【実施例】
【0089】
<比較例1〜11>
忌避剤の有効成分としてのN,N−ジエチル−3−メチルベンズアミド(DEET)、界面活性剤、水を混合し、比較例1〜11に係る組成物を調製した。界面活性剤はアニオン界面活性剤であるラウリル硫酸ナトリウム(Sodium Dodecylsulfate:SDS、和光純薬工業社製)、カチオン界面活性剤であるセチルトリメチルアンモニウムクロリド(Cetyltrimethylammonium chloride:CTAC、Aldrivh Chem.Comp製)、又は非イオン界面活性剤であるドデカオキシエチレンラウリルエーテル(Dodecaoxyethylenelaurylether C
12H
25(EO)
12、EMALEX #712(MW;710)、日本エマルション株式会社製)を用いた。調製したそれぞれの組成物について、乳化状態の観察を行った。表1〜3に、各成分の処方及び観察結果を示す。表1は、アニオン界面活性剤のラウリル硫酸ナトリウム(SDS)、表2は、カチオン界面活性剤のセチルトリメチルアンモニウムクロリド(CTAC)、表3は、非イオン界面活性剤のポリオキシエチレンラウリルエーテル(C
12(EO)
12)を用いた際の処方及び観察結果を示す。なお、SDSのCMC(臨界ミセル濃度)は、8.2×10
−3mol/L=0.236wt%であり、CTACのCMCは1.2×10
−3mol/L=0.0458wt%であり、ポリオキシエチレンラウリルエーテルのCMCは3.2×10
−4mol/L=0.0227wt%である。
【0090】
【表1】
【0091】
【表2】
【0092】
【表3】
【0093】
表1〜3に示すとおり、アニオン界面活性剤(比較例1〜3)、カチオン界面活性剤(比較例4〜7)、非イオン界面活性剤(比較例8〜11)の3種類について乳化を行ったところ、いずれの系においても乳化現象は認められなかった。
【0094】
<実施例1〜6>
三相乳化粒子の分散液として、0.1質量%ヒドロキシプロピルメチルセルロースステアロキシエーテルの粒子の分散液、5質量%ジステアリン酸ポリグリセリルの閉鎖小胞体の分散液、2.0%ポリオキシエチレン硬化ひまし油の誘導体(HCO−40)の閉鎖小胞体の分散液、0.1質量%ヒドロキシエチルセルロースの粒子の分散液をそれぞれ調製した。これら分散液に対して、DEET、水を加えて攪拌し、O/W型エマルションの実施例1〜6に係る乳化組成物を作製した。実施例1については、0.1質量%ヒドロキシプロピルメチルセルロースステアロキシエーテルの粒子の分散液を用いて作成したが各成分の配合量を変更したものを3つ(実施例1−a、実施例1−b、実施例1−c)作製した。実施例5においては、2.0%ポリオキシエチレン硬化ひまし油の誘導体(HCO−40)の閉鎖小胞体の分散液と、0.1質量%ヒドロキシプロピルメチルセルロースステアロキシエーテルの粒子の分散液とを併用した。実施例6においては、2.0%ポリオキシエチレン硬化ひまし油の誘導体(HCO−40)の閉鎖小胞体の分散液と、0.1質量%ヒドロキシエチルセルロースの粒子の分散液とを併用した。また、対象例1として、エタノールにDEETを溶解し、水と混合したものを対照例1に係る乳化組成物として作製した。これらの処方と、乳化結果及び乳化安定性を表4に示す。表4中、「乳化結果」の項目のうち、油水分離したものを「×」で示し、油水分離せずに安定に乳化できたものを「○」で示す。表4中、「乳化安定性」の項目のうち、乳化状態の保持時間が長かったものを「○」で示し、乳化状態の保持時間が特に長かったものを「◎」で示す。
【0095】
【表4】
【0096】
