(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0017】
以下、本発明の実施形態を具体的に説明する。
本発明が適用されるMRI装置の構成について、
図1を参照して説明する。
図1に示すように、MRI装置は、静磁場の中に置かれた被検体103に高周波磁場および傾斜磁場を印加して、被検体103から発生する核磁気共鳴信号を検出する撮像部10と、撮像部10の動作を制御する制御部11と、核磁気共鳴信号に対して演算を行い、画像を生成する画像処理部12と、操作部13とを備えている。
【0018】
撮像部10は、被検体103が配置される撮像空間に均一な静磁場を発生するマグネット101と、撮像空間に傾斜磁場を発生する傾斜磁場コイル102と、撮像空間に高周波磁場を照射するとともに核磁気共鳴信号(以下、エコーと呼ぶ)を検出するプローブ107と、傾斜磁場コイル102に電流を供給する傾斜磁場電源105と、プローブ107に高周波電圧を供給する高周波発生装置106と、プローブ107の検出したエコーを検波する受信器108と、シーケンサ104とを備えている。被検体(例えば生体)103は、寝台(テーブル)等に載置され、撮像空間に配置される。
【0019】
シーケンサ104は、制御部11によってその動作が制御され、所定の撮像方法および撮像条件による撮像を実行する。具体的には、シーケンサ104は、傾斜磁場電源105と高周波発生装置106とに、所定の撮像方法を実現するタイミングでそれぞれ命令を送り、電流・電圧信号を発生させ、傾斜磁場コイル102およびプローブ107にそれぞれ供給させる。傾斜磁場コイル102は傾斜磁場を、プローブ107は高周波磁場を、それぞれ発生し、被検体103に印加する。被検体103から発生したエコーはプローブ107によって受波され、受信器108で検波される。受信器108の検波の基準となる核磁気共鳴周波数(検波基準周波数f0)は、シーケンサ104によりセットされる。検波された信号は、計算機109に送られる。
【0020】
シーケンサ104は、予めプログラムされたタイミング、強度で各部が動作するように制御を行う。プログラムのうち、特に、高周波磁場、傾斜磁場および信号受信のタイミングや強度を記述したものはパルスシーケンスと呼ばれる。パルスシーケンスは、撮像の目的に応じて種々のものが知られている。本実施形態のMRI装置では、CSを適用した所定の観測パターンで3D撮像を行うパルスシーケンスが実行される。
【0021】
制御部11および画像処理部12は、計算機109内に配置される。計算機(CPU)109の構成例を
図2に示す。図示するように、制御部11はCS制御部111及びデータ取得順序決定部112を備え、画像処理部12はCS再構成部121及び画像再構成部122を備える。また計算機109は内部メモリとして制御や画像処理に必要なデータや計算途中のデータなどを記憶するメモリ110を備える。
【0022】
制御部11は、所定の撮像を撮像部10に実行させるもので、シーケンサ104にパルスシーケンスの種類の選択の指示や、上記タイミングや強度の設定を行う。これにより、所定の撮像方法で撮像が実行されるように制御する。撮像方法としてCS有の撮像が行われる場合には、データ取得順序決定部112が観測空間(3D−k空間)のデータ取得順序を決定し、CS制御部111が操作部13(
図4のGUI)を介して設定されたCSに関わる条件(観測パターンやサンプリング率等)及びデータ取得順序決定部112が決定したデータ取得順序に従ったスライスエンコード傾斜磁場及び位相エンコード傾斜磁場の強度(とその組み合わせ)で撮像が行われ、且つ所定の条件で復元処理の演算が行われるように撮像部10および画像処理部12を制御する。
【0023】
画像処理部12は、受信器108が受信した信号(エコー)に対し、画像再構成に必要な演算を行い、被検体103の画像やスペクトルなど作成する。CS有の撮像の場合には、CS再構成部121がCSのアルゴリズムを用いた復元計算を行い、画像再構成部122がフーリエ変換などの画像再構成演算、その他補正計算などを行う。
【0024】
これら制御部11及び画像処理部12の機能は、計算機109内のCPUが、内蔵されている不図示のメモリに格納されているプログラムを読み込んで実行することにより、それぞれ実現される。なお機能の一部は、ASICやFPGA等のハードウェアで実現することも可能である。
【0025】
