(58)【調査した分野】(Int.Cl.,DB名)
所定のドライバーが車両を走行させた際の当該車両の走行軌道のデータと、その際に検知された当該車両の周囲の状況のデータとの組み合わせを教師データとして機械学習をして得られた関数に、前記情報を入力することによって、前記第2の値を取得する、
ことを特徴とする請求項1から6のいずれか1項に記載の車両制御装置。
【発明を実施するための形態】
【0009】
以下、図面を参照しながら本発明の実施の形態について説明する。
【0010】
(車両制御装置の構成)
図1に、車両1を制御するための、本実施形態に係る車両制御装置のブロック図を示す。
図1において、車両1はその概略が平面図と側面図とで示されている。車両1は一例としてセダンタイプの四輪の乗用車である。
【0011】
図1の制御装置は、制御ユニット2を含む。制御ユニット2は車内ネットワークにより通信可能に接続された複数のECU20〜29を含む。各ECU(Electronic Control Unit)は、CPU(Central Processing Unit)に代表されるプロセッサ、半導体メモリ等の記憶デバイス、外部デバイスとのインタフェース等を含む。記憶デバイスにはプロセッサが実行するプログラムやプロセッサが処理に使用するデータ等が格納される。各ECUはプロセッサ、記憶デバイスおよびインタフェース等を複数備えていてもよい。
【0012】
以下、各ECU20〜29が担当する機能等について説明する。なお、ECUの数や、担当する機能については、車両1の適宜設計可能であり、本実施形態よりも細分化したり、あるいは、統合することが可能である。
【0013】
ECU20は、車両1の自動運転に関わる制御を実行する。自動運転においては、車両1の操舵と、加減速の少なくともいずれか一方を自動制御する。
【0014】
ECU21は、電動パワーステアリング装置3を制御する。電動パワーステアリング装置3は、ステアリングホイール31に対する運転者の運転操作(操舵操作)に応じて前輪を操舵する機構を含む。また、電動パワーステアリング装置3は操舵操作をアシストしたり、あるいは、前輪を自動操舵するための駆動力を発揮するモータや、操舵角を検知するセンサ等を含む。車両1の運転状態が自動運転の場合、ECU21は、ECU20からの指示に対応して電動パワーステアリング装置3を自動制御し、車両1の進行方向を制御する。
【0015】
ECU22および23は、車両の周囲状況を検知する検知ユニット41〜43の制御および検知結果の情報処理を行う。検知ユニット41は、車両1の前方を撮影するカメラであり(以下、カメラ41と表記する場合がある。)、本実施形態の場合、車両1のルーフ前部に2つ設けられている。カメラ41が撮影した画像の解析により、物標の輪郭抽出や、道路上の車線の区画線(白線等)を抽出可能である。
【0016】
検知ユニット42は、ライダ(レーザレーダ)であり(以下、ライダ42と表記する場合がある)、車両1の周囲の物標を検知したり、物標との距離を測距する。本実施形態の場合、ライダ42は5つ設けられており、車両1の前部の各隅部に1つずつ、後部中央に1つ、後部各側方に1つずつ設けられている。検知ユニット43は、ミリ波レーダであり(以下、レーダ43と表記する場合がある)、車両1の周囲の物標を検知したり、物標との距離を測距する。本実施形態の場合、レーダ43は5つ設けられており、車両1の前部中央に1つ、前部各隅部に1つずつ、後部各隅部に一つずつ設けられている。
【0017】
ECU22は、一方のカメラ41と、各ライダ42の制御および検知結果の情報処理を行う。ECU23は、他方のカメラ42と、各レーダ43の制御および検知結果の情報処理を行う。車両の周囲状況を検知する装置を二組備えたことで、検知結果の信頼性を向上でき、また、カメラ、ライダ、レーダといった種類の異なる検知ユニットを備えたことで、車両の周辺環境の解析を多面的に行うことができる。
【0018】
ECU24は、ジャイロセンサ5、GPSセンサ24b、通信装置24cの制御および検知結果あるいは通信結果の情報処理を行う。ジャイロセンサ5は車両1の回転運動を検知する。ジャイロセンサ5の検知結果や、車輪速等により車両1の進路を判定することができる。GPSセンサ24bは、車両1の現在位置を検知する。通信装置24cは、地図情報や交通情報を提供するサーバと無線通信を行い、これらの情報を取得する。ECU24は、記憶デバイスに構築された地図情報のデータベース24aにアクセス可能であり、ECU24は現在地から目的地へのルート探索等を行う。