表4に示すとおり、実施例1〜6において、油水分離せずに乳化できたことが示された。また、閉鎖小胞体を使用した実施例2〜6では、乳化状態の安定性が著しく高かった。これは、閉鎖小胞体の方が重縮合ポリマー粒子よりナノ粒子の密度が小さくて、乳化するのに必要な油との界面張力が重縮合ポリマー粒子より小さくなり、結果的に乳化能が高いことに起因したものと推測される。
【0097】
以上で示す結果より、三相乳化法によると、DEETを安定に乳化でき、界面活性剤によると、十分に乳化できず油水分離してしまうことがわかった。特に、閉鎖小胞体の方が、重縮合ポリマー粒子より、DEETのような油に対する乳化能が高いことがわかった。
【0098】
<実施例7〜9>
三相乳化粒子の分散液として、2質量%DEAE(ヒドロキシエチル−ジアルカノイルメチル−アンモニウム メチルサルフェート)の閉鎖小胞体の分散液、2.0質量%ポリオキシエチレン硬化ひまし油の誘導体(HCO−40)の閉鎖小胞体の分散液、0.1質量%ヒドロキシエチルセルロースの重縮合ポリマー粒子の分散液をそれぞれ調製した。これら分散液に対して、DEET、水を加えて攪拌し、O/W型エマルションの実施例7〜9に係る乳化組成物を調製した。また、三相乳化粒子を含まない水を用いて、対照例2に係る乳化組成物を調製した。この際、油の量を、組成物全体の質量に対して50質量%とした。実施例7〜9に係る乳化組成物について、乳化状態を観察した。また、各組成物のDEETと
三相乳化粒子液との界面張力、
三相乳化粒子液の表面張力も測定した。表5に、各三相乳化粒子の量、界面張力、表面張力及び乳化性の評価を示す。
【0099】
【表5】
【0100】
DEETの含有量を50質量%と多くしても、表
5に示すように三相乳化によると安定な乳化が可能であることがわかった。
【0101】
<乳化現象の解析>
上記のように、DEETをラウリル硫酸ナトリウム、セチルトリメチルアンモニウムクロリド及びドデカオキシエチレンラウリルエーテルにより乳化できないことについて、解析を行った。まず、Gibbs式を用いて、界面活性剤の油水界面における濃度は、下記の(3)の式により表すことができる。
【0102】
【数13】
【0103】
ここで、上記式(3)における界面活性剤の含まない場合の水と、界面活性剤を臨界ミセル濃度で含む場合の水との油水界面張力の変化は、下記式(4)のように表すことができる。
【0104】
【数14】
【0105】
上記式(4)について、γ
0を「1」としたときの、界面活性剤の濃度と油水界面張力の関係を
図1に示す。
図1中、★1が、界面活性剤の濃度が0(含まない)ときの油水界面張力(γ
0)を示し、★2が、界面活性剤を臨界ミセル濃度以上で水相に含むときの油水界面張力を示す。
図1に示すように、界面活性剤を水が臨界ミセル濃度より多く含んでも、油水界面張力はほぼ一定であることがわかる。
【0106】
ここで、界面活性剤を臨界ミセル濃度以上で水相に含むときの界面活性剤の油水界面における吸着量をΓ
cmcとして、上記式(4)のφ
cmcを上記(3)の式に代入すると、上記式(3)は下記の式(5)のように表すことができる。
【0107】
【数15】
【0108】
上記の式(5)φ
cmcにC
cmcをかけると、上記式(4)から、以下の式(6)ように示される。
【0109】
【数16】
【0110】
ここで、nは、界面活性剤の化学種の数(ラウリル硫酸ナトリウム n=2、セチルトリメチルアンモニウムクロリド n=2、ドデカオキシエチレンラウリルエーテル n=1)により数値が定まっており、温度を25℃とすると、Rの気体常数も、8.314(J・k
−1・mol
−1)と定まった値である。また、Tの値も、温度を25℃とすると、273.14+25=298.14(K)、と決まった値となる。
【0111】