計算機109には、入力装置132及び表示装置131を備えた操作部13、及び記憶媒体14が接続されており、操作者は入力装置132を介して、制御や画像処理に必要な指令やデータを計算機109に入力することができる。また画像処理により得た画像等や操作者の操作に必要なGUI(Graphical User Interface)が表示装置131に表示される。記憶媒体14は画像処理により得た画像等を記憶する。また検波された信号や計測条件を必要に応じて記憶媒体14に記憶させてもよい。
【0026】
次に、上述したMRI装置においてCSを適用した撮像処理の流れを、
図3を用いて説明する。
【0027】
まず制御部11は、操作者によるCS撮像に関する指示を受け付ける(S301)。CS撮像に関する指示は、例えば
図4(A)〜(C)に示すような、GUIを介して入力される。
図4(A)は、CSを実施するか否かを設定するGUIであり、「ON」ボタンの操作により、制御部11はCSを実施する。
図4(B)及び(C)は、CSにおけるデータ点の数(間引き率)を設定するためのGUIである。
図4(B)に示すGUIでは、倍速数の指定を受け付け、例えば1.0より大きい値が設定された場合、制御部11は設定された値に応じた倍速数となるようにデータ点の数を設定する。
図4(C)に示すGUIでは、撮像時のサンプリング率の設定を受け付け、例えば100より小さい値が設定された場合に、設定された値に応じたサンプリング率でデータ点の数を設定する。いずれのGUIを採用してもよいし、それ以外のGUIであってもよい。
【0028】
CSの実施とその条件が設定されると、制御部11は、任意の撮像条件によって観測位置を決定する(S302)。観測位置とは、3Dk空間におけるデータ点の位置であり、本実施形態では、位相エンコード傾斜磁場及びスライスエンコード傾斜磁場の間引きパターンにより決定される。即ち、ky−kz面において間引きパターンが決定される。間引きパターンは、ランダムバイナリ行列、重み付きランダム行列、放射線状、らせん状等、平行線状等のCSにおける観測パターンを用いる。
【0029】
以下の実施形態では、一例として
図5に示すような放射線状の観測パターンを用いる場合を説明する。放射線状の観測パターンは、観測空間における低周波領域を比較的密に取得しやすい観測パターンであり、CS再構成の復元精度に優れている。
【0030】
放射線状の観測パターンとする場合、例えば、k空間の原点を起点とする放射線を所定の間隔(角度θ)で1本ずつ所定の本数まで順次配置する。配置する放射線の数は、処理S301で設定したサンプリング率で決まる。配置する角度θは任意であるが、k空間における放射線の間隔をランダムとするために、例えば、放射線を原点の周りを360度(1回転)分配置した時点で、次の回転では放射線が重ならないような角度に調整する。特に角度θとして、黄金角(約137.5度)と呼ばれる角度が好適である。黄金角は、何回回転させても同じ角度は現れないため、CS再構成処理に必要とされるランダム性が生じやすい角度である。角度θの設定方法は、操作者がGUI(入力装置132)を通して入力してもよいし、あらかじめ設定された設定値を制御部11が読み込んでもよい。
【0031】
次に制御部11(データ取得順序決定部112)は、観測位置決定処理S302で決定した観測位置を基に、データ取得順序を決定する(S303)。データ取得順序は、付加パルスの効果、SAR、撮像時間等を考慮して決定される。具体的なデータ取得順序の決定方法は、後述する実施形態で詳述する。
【0032】
制御部11(CS制御部111)は、データ取得順序決定部112が決定したデータ取得順序に従い、パルスシーケンスのタイミングや強度をシーケンサ104に設定し、撮像を実施する(S304)。撮像に用いる3Dパルスシーケンスの一例を
図6に示す。このパルスシーケンスは公知のグラディエントエコー系のパルスシーケンスであり、RFパルス601印加後にスライスエンコード方向(Gs)と位相エンコード方向(Gp)の傾斜磁場602、603を印加した後、読出し方向(Gr)の傾斜磁場604を印加しながらエコー信号(Sig)605を計測する。図示するシーケンスを、Gs方向及びGp方向の傾斜磁場強度を順次変化させながら、所定数のエコーを収集する。なお
図6では、RFパルス印加後に一つのエコーを収集する場合を示しているが、2以上のエコーを収集するマルチエコーパルスシーケンスであってもよい。また
