動し、それにより、RFコイルの伝導路は、正しく作動するために、非常に短くすることが必要になる。図3に記載の例示的な送信/受信コイル300は約7メートルの伝導路を有し、図5Aから5Cの例示的な送信/受信コイル500は約14メートルの伝導路を有する。したがって、これらの例示的な送信/受信コイルの導体の長さは、高磁場MRIの状況における高周波数によって課される限界を(1桁以上)大きく超えており、したがって、図3および図5Aから5Cに記載の構成が、低磁場の状況の低磁場強度によって、可能となる。
【0045】
さらに、高磁場MRIの伝導路の長さに課される限界が少なくとも部分的に原因で、送信/受信コイルはしばしば、高磁場状況における単一巻の導体ループである。低磁場状況においてこの制約から実質的に開放されることにより、コイルの巻き数を複数にすることが可能になる。図3および図5Aから5Cに記載のように、コイルは複数の巻き数を有するように配置されている。いくつかの実施形態によれば、コイルが複数の巻き数(たとえば、5、10、20、30巻など)を形成するよう、送受信コイルを形成する導体が関心領域の周囲において3次元形状に配置される。全体のコイルのインダクタンスおよび/または抵抗に関する任意の設計上の制約が尊重されるならば、使用可能な巻き数に制限はない。
【0046】
やはり上述したように、低磁場MRIシステムは、B0磁石に関するバイプレーナ構成を使用して構成することができる。たとえば、図6は、低磁場MRIのためのB0磁場を生成するのに使用することができるバイプレーナコイルの構成を説明するために、概略的に磁石600を記載している。図示のように、B0磁石はコイル610aおよび610bを含み、作動時には、矢印605で示された方向に向けられたB0磁場を生成する。コイル610aと610bとの間に対象が配置される場合、B0は対象の体の長手軸に対して垂直になる。図7は、対象がB0コイル間に、直立位置と仰向けの位置の両方で配置される場合に磁石600のB0の磁場に垂直な人体の長手軸700を示している。
【0047】
したがって、図6に示すように向けられた(体の長手軸に垂直)B0磁場を有する低磁場MRIシステムにより、本明細書に記載の送信/受信コイル構造の使用が許容される。対照的に、高磁場MRIシステムでは圧倒的多数が、ソレノイドB0磁石を使用して生成され、それにより、B0磁場が対象の体、および対象が挿入される穴の長手軸に沿って向けられ、これにより、垂直方向にB1励起磁場を必要とすることになる。図5Aから5Cに示すように、例示的な送信/受信コイルによって生成された磁場はやはり、ヘッドコイルの着用者の長手軸と整列され、したがって、これらコイルは、ソレノイドベースのB0磁石に関する送信および受信には効果がない。
【0048】
1つまたは複数の実施形態について本発明を記載してきたが、明確に述べられた実施形態の他に、多くの均等、代替形態、変形形態、および変更形態が可能であり、本発明の範囲内にあることを理解されたい。
図1
図2
図3A
図3B
図3C
図4
図5A
図5B
図5C
図6
図7