【0019】
ECU25は、車車間通信用の通信装置25aを備える。通信装置25aは、周辺の他車両と無線通信を行い、車両間での情報交換を行う。
【0020】
ECU26は、パワープラント6を制御する。パワープラント6は車両1の駆動輪を回転させる駆動力を出力する機構であり、例えば、エンジンと変速機とを含む。ECU26は、例えば、アクセルペダル7Aに設けた操作検知センサ7aにより検知した運転者の運転操作(アクセル操作あるいは加速操作)に対応してエンジンの出力を制御したり、車速センサ7cが検知した車速等の情報に基づいて変速機の変速段を切り替える。車両1の運転状態が自動運転の場合、ECU26は、ECU20からの指示に対応してパワープラント6を自動制御し、車両1の加減速を制御する。
【0021】
ECU27は、方向指示器8を含む灯火器(ヘッドライト、テールライト等)を制御する。
図1の例の場合、方向指示器8は車両1の前部、ドアミラーおよび後部に設けられている。
【0022】
ECU28は、入出力装置9の制御を行う。入出力装置9は運転者に対する情報の出力と、運転者からの情報の入力の受け付けを行う。音声出力装置91は運転者に対して音声により情報を報知する。表示装置92は運転者に対して画像の表示により情報を報知する。表示装置92は例えば運転席表面に配置され、インストルメントパネル等を構成する。なお、ここでは、音声と表示を例示したが振動や光により情報を報知してもよい。また、音声、表示、振動または光のうちの複数を組み合わせて情報を報知してもよい。更に、報知すべき情報のレベル(例えば緊急度)に応じて、組み合わせを異ならせたり、報知態様を異ならせてもよい。
【0023】
入力装置93は運転者が操作可能な位置に配置され、車両1に対する指示を行うスイッチ群であるが、音声入力装置も含まれてもよい。
【0024】
ECU29は、ブレーキ装置10やパーキングブレーキ(不図示)を制御する。ブレーキ装置10は例えばディスクブレーキ装置であり、車両1の各車輪に設けられ、車輪の回転に抵抗を加えることで車両1を減速あるいは停止させる。ECU29は、例えば、ブレーキペダル7Bに設けた操作検知センサ7bにより検知した運転者の運転操作(ブレーキ操作)に対応してブレーキ装置10の作動を制御する。車両1の運転状態が自動運転の場合、ECU29は、ECU20からの指示に対応してブレーキ装置10を自動制御し、車両1の減速および停止を制御する。ブレーキ装置10やパーキングブレーキは車両1の停止状態を維持するために作動することもできる。また、パワープラント6の変速機がパーキングロック機構を備える場合、これを車両1の停止状態を維持するために作動することもできる。
【0025】
(処理の概要)
本実施形態では、ECU20が車両1の自動運転に関わる制御を実行する。ECU20は、運転者により目的地と自動運転が指示されると、ECU24により探索された案内ルートにしたがって、目的地へ向けて車両1の走行を自動制御する。自動制御の際、ECU20は、ECU22および23から車両1の周囲状況に関する情報を取得し、取得した情報に基づいて、短期間(例えば5秒間)で車両1が走行すべき軌道を特定する。この軌道の特定は、所定時間(例えば0.1秒)刻みで車両1の位置を決定することによって行われる。例えば、0.1秒刻みで5秒間分の軌道を特定する場合、0.1秒後から5.0秒後までの50個の時点における車両1の位置がそれぞれ決定され、この50個の点が結ばれる軌道が車両1の進むべき軌道として決定される。なお、ここでの「短期間」は、車両1が走行する全行程と比較して大幅に短い期間であり、例えば、検知ユニットが周囲の環境を検知できる範囲や、車両1の制動に必要な時間等に基づいて定められる。また、「所定時間」は、周囲の環境の変化に車両1が適応することができるような短さに設定される。ECU20は、このようにして特定した軌道に従って、ECU21、ECU26および29に指示して、車両1の操舵、駆動、制動を制御する。
【0026】
ここで、ECU20が実行する、車両1の短期間の軌道の特定について説明する。
図2は、ある瞬間における、車両1が走行中の路上及びその周囲の状態と、将来の状態を予測するために用いる将来に物体が存在することが予想される範囲を示す図である。車両1は、線201及び202(例えば車道外側線、路側帯、ガードレール、縁石等に対応する線)によって示される車両が走行可能な範囲のうち、中央線203で区切られた左側の車線を(