図7に示すように、励起用のRFパルス601の前にMTCパルス等の付加パルス701を印加するパルスシーケンスであってもよい。MTCパルスの場合には、付加パルス701印加後RFパルス601印加前にクラッシャー傾斜磁場702が印加される。
【0033】
このようなパルスシーケンスによる撮像の際に、撮像部10は、観測位置決定処理S302で決定した観測位置および、データ取得順序決定処理S303で決定したデータ取得順序に従い、エコーを収集する。すなわち、スライスエンコード方向(Gs)と位相エンコード方向(Gp)の傾斜磁場602、603の強度(印加量)を変化させて、k空間上の観測位置にエコー(データ)を配置する順序を制御する。収集したエコーのまとまりは、3D−k空間データとして計算機109のメモリ或いは記憶媒体14に格納される(S305)。
【0034】
画像処理部12は、まず、処理S305で収集した3D−k空間データのkx方向に対して逆フーリエ変換を実行して、x−ky−kz次元データを作成し、ついでCS再構成部121により、各xのky−kz断面に対してCS再構成処理によるデータ復元処理を実施する(S306)。CSの信号復元アルゴリズムは、計測したデータをスパース化変換したのち、L1ノルム最小化等の最適化問題を反復アルゴリズムで解くもので、いくつかの手法が知られている。本実施形態では、特に限定されず公知のものを採用することができる。
【0035】
画像処理部12(画像再構成部122)は、さらに、CS再構成処理後のx−ky−kz次元データを用いて、任意の再構成処理を実施する(S307)。例えば、プローブ107のチャンネル数に合わせたチャンネル合成(MAC)や、パラレルイメージング演算(k空間上での演算或いは、画像空間上での演算)などである。また、プローブ107の受信感度範囲を補正する感度補正処理や、傾斜磁場歪みによる画像歪みを補正する歪み補正処理などを実施してもよい。
【0036】
画像処理部12の演算により再構成された画像は、例えば、記憶媒体14に記憶され、表示装置131に表示され、或いは、MRI装置とは別の画像処理装置や表示装置等に転送される。
【0037】
本実施形態によれば、CSの観測パターンとしてky−kz面を放射状とするパターンを採用することにより、低周波領域で密、高周波領域で疎な観測データが得られ、効果的なCS復元を行うことができる。
【0038】
次に、以上説明した、CSを適用したMRI装置における処理の実施形態を基本として、撮像方法に応じたデータ取得順序の制御方法の具体的な実施形態を説明する。
【0039】
<第一実施形態>
本実施形態では、k空間の中心(原点)からの距離と、放射線の角度を基準として、データ取得順序を決定する。また本実施形態では、撮像のパルスシーケンスとして、
図7に示したような、MTCパルス等の付加パルスを含むパルスシーケンスを採用する。
【0040】
以下、データ取得順序決定部112の処理の流れを、
図8を参照して説明する。
データ取得順序決定部112は、各データ点(データ点)のk空間中心(位相ゼロエンコードかつ、スライスゼロエンコード)からの距離を算出する(S801)。具体的には、各データ点が持つ、位相ゼロエンコードに対するエンコード量Epとスライスゼロエンコードに対するエンコード量Esを、それぞれベクトルの各要素とし、以下の式(1)で距離D(Ep、Es)を算出する。
【数1】
【0041】
次いで、処理S801で算出した各データ点のk空間中心からの距離D(Ep、Es)を、昇順もしくは降順にソートする(S802)。昇順にソートした場合、k空間中心に近い箇所から撮像することとなるため、k空間における低周波領域を観測した後、高周波領域を観測することとなる。
【0042】
各データ点のk空間中心からの距離のみでは、同じ距離のデータ点が発生しうるため、データ取得順序決定部112は各データ点の角度(データ点が載っている放射線の角度)を算出する(S803)。このとき、角度を0°とする基準は任意の角度でよい。本実施形態では、位相エンコードが正極でかつ、スライスゼロエンコードとなる角度を0°とし、各データ点の角度を算出する。
【0043】
次いで、処理S802で距離をソートした結果から、同じ距離であるデータ点のグループ内において、データ点角度算出処理S803で算出した各データ点の角度について再度ソートする。このとき、ソート順は昇順もしくは降順とする。このソートの結果をデータ取得順序とする(S804)。
【0044】
以上のようなデータ点距離ソート及びデータ点角度ソートを行った場合のデータ取得順序の模式図を