したがって、界面活性剤の種類が定まれば、式(6)における変数は、γ
0とγ
cmcのみであることがわかる。よって、Γ
cmcの値は、γ
0とγ
cmcのみに影響を受けることがわかる。
【0112】
ここで、界面活性剤により乳化可能な油は、Γ
cmcが所定値以上必要であると仮定すると、γ
0とγ
cmcとの差が所定値以上必要であると仮定される。そこで、後述する表6において、種々の油について、γ
0と、界面活性剤としてラウリル硫酸ナトリウム(SDS)、セチルトリメチルアンモニウムクロリド(CTAC)、又はドデカオキシエチレンラウリルエーテル(C
12EO
12)を用いたときのγ
cmcを測定し、γ
0とγ
cmcとの差(表6中の△γ)を、界面活性剤による乳化が可能であるための条件の1つと仮定して算出した。また、同時に、三相乳化粒子としてヒドロキシプロピルメチルセルロースステアロキシエーテルを用いて、これらの油について乳化可能か否かを調べた。その結果を、以下の表6に示す。表中、「×」が乳化できなかったことを示し、「〇」が乳化できたことを示す。また、γ/mNm
−1は水と各油との界面張力又は界面活性剤(C
12EO
12、SDS又はCTAC)を臨界ミセル濃度以上で含む水と各油との界面張力(γ
cmc)を示す。なお、乳化の可否の判定は、以下のとおりの方法で行った。
【0113】
[乳化の可否の判定]
(界面活性剤種)
・ドデシル硫酸ナトリウム(SDS)、アニオン性界面活性剤
・ドデ
カオキシエチレンラウリルエーテル(C
12EO
12)、非イオン界面活性剤
・ヘキサデシルトリメチルアンモニウムクロライド(CTAC)、カチオン性界面活性剤
【0114】
(乳化判断対象の組成物の調製条件と判定条件)
・調製時の温度:25.0℃
・各界面活性剤水溶液濃度:3.0wt%
・乳化判断対象の組成物の組成:油50.0wt%、上記各界面活性剤水溶液50.0wt%(ただし、表6に示す油のうち、ハロキシホップメチル(※除草剤)、アレスリン、50%フルアジナム/酢酸エチル(※殺菌剤)、及びIcaridin(※忌避剤)は、、乳化判断対象の組成物の組成が、油:濃度30.0wt%、各界面活性剤の水溶液:70.0wt%となるように調製)
・乳化判断対象の組成物の調製時の攪拌条件:6000rpm,5分間(撹拝機 型番IKA T25(IKA社製))
・乳化の可否判定(目視)2人以上の合意により行い、調製後、25℃で、3日〜5日間静置後油相分離又は油滴浮上の有無の確認
【0115】
[界面張力の測定]
界面張力の測定は協和界面株式会社製の測定機DropMaster 700を用いて懸適法で25℃で測定した。測定時には、CCDカメラで懸滴の外形を映像化し、その形から所定式にしたがって、界面張力を自動的に換算して数値化した。
【0116】
【表6】
【0117】
表6に示すように、界面活性剤により乳化できなかった油は、少なくともγ
0とγ
cmcとの差(Δγ)が18mN・m
−1より小さいものが多かった。ただし、トリオレインについてみると、γ
0とγ
cmcとの差(Δγ)が18mN・m
−1より小さいにもかかわらず、界面活性剤により乳化ができていた。トリオレインと他の油の違いについてみると、トリオレインは、γ
cmc(界面活性剤(C
12EO
12、SDS又はCTAC)を臨界ミセル濃度以上で含む水と各油との界面張力)が、0.5N・m
−1より小さいのに対し、それ以外の油については、γ
cmc(界面活性剤(C
12EO
12、SDS又はCTAC)を臨界ミセル濃度以上で含む水と各油との界面張力)が、0.5以上であった。
【0118】