図2では下側から上側へ)走行している。車両1の進行方向には、歩行者204と他車両205が存在する。なお、
図2では、簡単のため、1台の他車両と1人の歩行者のみを示しているが、例えば自転車や二輪車等の他の交通参加者や障害物等の非交通参加者が、路上又はその周囲に存在しうる。また、2台以上の他車両や2人以上の歩行者が存在することも想定されうる。
【0027】
図2において、歩行者204が将来存在すると想定される範囲を、歩行者204を囲む一点鎖線211、点線212、及び二点鎖線213によって表している。ここで、点線212の範囲は、一点鎖線211の範囲よりも後の時点において歩行者204が存在すると想定される範囲であり、同様に、二点鎖線213の範囲は、点線212の範囲よりも後の時点において歩行者204が存在すると想定される範囲である。なお、各領域における歩行者204の存在確率は、例えば、円の中心を中心とする二次元正規分布に従いうる。なお、例えば区分線202の付近にガードレールが存在する場合など、歩行者が車道側に移動することが困難である状況では、歩行者が将来存在すると想定される範囲は正円形状とはならない。例えば
図2の範囲が線202で切り取られた左側の部分のみ又はそれに近い形状が、歩行者204が将来存在すると想定される範囲となりうる。また、歩行者204の顔の向きに応じて、その顔の方向に歩行者204が進むことが想定されるため、歩行者204が将来存在すると想定される範囲が顔の向いている方向に大きく広がる楕円形状となりうる。なお、歩行者204の将来の存在範囲の推定方法はこれらの方法に限られず、その他の任意の方式によって存在範囲及び存在確率が推定されうる。また、いずれの場合も、範囲が特定されるのみならず、範囲内の各地点に歩行者204が存在する確率に対応する得点が付され、得点が高いほど、その位置に歩行者204が存在する確率が高いことを示す第1の分布が取得される。なお、範囲については明示的に取得されなくてもよく、第1の分布が取得されるのみであってもよい。
【0028】
同様に、他車両205についても、将来存在すると想定される範囲(一点鎖線214、点線215、及び二点鎖線216で示される範囲)についての第1の分布が取得される。ここで、点線215の範囲は、一点鎖線214の範囲よりも後の時点において他車両205が存在すると想定される範囲であり、同様に、二点鎖線216の範囲は、点線215の範囲よりも後の時点において他車両205が存在すると想定される範囲である。このように、ECU20は、ECU22および23から車両1の周囲状況に関する情報を取得すると、この情報に基づいて、例えば所定の処理を実行することによって、移動物体のそれぞれについての将来の存在位置の確率に対応する第1の分布を取得する。
【0029】
静止物体については、その物体が動くことはないため時刻による変動はないが、その物体が消失することもないと想定されるため、その物体が存在する位置が各時点において同一の第1の分布が特定される。例えば、線202に沿ってガードレールや縁石が配置されている場合、物体が存在する範囲が線202の上に沿う形式となる第1の分布が、そのガードレールや縁石のための第1の分布として特定される。ECU20は、各物体についての第1の分布を位置ごとに合算した値を、トータルの第1の分布として取得する。
【0030】
ECU20は、一例において、各時点において物体が存在しない領域を特定し、車両1をその位置に進めるように軌道を決定する。これによれば、車両1が物体に干渉しないように軌道を選択することが可能となる。なお、例えばガードレールや縁石等の静止物体については、その実際の位置から車道側に一定距離だけ離れた範囲までを含むように、第1の分布に関する範囲が決定されてもよい。これによれば、車両1が静止物体に必要以上に近接して、車両1に乗車している人物が圧迫感を感じることを防ぐことが可能となる。一方、このように、物体が存在しない領域に基づいて車両1の軌道を決定する手法では、例えば歩行者が多数存在する環境において、一定期間後に物体が存在しない領域がない、又は車両1を配置するのに十分でない状況となりうる。この場合、ECU20は、一定期間後までの軌道を決定することができず、結果として、車両1が停止し、場合によっては自動運転ができない状態となってしまいうる。
【0031】