図9に示す。ここでは各ソートはいずれも昇順としている。
【0045】
データ取得順序決定部112が決定したデータ取得順序に従って、エコーを収集すること、収集したエコーを用いて、x−ky−kz次元データを作成し、各xのky−kz断面に対してCS再構成処理すること、信号復元後のデータを用いて画像再構成することは、
図3に示す処理S304〜S307と同様である。なお、撮像S304において、付加パルスの効果を最大にするため、観測開始点の観測を実施する前に、観測せずに付加パルスを何度か印加する処理を追加してもよい。
【0046】
以上、説明したように、本実施形態のMRI装置は、被検体からの核磁気共鳴信号を受信し、三次元k空間データを収集する撮像部10と、撮像部10を所定のパルスシーケンスに従い制御する制御部11と、を有し、制御部11は、撮像部10が圧縮センシングに基き三次元k空間データのky−kz面について疎な観測データを取得するよう制御するCS制御部111と、ky−kz面におけるデータの取得順序を決定するデータ取得順序決定部112とを有する。そしてデータ取得順序決定部112は、ky−kz面の原点からの距離が小さいデータ点から大きいデータ点に向かって或いは距離が大きいデータ点から小さいデータ点に向かってデータを取得するように前記データの取得順序を決定し、ky−kz面の原点からの距離が同一である複数のデータ点については、ky−kz面の原点を通る所定の基準線と、原点とデータ点とを結ぶ線との角度が、漸減又は漸増する順序でデータの取得順序を決定する。
【0047】
本実施形態によれば、k空間低域を連続的に観測することにより、付加RFパルスを連続的に印加することが可能となり、付加RFパルスの効果、例えば静止スピンと移動スピンの高コントラスト化を維持できる。但し、本実施形態の実施において、付加RFパルスを用いるパルスシーケンスであることは必須ではなく、
図6に示すような付加RFパルスのない3D−パルスシーケンスであっても同様に適用でき、CSによる効果的な復元と撮像時間短縮の効果を得ることができる。
【0048】
また、
図8では、データ点距離算出S801、データ点距離ソートS802、データ点角度算出S803、及びデータ点角度ソートS804を順に行う例を示したが、これらの処理の順序を組み替えることも可能である。例えば、
図10に示すように、まずデータ点距離算出とデータ点角度算出とを行い(S1001)、その後、データ点の距離と角度のソートを行ってもよい(S1002)。
【0049】
<第二実施形態>
本実施形態でも、
図7に示すような付加パルスを用いたパルスシーケンスを用いる。また付加RFパルスは、
図11に示すように、印加量がky−kz空間において、低周波領域で多く、周辺(高周波領域)に向かうに従って少なくなるように制御される。即ち付加パルスの印加量がエコーによって異なる。
【0050】
本実施形態は、このような前提で、付加パルス印加量を基準として観測空間のデータ取得順序を決定することが特徴である。このため、本実施形態では、観測空間を付加パルス印加量によって複数のセグメントに分割し、セグメントのデータ取得順序、セグメント内のデータ点のデータ取得順序を決定する。
本実施形態の計算機109の構成例を
図12に示す。
図12中、
図2と同じ要素は同じ符号で示す。図示するように本実施形態は、制御部11に付加パルスの印加量を算出する印加量算出部113及び観測空間を印加量に応じてセグメントに分割するセグメント分割部114が追加されている。
【0051】
以下、本実施形態のデータ取得順序決定処理の流れを、
図13を参照して説明する。
図13に示すように、本実施形態のデータ取得順序決定処理は、付加パルス印加量算出処理S1301、セグメント分割処理S1302、セグメントソート処理S1303、及びセグメント内データ点ソート処理S1304を含む。以下、各処理を説明する。
【0052】
付加パルス印加量算出処理S1301では、印加量算出部113が、各データ点について、付加パルスの印加量を算出する。各エコーに対する付加パルスの印加量があらかじめ決められている場合は、再度算出する必要はなく、本処理は省略できる。
【0053】
次に、セグメント分割処理S1302では、セグメント分割部114が処理S1301で算出した付加パルスの印加量に基き、観測空間をある程度の範囲を持ったセグメントに分割する。このとき、セグメントを分割する範囲は、任意の範囲でよい。本実施形態では、