ここで、乳化現象には、自己乳化現象と自然乳化現象とが知られているところ、自己乳化現象は、油剤が存在しないで、水に界面活性剤や両親媒性物質を入れたとき、自然に分散して、乳白濁化する現象である。一方、自然乳化現象は、一般に「自然乳化、Self emulsification」と呼ばれる現象であり、油水界面張力が0.1mNm
−1以下になると、外部から機械的な攪拌等の過剰エネルギーを加えなくても、自然の熱エネルギーだけで、熱力学的に油剤が界面活性剤水溶液中に拡散的に分散する。言い換えると、系のエントロピーによる安定化が起こる。この考え方に基づくと、上記のように、界面活性剤による乳化は、γ
0とγ
cmcとの差(Δγ)が18mN・m
−1より小さくても、γ
cmc(界面活性剤(C
12EO
12、SDS又はCTAC)を臨界ミセル濃度以上で含む水と各油との界面張力)が、0.5未満である油、つまり、界面活性剤を臨界ミセル濃度以上で水に含んだときの水と油の界面張力がそもそも小さい油であれば、界面活性剤による乳化が可能であると考えられる。
【0119】
以上の結果から、γ
0とγ
cmcとの差(Δγ)が18mN・m
−1以
下であり、かつ、γ
cmcが0.5mN・m
−1以上である油、すなわち、以下の式(1)及び(2)で示される条件を満たす油は、界面活性剤により乳化できないことがわかった。
【0120】
【数17】
【数18】
【0121】
これに対し、表6に示す油について、上述の実施例1と同一の三相乳化粒子溶液(つまり、0.1%ヒドロキシプロピルメチルセルロースステアロキシエーテル)を界面活性剤溶液に代わりに用いて、上記の乳化の可否の判定と同様に乳化可能か否かを確認したところ、乳化できることがわかった。
【0122】
このことから、三相乳化粒子によると、上記の式(1)及び(2)の条件を満たす油を乳化できるため、このような油について、有機溶媒を利用せずとも様々な製品に適用できることがわかった。
【0123】
<実施例10、比較例12>
実施例6に係る乳化組成物を原液として、これを耐圧ガラス瓶に収容し、次いで、原液に対して、窒素ガスを0.8MPaとなるように充填し、エアゾール化し、実施例1
0に係る忌避剤を作製した。原液として、DEET10g、エタノール40g、水50gの合計100gの組成物を用いた点以外は実施例10と同様の手順で、比較例12に係る忌避剤を作製した。
【0124】
実施例10、比較例12に係る忌避剤を用いて、固体表面に対する付着性の評価を行った。
【0125】
測定は、以下の方法で行った。
【0126】
(測定版の準備)
まず、ろ紙(QUALITATIVE ITEM1 600mm×600mm)を1/4に切り、300mm×300mmのサイズにした。次いで、垂直に立たせたアルミ板に、上記ろ紙をクリップで固定した。固定後、アルミ板を天秤の上に置き、0点補正を行った。
【0127】
(付着率の測定)
まず、各々の忌避剤を25℃の恒温水槽に30分以上浸漬し、浸透後、忌避剤を恒温水槽から取り出し、水分をよく拭き取り、忌避剤の容器にアクチュエーターを取り付けて秤量し、この値を「W1」とした。その後、気流の影響を受けない環境で、各々の忌避剤を測定版から20cmの距離に固定し、5秒間噴射した後、ろ紙に付着した内容物を秤量した。この際の天秤の値が内容物の付着量であり、この値を「W2」とした。また、噴射後の忌避剤の重量を容器にアクチュエーターを取り付けた状態で測定し、この値を「W3」とした。これらW1〜W3の値を用いて、付着率を以下の計算式を用いて算出した。
付着率(%)=W2/(W1−W3)×100
【0128】
付着率の測定結果及び忌避剤の内圧を、表7に示す。また、噴霧した粒子の粒径を表8に示す。
【0129】
【表7】
【0130】
【表8】
【0131】