これに対し、本実施形態では、ECU20は、様々な状況において例えば所定のドライバーによる走行と、その際に検知された車両1の周囲状況との組み合わせのデータをさらに考慮して、車両1の軌道を決定する。所定のドライバーは、例えば、無事故ドライバー、タクシードライバー、認定を受けた運転熟練者等でありうる。例えば、ECU20は、同様の状況において所定のドライバーがどのような走行を行ったかに関する又は所定のドライバーであれば車両1をどの位置に移動させるかを示す、第2の分布を取得する。この第2の分布は、車両1が置かれた状況で所定のドライバーが車両1を移動させる確率が高い位置ほど高い値を有し、所定のドライバーが車両1を移動させる確率が低い位置ほど低い値を有する分布である。なお、ここでの「所定のドライバー」は、例えばプロのドライバーや優良運転者等でありうる。また、多数の車両から走行データを収集し、その中から、急発進、急制動、急ハンドルが行われない、又は、走行速度が安定している等の所定の基準を満たした走行データを抽出して、所定のドライバーの走行データとして取り扱ってもよい。
【0032】
第2の分布は、車両1の周囲の一定の範囲に含まれる複数の地点について値が特定されることによって取得される。例えば、
図3のように、車両1の周囲の一定範囲について、一定間隔で直進方向及びそれに垂直な方向の直線を引き、それらの直線の交点ごとに、上述の値が特定される。例えば、ECU22及び23から取得された車両1の周囲状況に関する情報を示す
図3のような画像の各画素に対応する地点(すなわち、
図3の格子の交点が各画素に対応する)について、値が特定される。なお、
図3は一例に過ぎず、例えば車両1を中心とした複数の円弧と、車両1から放射状に引かれる直線との交点ごとに、上述の値が算出されてもよい。
【0033】
また、第2の分布は、短期間(例えば5秒間)分について、所定時間(例えば0.1秒)刻みで取得される。すなわち、例えば
図3の格子の各交点についての値の二次元分布が、0.1秒ごとに5秒間分の50個作成される。このとき、例えば、車両1の真横に対応する領域には、少なくとも直後の時点(例えば0.1秒後)に移動することはできず、所定のドライバーによってもそのような走行は行われえないため、その領域における地点での上述の値は必ず0となる。一方、一定期間後(例えば5秒後)には、所定のドライバーが後進操作を行ったこと等によって、現時点の車両1の位置の真横の領域に存在した場合があった可能性がある。このため、一定期間後での真横の地点における上述の値は0ではない値でありうる。また、
図3では、車両1の直進方向において、左側に歩行者が、右側には他車両が存在する。このため、例えば所定のドライバーが平均的に人物から距離を置き、中央線に寄せて運転していた場合には、右前方向における地点での上述の値が高くなる。一方、歩行者や他車両との距離が離れている場合は、そのまま直進する方向の地点での上述の値が高くなる。このようにして、複数の時点及び複数の地点において、運転熟練者による運転に基づく第2の分布が特定される。
【0034】
第2の分布は、一例として、非常に多数の状況において、所定のドライバーによって実現された走行データを多数取得して、車両1が現に置かれている状況において所定のドライバーが実際にとった行動の分布として表現される。すなわち、車両1が現に置かれている状況と全く又はほぼ同一の状況において所定のドライバーが行った走行において、その後の各時点において各位置に車両が存在した頻度や確率が、第2の分布として取得されうる。これによれば、多数の所定のドライバーが実際に通った軌道ほど高い値を有するような第2の分布が取得される。この第2の分布は、例えば移動物体が少ない状況で道なりに運転する場合等に特に有用でありうる。
【0035】
また、第2の分布は、所定のドライバーが実際に車両を運転した際の車両の走行軌道のデータと、その際に検知された車両の周囲状況のデータとの組み合わせを教師データとして機械学習を実行した結果を用いて取得されうる。すなわち、ECU20は、事前に所定のドライバーによる多数の教師データを用いて機械学習を行った結果に基づいて、ECU22及び23から取得した車両1の周囲状況に関する情報を入力として、各地点における上述の値を算出して、第2の分布を取得する。なお、機械学習のアルゴリズムは汎用のものを用いることができ、ここでは特に限定されない。
【0036】
ECU20は、第2の分布を取得すると、各時点において、各地点での第1の分布の値から第2の分布の値を減算し、その結果の値が最小または所定の閾値以下となる地点を特定する。