図11に示す印加量の分布において、最大印加量を100%としたとき、最小印加量が最大印加量に対して50%の場合を例として説明する。この場合、例えば90〜100%の印加量を持つデータ点を第1セグメント、80〜90%の印加量を持つデータ点を第2セグメント、というようにセグメントを分割する。このようにセグメント分割した例を
図14に示す。
図14において、○で囲った数字はセグメントの番号を示す。ここでは観測空間が印加量に応じて5つのセグメントに分割されている。
【0054】
セグメントソート処理S1303では、各データ点をセグメントによって昇順または降順でソートする。
図14で示す例では、昇順であれば、第1セグメントに属するデータ点→第2セグメントに属するデータ点→第3セグメントに属するデータ点・・以下同様、の順でデータ取得順序が決まる。同一番号のセグメントは第1セグメントを除き複数存在するが、それらのデータ取得順序は決めない。
【0055】
セグメント内データ点ソート処理S1304では、同一番号のセグメント内のデータ点のデータ取得順序を決定する。この場合のデータ取得順序の決定方法は、限定されるものではないが、例えば、第一実施形態の決定手法と同様にk空間中心からの距離と角度を用いた決定方法を採用することができる。或いは、まず複数ある同一番号のセグメントを角度でソートし、個々のセグメント内のデータ点を距離及び角度でソートしてもよい。このソートの結果をデータ取得順序として、決定する。
【0056】
以上、説明したように、本実施形態のMRI装置は、付加RFパルスを含む三次元パルスシーケンスであって前記付加RFパルスの印加量が前記ky−kz面内で変化するパルスシーケンスを実行し、その際、データ取得順序決定部は、付加RFパルスの印加量に応じて前記データの取得順序を決定する。具体的には、付加RFパルスの印加量が多いデータ点から少ないデータ点に向かってデータを取得するようにデータの取得順序を決定する。
また本実施形態のMRI装置は、付加RFパルスの印加量の大きさによって、ky−kz面内のデータ点を複数のセグメントに分割するセグメント分割部を有し、データ取得順序決定部は、複数のセグメントのデータ取得順序を付加RFパルスの印加量に基き決定する。
【0057】
本実施形態によれば、CSによるデータ点の削減による撮像時間短縮効果に加え、k空間低域を連続的に観測することにより、付加パルスを連続的に印加することが可能となり、付加パルスの効果を保った撮像を行うことができる。またセグメントに分割することにより、セグメント内でデータ取得順序決定の自由度が増す。
【0058】
<第三実施形態>
本実施形態は、第二実施形態のデータ取得順序決定手法を基本として、さらに、傾斜磁場効率を考慮して順番を決定する。
【0059】
ky−kz空間におけるデータ点の位置は、スライスエンコード方向の傾斜磁場のエンコード量(強度)と位相エンコード方向の傾斜磁場のエンコード量(強度)で決まる。従って、第一実施形態のデータ取得順序決定手法のようにk空間をセグメントに分割することなく中心からの距離でデータ取得順序を決定した場合には、時間的に隣接するデータ点間でエンコード量の変化、すなわち磁場の時間変化率は小さい。一方、第二実施形態のデータ取得順序決定手法のようにセグメントに分割した場合、
図14に示す分割例からもわかるように、後半のセグメントになるにつれ、同番号セグメントが大きく離れている。このとき、同番号セグメント内でk空間中心からの距離を基準としたデータ取得順序とした場合、あるデータ点から次のデータ点に移る際、位相エンコード傾斜磁場とスライスエンコード傾斜磁場を大きく変更する必要があり、磁場の時間変化率が大きくなってしまう。磁場の時間変化率が、MRI装置の安全制限に達した場合には、操作者が所望する撮像条件で撮像することが困難になる。そこで、本実施形態では、第二実施形態を基本として、傾斜磁場の時間変化効率を最小化するようにデータ取得順序を調整する。
【0060】
本実施形態のデータ取得順序決定処理の流れは、
図13に示す第二実施形態の処理の流れと同様であるが、セグメント内データ点ソート処理の内容が異なる。
【0061】
本実施形態では、セグメント内データ点ソート処理において、まずにセグメント分割部114で分割したセグメント内の各データ点について、位相エンコード量Epとスライスエンコード量Esを算出する。次いで同セグメント内の各データ点同士の位相エンコード量とスライスエンコード量の差分ΔEの絶対値を算出する。この値はすなわち、あるデータ点から次のデータ点に移動するまでの距離である。