上記の結果から、付着率は、アルコールを用いた比較例12よりも、三相乳化法による実施例10の方が付着率は高かった。粒子径や内圧により、付着率が変動しうることを効力すると、上記の結果は、粒子径及び内圧がいずれもほとんど同じであるにもかかわらず、実施例10の方が付着率は高いことがわかった。これらのことから、アルコールを用いた比較例12より、三相乳化法を用いた実施例10の方が、付着性が高いことが実証された。
【0132】
<実施例11、比較例13>
忌避剤の有効成分として、三相乳化粒子として0.57質量%のヒドロキシプロピルメチルセルロースステアロキシエーテル、DEET10質量%、水89.43質量%の実施例11に係る乳化組成物を作製した。また、比較例13として、模擬的調整したエタノール忌避剤(DEET:10質量%、その他の成分としてエタノール、BG(1,3−ブチレングリコール)、無水ケイ酸、グリセリン脂肪酸エステル含有)を準備した。これらを用いて、耐水性試験1(ヒト上腕内側を対象としたカップシェイク法による試験)を行った。
【0133】
(耐水試験方法1)
まず、サンプル塗布ヒト上腕内側に、実施例11又は比較例13の組成物を20μLを塗布し自然乾燥させた。次いで、直径17.5mmの容器に精製水2mLを入れ、サンプルを塗布した箇所に容器開口部を接触させ密閉した。密閉状態を維持しつつ容器内の精製水を上下に移動させ、これを5往復行った(カップシェイク法)。この試験を、合計4回実施した。カップシェイク法実施後の回収精製水中のDEET濃度をGC(ガスクロマトグラフィー)で定量した。また、サンプル未塗布箇所においても、同様の試験を実施し、これをコントロールとした。その結果を表9に示す。
【0134】
【表9】
【0135】
表9に示すように、比較例13は、カップシェイク(水)により55%溶出したのに対し、実施例11は、カップシェイク(水)による溶出はなかったことがわかった。
【0136】
(耐水試験方法2)
次いで、皮膚透過性因子を考慮しないで試験するために、上記の実施例11、比較例13を用いて、人工皮膚モデルによる耐水試験方法を行った。
【0137】
まず、人工皮膚モデル(BIO SKIN PLATE30代モデル(株式会社ビューラックス製))を一定面積となるように切り出し、切り出した人工皮膚モデル表面に実施例11又は比較例13を20μLずつ滴下し、自然乾燥させた。なお、実施例11、比較例13について、それぞれn=3で実施した。その後、純水1mL×2回で洗浄し洗浄液は全量回収させ、人工皮膚モデルを自然乾燥させた。乾燥後、人工皮膚モデルに付着したDEETをメタノール1mL×2回滴下し全量回収した。DEET溶出液と洗浄液のDEET濃度をGCで定量し、人工皮膚モデルDEET付着量と洗浄によって流されたDEET量を算出した。なお、実施例11、比較例13について、それぞれn=3で実施した。
【0138】
その結果、比較例13においては、洗浄時にDEETが溶出していたことがわかった。これに対し、実施例11においては、洗浄液中にDEETがなく、人工皮膚モデルにDEETが残存していることがわかった。
【0139】
以上の結果から、三相乳化にる乳化組成物は、皮膚に塗布後の耐水性が向上することがわかった。
【0140】
(三次元皮膚モデルを使用した細胞生存率比較試験)
実施例11、比較例13を用いて、細胞生存率比較試験を行った。また、実施例11と比較例13について、それぞれDEET未配合のものを準備した。
【0141】
まず、三次元皮膚モデルにそれぞれのサンプルを25μL/well塗布した。次いで、サンプル塗布1時間後(後培養なし)の細胞生存率を測定した。その結果を、
図2に示す。
【0142】