図4は、例えば、ある時点における、
図3のA〜A’及びB〜B’までの位置における第1の分布と第2の分布とを示す図である。
図4では、第1の分布をA〜A’及びB〜B’の軸の上側に、第2の分布をA〜A’及びB〜B’の軸の下側に、それぞれ示している。すなわち、第1の分布と、正負を逆転させた第2の分布とが
図4に示されている。第1の分布のうち、曲線401及び411は歩行者204に関する第1の分布であり、曲線402及び412は他車両205に関する第1の分布である。また、矩形状の曲線404及び414は、不図示の縁石等の、静止物体に関する第1の分布である。静止物体については、物体が動かずにその位置にとどまることが確実であるため、その位置において高く、その他の位置においてはゼロ又は十分に小さい値を有するような、矩形状又はほぼ矩形状の第1の分布が形成される。このように、静止物体と移動物体とでは、第1の分布の裾の形状が異なりうる。曲線403及び413は、例えば、機械学習が完了した結果得られる関数に、ECU22及び23から取得した車両1の周囲状況に関する情報を引数として入力した結果得られる、第2の分布を示している。ECU20は、A〜A’の軸の各位置において、曲線401〜404の各値を加算し、B〜B’の軸の各位置において、曲線411〜414の各値を加算する。また、ECU20は、A〜A’及びB〜B’の軸以外の各位置においても、同様の値を計算しうる。ECU20は、このようにして、各地点において、第1の分布の値から第2の分布の値を減じた値を算出し、その結果が最小となる位置(場合によっては閾値以下となる位置)を選択する。
図4の例では、ECU20は、一例として地点Cを選択する。
【0037】
ECU20は、複数の時点において、同様の計算を実行し、各時点において選択された地点を時系列で接続するような軌道を決定する。この例を
図5に示す。
図5において、車両1の進行方向にプロットされた点501は、複数の時点のそれぞれについて、上述のように第1の分布と第2の分布とに基づいて決定された、車両1が配置されるべき位置を示す。これらの点501の中に、例えば
図4のようにして決定された地点Cが含まれる。なお、
図5の点501は、時系列で、より先の将来の位置ほど、上方にプロットされているものとする。ECU20は、これらの点501を特定することにより、それらの点501を接続する線502として、車両1が走行すべき軌道を決定する。
【0038】
上述の処理について、処理の流れの概要をまとめる。
図6は、上述の処理の流れの例を示すフローチャートである。本処理が開始されると、まず、ECU20が、ECU22及び23から周囲状況に関する情報を取得する(S601)。ECU20は、この時点において、例えば、車両1とその周囲の状況を上から見たような画像であって、車両1の周囲の物体がマッピングされたような画像を取得する。そして、ECU20は、取得した情報に基づいて、周囲の物体が将来の時点において存在する確率に対応する第1の分布を、複数の地点について(例えば上述の各画像における画素ごとに)取得する(S602)。また、ECU20は、例えば取得した情報を、所定のドライバーによる走行データとそのデータが取得された時点の車両の周囲の状況とに基づいて機械学習によって得られた関数に入力することにより、第2の分布を取得する(S603)。第2の分布は、所定のドライバーであれば、S601で取得された情報が示す周囲状況に際した場合に車両を移動させる確率が高い位置ほど高い値を取るような分布でありうる。ただし、機械学習の結果は、関数に対して周囲の状況を示す情報を入力することによって得られる値であって、必ずしも確率値として算出されるわけではないことに留意されたい。なお、S602とS603とは、並行して行われてもよいし、行われる順序は逆であってもよい。その後、ECU20は、複数の時点のそれぞれに関して取得された第1の分布及び第2の分布に基づいて、その複数の時点のそれぞれにおいて車両1が移動すべき位置を選択する(S604)。そして、ECU20は、複数の時点のそれぞれにおいて選択した車両1が移動すべき位置を、時系列で接続することにより、車両1が進むべき軌道を決定する(S605)。ECU20は、これらの一連の処理を繰り返し実行し、逐次的に軌道を更新しながら車両1を走行させる。
【0039】