【数2】
iはデータ点を識別する符号
【0062】
各データ点をノードと見立て、あるデータ点から次のデータ点に移動するまでの差分ΔEを重みと見立て、最短経路問題を解くことで、傾斜磁場の変化量を最小としたデータ取得順序を求める。最短経路問題を解くアルゴリズムとしては、ダイクストラ法やワーシャル-フロイド法等が知られているが、いずれの方法を用いてもよい。
【0063】
以上、説明したように、本実施形態のデータ取得順序決定部は、セグメントに含まれるデータ点について、データ取得時に印加する傾斜磁場の変化が最小となる順序でデータを取得するようにデータの取得順序を決定する。本実施形態によれば、第二実施形態と同様の効果に加え、傾斜磁場の時間変化率を抑制し、操作者が所望の撮像条件を設定しやすくなるという効果が得られる。
【0064】
<第四実施形態>
本実施形態は、第二実施形態のデータ取得順序決定手法を基本として、さらに、SARを考慮して順番を決定する。本実施形態でも、
図7に示すように付加パルスを用いたパルスシーケンスを用い、付加RFパルスは、
図11に示すように、付加パルスの印加量が一様ではなくエコーによって異なるものとする。
【0065】
MRI装置に規定されたSARの制限には、6分平均制限と10秒平均制限とがある。いずれも所定時間の範囲内でのSARの平均値を規定の値に制限するものである。上述した第一実施形態及び第二実施形態において、データ取得順序をk空間中心から距離の昇順とした場合或いは印加量が低減する順とした場合、RFパルス印加によるエネルギーは時間軸に沿って一定である。付加パルスの印加量のパターンを
図11にように高周波領域に向かって印加量が低減するパターンにした場合、エネルギーの上昇を抑えることができ、比較的長い6分平均制限を満たすことができる。しかし付加パルスの印加エネルギーを10秒平均で見た場合には、付加パルスの印加量の多い低周波領域を連続して観測した場合、10秒平均を満たさない場合も有りえる。
【0066】
本実施形態は、SARを考慮して順番を決定し、短期のSAR上昇を抑制する。
以下、
図15を参照して、本実施形態のデータ取得順序決定処理を説明する。
図15における、付加パルス印加量算出処理S1501及びセグメント分割処理S1502は、
図13に示す第二実施形態の処理S1301、S1302と同様であり、重複する説明を省略する。
【0067】
本実施形態では、印加量に応じたセグメント分割処理S1502後、セグメントごとにSAR重みを算出する(S1503)。SAR重みとは、パルス印加によるSAR上昇度またはSAR上昇率を重みとしてとらえたものである。例えば、
図16(A)に示すように、付加パルス印加量の多い第1セグメントはSAR上昇率が高く、第2、第3・・と順次SAR上昇率は低下する。なお
図16(A)において、複数ある同一番号のセグメントは、同一番号のセグメント内のデータ点を例えば角度範囲で分割したサブセグメントである。
【0068】
また心電同期等の各データ点の観測時間(例えばTR)がデータ点ごとに変化しうる撮像では、上述したSAR重みに、観測時間を加えてもよい。観測時間を加えた重みは、
図16(A)に示す棒グラフにおいて、各棒の面積(観測時間×SAR上昇率)が重みとなる。
【0069】
このようにセグメントのSAR重みが決まったならば、データ取得順序決定部112は、各セグメントの組み合わせについてSARの10秒平均制限を求め、SARの10秒平均が最小になるようなセグメントのデータ取得順序序を決定する。その結果は、概ね
図16(B)に示すように、第1セグメントから第2、第3・・・までのデータ取得順序を順番に繰り返す順序となる。
図16(A)の10秒間に比べ、
図16(B)の10秒間では、棒の総面積が小さく、SARの上昇が抑えられていることがわかる。各セグメント内での順番は、k空間からの距離と角度を用いた順序でもよいし、
図16に「棒」で示すセグメントが角度範囲で分割されたものであれば、距離のみを用いた順序でもよい。
【0070】
本実施形態におけるデータ取得順序の一例を
図17に示す。
図17に示すように、本実施形態ではk空間中心が、付加パルスの印加量が多くSAR重みが大きいことから、データ取得順序はk空間低周波領域を連続して観測するのではなく、k空間中心からk空間外側に向かう順序(図中の矢印)を繰り返すものとなる。このようなデータ取得順序序とすることにより、SAR上昇の急激な上昇を抑制し、MTC等の付加パルスを用いる撮像であっても、観測時間や付加パルスの強度に過剰な制限を与えることなくSARの10秒平均制限を満たすことができる。なお