図2に示すように、DEET未配合のもの同士の比較では、比較例13のDEET未配合品より実施例11のDEET未配合品の方が有意に細胞生存率が高かった。具体的には、25%細胞生存率が高かった。他方、DEETを配合すると比較例13、実施例11そもに細胞生存率は約50%低下したものの、細胞生存率は、実施例11の方が高かった。この結果より、DEETを配合しても三相乳化したものの方が有意に細胞生存率が高かったことがわかった。
【0143】
(ヒトを対象とした皮膚水分量と経皮水分蒸散量)
実施例11、比較例13を用いて、皮膚水分量と経皮水分蒸散量を測定した。試験部位はヒト上腕内側とした。まず、ヒト上腕内側の特定箇所の皮膚水分量と経皮水分蒸散量を測定し、当該特定箇所にサンプル20μLを塗布し自然乾燥させた。その後、サンプルを塗布した箇所の皮膚水分量と経皮水分蒸散量を測定した。その結果を、
図3、
図4に示す。
【0144】
図3に示すように、サンプル塗布前後の水分量は、比較例13においては、2時間後に塗布前より水分減少した。これは、アルコールによる肌荒れが原因と考えられる。これに対し、実施例11においては、2時間後も塗布前と同じ水分量であった。また、
図4に示すように、サンプル塗布前後の経皮水分蒸散量は、比較例13においては、肌からの水分蒸散量が増加した。これは、アルコールによる肌ダメージが原因と考えられる。これに対し、実施例11においては、肌からの水分蒸散量が減少した。これは、三相乳化により水分蒸散量を抑制されたからと考えられる。
【0145】
<忌避効果の評価>
上述の実施例10と比較例12に係る忌避剤を用いて、忌避効果の評価を行った。
【0146】
[試験対象虫及び試験場]
試験対象虫及び試験場は以下のとおりとした。
試験場所:一般財団法人 日本環境衛生センター 4F 生物試験室C
試験対象虫(供試虫):ヒトスジシマカ Aedes albopictus(医科研コロニー、羽化6〜13日齢 雌成虫 1群 10匹、上記のセンターで累代飼育中の集団)
【0147】
[忌避効力試験(人腕を用いた吸血阻止効力試験]
評価の手順は、以下の手順及び条件で行った。
【0148】
まず、吸血体勢を示す供試虫を吸虫管を用いて選別捕集し、両端にガーゼ蓋をした直径4cm、長さ12.5cmのガラスリング内に10匹ずつ放した。次いで、被験者の前腕部(肘〜手首の間)に、供試検体を2mg/cm
2の割合で指先で均一に塗り広げた。なお、被験者の処理範囲及び忌避剤の処理量は以下のとおりとした。
・被験者I(53歳女性):約364.5cm
2の範囲に、供試薬剤(実施例10又は比較例12に係る忌避剤)を0.73g処理
・被験者II(36歳男性):約494cm
2の範囲に、供試薬剤(実施例10又は比較例12に係る忌避剤)を0.99g処理
・被験者III(28歳女性):約390cm
2の範囲に、供試薬剤(実施例10又は比較例12に係る忌避剤)を0.78g処理
【0149】
忌避剤の塗布2、4、6、8時間後に、供試虫を入れた上記ガラスリングの一方のガーゼ蓋を外して、その開口部を薬剤塗布面に押し付け、10分聞の吸血個体数を数えた。忌避剤を塗布していない上腕部を無処理対照区として、上記と同様の試験を処理区試験の前後いずれかに実施した。なお、この試験は被験者1名を1反復として、合計3反復行った。また、供試虫は試験毎に別の未吸血個体を使用した。さらに、ガラス管を押しつける位置は試験毎に変更し、一度試験に使用した範囲は再使用しなかった。得られた結果から、以下の計算式で忌避指数を算出した。
忌避指数={1−(T/C)}×100
T:検体区の吸血率 C:無処理対照区の吸血率
【0150】
評価結果を、以下の表10、表11に示す。
【0151】
【表10】
【0152】
【表11】
【0153】
表10、11に示すように、実施例10及び比較例12に係る忌避剤の吸血率は、塗布8時問後まですべて0%となり、無処理対照区の吸血率から算出した忌避指数は、100となった。