これによれば、物体が存在することが想定される位置のみならず、所定のドライバーによる走行データの蓄積を考慮して軌道が決定されるため、一定期間後までの軌道を決定することができる確率が高まる。また、これによれば、市街地など、移動物体が多い環境においても、自動運転を継続できなくなる確率を低減することができる。さらに、所定のドライバーが実際にとった行動に基づいて軌道が決定されるため、車両1が、周囲の環境に照らして、所定のドライバーであれば取ったであろう行動又はそれに近い行動をとるようになる。この結果、歩行者や他車両等の交通参加者の動きに応じた自然な走行が行われることとなる。
【0040】
なお、ECU20は、例えば0.1秒ごと等の短い周期で、ECU22及び23から車両1の周囲状況に関する情報を繰り返し取得して、その取得した情報に基づいて、上述の軌道の決定を繰り返し実行することができる。これによれば、状況の変化に応じて軌道の調整を行うことが可能となる。
【0041】
また、ECU20は、第2の分布に関する値の算出を、車両1が通行可能な範囲である路面に限定してもよい。すなわち、
図3の格子の全交点について第2の分布を算出してもよいが、線202及び203の間の領域に含まれる交点についてのみ、第2の分布に関する値が算出されてもよい。なお、ECU20は、第2の分布に関する値の算出を、目標走行経路上のみに対して行いうる。例えば、交差点において、目標走行経路が直進である場合、右左折する場合にのみ車両1が通過する領域については、第2の分布に関する値を算出しなくてもよい。また、ECU20は、車両1のその時点での速度や進行方向に基づいて、第2の分布に関する値の算出を行う範囲をさらに限定してもよい。例えば、車両1の真横の領域や、速度と経過時間との関係で、進行方向であっても到達しえないほど遠い領域などについては、第2の分布に関する値が算出されなくてもよい。これらの値が算出されても、そこに軌道が設定される確率はゼロ又は著しく低いからである。これらによれば、第2の分布に関する計算の回数を大幅に抑制することができるため、処理の複雑性を低減することができる。
【0042】
なお、静止物体の第1の分布は、例えば実際に物体がある位置を非車道側から見て超えた際に急峻にゼロになるのではなく、車道側の一定の範囲内で徐々にゼロに向けて減衰するような裾が存在する分布であってもよい。また、静止物体の第1の分布は、非車道側から見て実際に物体がある位置から車道側に一定距離だけ奥の範囲まで高い値を有し、その後急峻にゼロとなる矩形状の分布であってもよい。このように、実際に静止物体が存在する位置を超えた範囲において非ゼロの値を有するように第1の分布を設計することにより、車両1が静止物体に近づきすぎることを防ぐことができる。
【0043】
第2の分布は、例えば、車両1が直線路に存在する場合と、交差点に進入する場合、合流や分岐に差し掛かる場合など、状況に応じたモデルを用いて特定されうる。すなわち、所定のドライバーは、車両を走行させる際に適切な注意を払うが、一般に、シーンごとに注意を払うべきポイントが異なる。このため、シーンごとにモデルを変更することにより、車両1を適切に走行させることを可能とする第2の分布が特定されうる。なお、例えば交差点モデルについても、交差点直進モデル、交差点右折モデル、交差点左折モデル等、複数のモデルが形成されうる。例えば、機械学習を用いて第2の分布を特定する場合、様々な状況での所定のドライバーによる走行データとその走行時の周囲の状況のデータに基づいて学習が行われるが、この学習を、モデルごとに行うようにする。ECU20は、例えば、車両1の現在位置と、ECU24によって探索された案内ルートとから、その時点で車両1が従うべきモデルを特定する。そして、ECU20は、そのモデルに対応して機械学習で得られた関数に、ECU22及び23から取得された車両1の周囲状況に関する情報を入力して、そのモデルに対応した第2の分布を決定しうる。
【0044】
さらに、第2の分布は、例えば、そのピークの大きさが、第1の分布のピークの値を超えないように重み付けされうる。すなわち、周囲の物体に関する第1の分布が、所定のドライバーの走行データに基づく第2の分布よりも重視されるように、第2の分布が調整されうる。例えば、第1の分布で取りうる値の最大値を基準に、第2の分布の最大値が第1の分布の最大値を超えないように、第2の分布の値が正規化されうる。例えば、第1の分布で取りうる値の最大値が1である場合、第2の分布で取りうる値の最大値が0.5などとなるように、第2の分布の各値がスケーリングされうる。これによれば、車両1の周囲の物体への干渉を避けることを優先し、所定のドライバーによる走行データによって、周囲の物体が存在する確率が高い領域に車両1を存在させることがないようにすることができる。
【0045】
また、第2の分布は所定のドライバーの走行データに基づいて特定されると説明したが、ここでの「所定のドライバー」は、複数のカテゴリに分けられてもよい。例えば、目的地への到達が早い傾向にある、燃費の良い走行をする傾向にある、スポーツドライビングを得意とする、市街地での運転を得意とする、などの所定のドライバーのカテゴリが設けられうる。そして、カテゴリごとに、異なる第2の分布が特定可能なように構成されてもよい。これは、例えば所定のドライバーごとに収集した走行データを分類して、例えばそれに基づいて機械学習を行って複数の関数を用意しておくことにより、実現されうる。そして、例えば車両1の乗員が、どのような運転を望むかを車両1の入出力装置9を介して入力し、ECU20は、その入力に応じて、所定のドライバーのカテゴリを選択し、その選択結果に対応する第2の分布を決定しうる。これにより、車両1の乗員の嗜好を考慮した自動運転を実現することができる。
【0046】
なお、上述の説明では、「第1の分布」及び「第2の分布」という用語を用いているが、実体的には、各地点において特定される「第1の値」及び「第2の値」が、走行軌道を決定する際に用いられるため、「分布」は必ずしも特定されなくてもよい。
【0047】
<実施形態のまとめ>
1.上記実施形態の車両制御装置は、
車両の自動運転の制御を行う車両制御装置であって、
前記車両の周囲の状況に関する情報を取得し、
複数の位置についての、将来の時点で前記周囲に存在する物体が存在する確率に関する第1の値と、所定のドライバーの走行データに基づく第2の値とを、前記情報に基づいて取得し、
前記第1の値と前記第2の値との組み合わせに基づいて、複数の将来の時点における前記車両を存在させる位置を前記複数の位置から選択して、前記車両を移動させる軌道を決定する、
ように構成されることを特徴とする。
【0048】
この実施形態によれば、周囲の物体の存在しうる範囲に関する情報のみならず、所定のドライバーの走行データ(走行履歴)に基づいて、車両の進行方向を制御することにより、より人間が運転するのに近い感覚で車両を走行させることが可能となる。また、周囲に物体が多数存在する場合であっても、所定のドライバーの走行データに基づいて、適切な軌道を設定することが可能となる。
【0049】
2.上記実施形態の車両制御装置は、
前記周囲に存在する物体ごとに前記複数の位置についての前記第1の値を取得し、
当該第1の値を位置ごとに合算した値と、前記第2の値との組み合わせに基づいて、前記軌道を決定する、
ことを特徴とする。
【0050】
この実施形態によれば、周囲に存在する1つ以上の物体のそれぞれについて別個に第1の値を取得することにより、状況全体としての第1の値を適切に評価することができる。そして、車両がこれらの物体のいずれかと干渉する確率を低減することができる。
【0051】
3.上記実施形態の車両制御装置は、
前記周囲に存在する物体が移動物体であるか静止物体であるかに応じて、前記第1の値の分布の裾の形状が異なる、
ことを特徴とする。
【0052】
この実施形態によれば、周囲に存在する物体のそれぞれについて、その特性に応じて適切な第1の値を取得することができる。
【0053】
4.上記実施形態の車両制御装置は、
所定のドライバーが車両を走行させた際の当該車両の走行軌道のデータと、その際に検知された当該車両の周囲の状況のデータとの組み合わせを教師データとして機械学習をして得られた関数に、前記情報を入力することによって、前記第2の値を取得する、
ことを特徴とする。
【0054】
この実施形態によれば、所定のドライバーが実際に際したことのない状況においても、過去の走行データによる様々な状況での機械学習の結果を用いて、第2の値を取得することができるようになる。
【0055】
5.上記実施形態の車両制御装置は、
前記車両が通行可能でない範囲については前記第2の値を取得しない、
ことを特徴とする。
【0056】
この実施形態によれば、車両が通行することのない領域について、第2の値を不必要に取得することがなくなり、このような不必要な値の取得の処理が行われないことにより、車両制御装置の処理負荷を低減することができる。
【0057】