【0154】
以上の結果から、実施例10は、比較例11に係る忌避剤と同様に、ヒトスジシマカに対して高い忌避(吸血阻止)効果が得られることがわかった。
【0155】
忌避剤のような用途の製品は、有効成分の油が揮発性油であり、揮発させて空気中に拡散することで、効果を発揮する。そのため、揮発性の高い有機溶媒を用いて、有機溶媒とともに空気中に拡散させることで、高い所望の効果を得ることが期待される。このことから、上述の実施例10のような忌避剤の場合、有機溶媒を用いず、溶媒として水のみを用いることと閉鎖小胞体又は重縮合ポリマー粒子がDEET表面を覆っていることでDEET自体の揮発を抑制しているため、有効成分であるDEETの空気中に拡散する能力が低くなり、本来の忌避剤としての効果が低下することが予想される。しかしながら、予想外なことに、実施例10のような忌避剤は、有機溶媒を含まないにもかかわらず、有機溶媒(アルコール)を含む比較例12に係る忌避剤と同様の忌避効果を奏することがわかった。この結果から、三相乳化粒子で有効成分を乳化して得られた乳化組成物を忌避剤として用いることで、有機溶媒であるアルコールの量を低減させつつ、所望の効果を得られることがわかった。この結果から、さらに時間を延長して試験をすることで実施例10の方が忌避効果が長時間保持されることが考えられる。
【0156】
<実施例12及び比較例14>
<芳香剤の調製及び官能性試験>
芳香剤の有効成分である香料(ラウリル硫酸ナトリウム、セチルトリメチルアンモニウムクロリド及びドデカオキシエチレンラウリルエーテルにより乳化できなかったもの)を3質量%となるように配合し、三相乳化粒子として0.1%ヒドロキシプロピルメチルセルロースステアロキシエーテルを用いてO/W型の乳化組成物を調製し、これを実施例12に係る芳香剤とした。また、実施例12と同様の芳香剤と、エタノールをそれぞれ3質量%となるように水と混合して、比較例14に係る芳香剤を調製した。
【0157】
実施例12又は比較例14に係る芳香剤をろ紙に塗布して官能試験で匂いの強さを測定した。より具体的には、8cm角のろ紙に実施例12又は比較例14に係る芳香剤0.1%ヒドロキシプロピルメチルセルロースステアロキシエーテルを0.5gを満遍なく塗布し室温で放置した。その後、女性4名、男性2名で官能試験を実施して匂いの強さをスコア化した。スコアは、以下のとおりの基準とした。
匂い無 :0
微かに匂う:1
匂う :2
強く匂う :3
【0158】
評価結果を
図5に示す。
図5に示すとおり、実施例12に係る芳香剤の方が、比較例14に係る芳香剤より、匂いの持続時間が長いことがわかった。特に、三相乳化品である実施例12に係る芳香剤は24時間後でもろ紙に香りが残っていた。このことから、芳香剤のような揮発性油を有効成分とする用途の製品において、三相乳化粒子を使用することで、有機溶媒を使用するものより期待される効果が長時間持続することがわかった。
【0159】
<芳香剤の調製及び徐放性試験>
<実施例13、比較例16、比較例17>
芳香剤の有効成分である香料(ラウリル硫酸ナトリウム、セチルトリメチルアンモニウムクロリド及びドデカオキシエチレンラウリルエーテルにより乳化できなかったもの)を0.2質量%(乳化組成物における終濃度)となるように配合し、三相乳化粒子としてポリオキシエチレン硬化ひまし油の誘導体(HCO−30、日光ケミカルズ株式会社社製)の閉鎖小胞体の分散液を用いてO/W型の乳化組成物(閉鎖小胞体の終濃度:0.04質量%)を調製し、これを実施例13に係る芳香剤とした。
【0160】