6.上記実施形態の車両制御装置は、
前記車両が目的地へ向かうための目標走行経路から外れる領域については前記第2の値を取得しない、
ことを特徴とする。
【0058】
この実施形態によれば、車両が進行すべきでない方向へ向かう領域について、第2の値を不必要に取得することがなくなり、このような不必要な値の取得の処理が行われないことにより、車両制御装置の処理負荷を低減することができる。
【0059】
7.上記実施形態の車両制御装置は、
前記車両の速度と進行方向との少なくともいずれかに基づいて、当該車両が到達することができない領域については前記第2の値を取得しない、
ことを特徴とする。
【0060】
この実施形態によれば、車両が物理的に到達することができない領域についてまで、第2の値を不必要に取得することがなくなり、このような不必要な値の取得の処理が行われないことにより、車両制御装置の処理負荷を低減することができる。
【0061】
8.上記実施形態の車両制御装置は、
前記車両が走行しているシーンに基づいて、異なるモデルを用いて前記第2の値を取得する、
ことを特徴とする。
【0062】
この実施形態によれば、直線路や交差点等、同様の状況であっても異なる判断を下す可能性があるシーンごとに、適切な自動運転を行うことが可能となる。
【0063】
9.上記実施形態の車両制御装置は、
前記第1の値は、前記周囲に存在する物体が存在する確率が高いほど高い値をとり、
前記第2の値は、所定のドライバーが前記状況に際したとした場合に、前記複数の位置のそれぞれに車両を移動させる確率が高いほど高い値を取り、
前記車両制御装置は、前記第1の値から前記第2の値を減じた値の大きさが最小または所定の閾値以下となる位置を前記複数の位置から選択して、前記軌道を決定する、
ことを特徴とする。
【0064】
この実施形態によれば、周囲の物体が存在せず、所定のドライバーが車両を移動させる確率が高い位置へと、車両を移動させるための軌道を決定することができる。
【0065】
10.上記実施形態の車両制御装置は、
前記第2の値は、当該第2の値の最大値が前記第1の値の最大値を超えないように正規化される、
ことを特徴とする。
【0066】
この実施形態によれば、周囲の物体が存在する確率が高くなる位置において、所定のドライバーがその位置に車両を移動させる確率が高いとしても、その位置へと車両を移動させる軌跡が選択されないようにすることができる。これにより、物体と車両が干渉する確率を低減することができる。
【0067】
11.上記実施形態の車両制御装置は、
前記車両が周囲の状況を検知できる範囲と前記車両の制動に必要な時間との少なくともいずれかに基づいて定まる期間について、前記軌道を決定する、
ことを特徴とする。
【0068】
この実施形態によれば、車両が周囲の状況を検知できない範囲を超えて軌道を決定することにより制御が不安定になることを防ぎ、又は、車両を停止させることができる範囲で軌道を決定することにより自動運転の安定した運用を可能とすることができる。
【0069】
12.上記実施形態の車両は、
上述の車両制御装置を有することを特徴とする。
【0070】
これによれば、車両内部で上述の処理を迅速に実行することにより、リアルタイムに適正な制御を実行することが可能となる。
【0071】
13.上記実施形態の方法は、
車両の自動運転の制御を行うために車両制御装置によって実行される方法であって、
前記車両の周囲の状況に関する情報を取得することと、
複数の位置についての、将来の時点で前記周囲に存在する物体が存在する確率に関する第1の値と、所定のドライバーの走行データに基づく第2の値とを、前記情報に基づいて取得することと、
前記第1の値と前記第2の値との組み合わせに基づいて、複数の将来の時点における前記車両を存在させる位置を前記複数の位置から選択して、前記車両を移動させる軌道を決定することと、
を含むことを特徴とする。
【0072】
この実施形態によれば、周囲の物体の存在しうる範囲に関する情報のみならず、所定のドライバーの走行データ(走行履歴)に基づいて、車両の進行方向を制御することにより、より人間が運転するのに近い感覚で車両を走行させることが可能となる。また、周囲に物体が多数存在する場合であっても、所定のドライバーの走行データに基づいて、適切な軌道を設定することが可能となる。
【0073】
本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。