また、乳化剤として三相乳化粒子の代わりに0.02質量%(乳化組成物における終濃度)のポリオキシエチレン硬化ひまし油の誘導体(HCO−30、日光ケミカルズ株式会社社製)を閉鎖小胞体化(粒子化)することなく用いた点以外は、実施例13と同様の手順でO/W型の乳化組成物を調製し、これを比較例16に係る芳香剤とした。
【0161】
また、実施例13に係る芳香剤と同様の芳香剤を0.2質量%と、エタノールが99.8質量%となるようにそれぞれ水と混合して、比較例17に係る芳香剤を調製した。
【0162】
それぞれの芳香剤をろ紙に同量滴下し、官能試験で匂いの強さを測定した。具体的には、・8cm角のろ紙にサンプル0.5gを満遍なく塗布し室温で放置し、女性3名、男性1名で官能試験を実施して匂いの強さをスコア化した。その結果を
図6に示す。
【0163】
図6に示すように、三相乳化品である実施例13に係る芳香剤は、比較例16、比較例17より経時的に香料が残っていることから、徐放性を有することがわかった。
【0164】
<実施例14〜実施例17、比較例18〜比較例21>
芳香剤の有効成分である香料R(ラウリル硫酸ナトリウム、セチルトリメチルアンモニウムクロリド及びドデカオキシエチレンラウリルエーテルにより乳化できなかったもの)を1.0質量%となるように配合し、三相乳化粒子としててポリオキシエチレン硬化ひまし油の誘導体(HCO−40、日光ケミカルズ株式会社社製)の閉鎖小胞体の分散液を用いてO/W型の乳化組成物(閉鎖小胞体の終濃度:1.0質量%)を調製し、これを実施例14に係る芳香剤とした。また、芳香剤の有効成分G(ラウリル硫酸ナトリウム、セチルトリメチルアンモニウムクロリド及びドデカオキシエチレンラウリルエーテルにより乳化できなかったもの)が1.0質量%、エタノールが5質量%となるように水と混合して、比較例18に係る芳香剤を調製した。また、芳香剤の有効成分である香料Gが1.0質量%、エタノールが20質量%となるように水と混合して、比較例19に係る芳香剤を調製した。
【0165】
芳香剤の有効成分である香料Gを1.0質量%となるように配合し、三相乳化粒子としてポリオキシエチレン硬化ひまし油の誘導体(HCO−40、日光ケミカルズ株式会社社製)の閉鎖小胞体の分散液を用いてO/W型の乳化組成物(閉鎖小胞体の終濃度:1.0質量%)を調製し、これを実施例15に係る芳香剤とした。また、芳香剤の有効成分Rが1.0質量%、エタノールが5.0質量%となるように水と混合して、比較例20に係る芳香剤を調製した。また、芳香剤の有効成分である香料Rが1.0質量%、エタノールが20質量%となるように水と混合して、比較例21に係る芳香剤を調製した。
【0166】
実施例14と比較例18に係る芳香剤を混合し、実施例13と同様の手順で、香料Rと香料Gの匂いの強さを評価した。スコア化は、スコアが高いほど、三相乳化品の香料の香りが強いようにスコア化を行った。実施例14と比較例19、実施例15と比較例20、実施例15と比較例21についても同様に評価を行った。実施例14に係る芳香剤と比較例18に係る芳香剤を混合した結果を
図7に、実施例14に係る芳香剤と比較例19に係る芳香剤を混合した結果を
図8に、実施例15に係る芳香剤と比較例20に係る芳香剤を混合した結果を
図9に、実施例15に係る芳香剤と比較例21に係る芳香剤を混合した結果を
図10に示す。
【0167】
図7、8に示すように、香料Rについて、時間が経過したときの匂いの強さが三相乳化品の方が高くなった。また、
図9、10に示すように、香料Gについて、時間が経過したときの匂いの強さが三相乳化品の方が高くなった。このように、三相乳化物の香料とエタノールの香料を逆にしても三相乳化品の方が高い徐放性を発揮したことから、三相乳化粒子を使用することで、有機溶媒を使用するものより徐放性を発揮することがわかった。