図17では、k空間原点から外側に向かう順序を直線的な矢印で示したが(つまり放射線状の順序である場合を示しているが)、セグメントの順序が10秒平均を最小にするものであれば、放射線状のデータ取得順序序である必要はない。
【0071】
以上、説明したように、本実施形態のデータ取得順序決定部は、複数のセグメントのデータ取得順序を、比吸収率(SAR)に基き決定する。具体的には、比吸収率の10秒平均が最小になるように前記複数のセグメントのデータ取得順序を決定する。本実施形態によれば、第二実施形態と同様の効果が得られ、且つSARを低減した高速撮像を行うことが可能となる。
【0072】
<第五実施形態>
以上説明した第一〜第四実施形態は、いずれもMRI装置の制御部が自動的にデータ取得順序を決定したが、本実施形態のMRI装置は操作者によるデータ取得順序の選択を受け付ける手段を持つことが特徴である。
本実施形態の計算機109の構成例を
図18に示す。
図18中、
図2と同じ要素は同じ符号で示す。図示するように本実施形態は、計算機109に比較情報提示部115及び比較情報演算部116が追加されている。
【0073】
以下、
図19を参照して、本実施形態のデータ取得順序決定処理を説明する。まず、制御部11は、入力装置(GUI)を介して、付加パルスを使用するか否かを受け付ける(S1901)。GUIの例を
図20に示す。
図20(A)に示すGUIは、MTC、IR、Fsatなどの付加パルスの種類と、付加パルスを使用しない場合「OFF」とをボタンで表示し、いずれかを選ばせるものである。また
図20(B)は、付加パルス毎に使用する場合「ON」と非使用の場合「OFF」を選択させるものである。これらは例示であって、それ以外のGUIであってもよい。
【0074】
付加パルスの有無、種類が設定されると(S1902)、次にデータ取得順序の設定のGUIを表示する(S1903)。GUIの例を
図21に示す。図示する例では、選択可能なデータ取得順序として、3つのデータ取得順序、距離及び角度によるソート順(データ取得順序A)、付加パルスの印加量によるソート順(データ取得順序B)、傾斜磁場の時間変化を考慮した印加量によるソート順(データ取得順序C)が表示されている。データ取得順序A〜Cは、それぞれ、上述した第一、第二及び第三実施形態のデータ取得順序決定方法に対応する。図示していないが、さらにSARを考慮したデータ取得順序を選択可能にしてもよい。またこれらデータ取得順序の一部だけを選択可能にしてもよい。またデータ取得順序の選択肢と併せて、自動でデータ取得順序を決定する場合を選択肢に加えてもよい。
【0075】
GUIとして表示されたデータ取得順序(自動も含む)のいずれかが選択されると、データ取得順序決定部112は選択されたデータ取得順序を実施するデータ取得順序として決定し、CS制御部111に渡す(S1904)。
【0076】
また比較情報提示部115は、決定されたデータ取得順序によるパルス効果、SAR、撮像時間などを比較情報として提示してもよい(S1905)。比較情報は、データ取得順序ごとに、あらかじめ決められた情報を読み込んでもよいし、比較情報演算部116が、比較可能な数値を計算してもよい。例えば、「SAR」の場合、シーケンスパターンを計算することで予測SAR値を算出することができる。また、「パルス効果」について、データ取得順序ごとにMRIのシミュレーションなどを実施することで、2つの組織のコントラストを算出し、これを比較可能な数値とすることができる。但しシミュレーションによる演算は、ある程度時間がかかるため、予め求めておいたものを記憶部110に格納しておき、比較情報提示部115が記憶部110から読み出し、提示してもよい。
【0077】
比較情報を提示したGUIの例を
図22に示す。図示する例では、選択されたデータ取得順序(例えばデータ取得順序A)について、各評価項目の定性的情報(高、低、中)を示している。比較情報の提示の仕方は図示するものに限らず、数値や色表示、バー表示などで示してもよい。このような比較情報が提示されることで、操作者は選択したデータ取得順序が適切かどうかを確認することができる。操作者が適切でないと判断した場合には(S1906)、S1903に戻り、再度データ取得順序を受け付けるようにしてもよい。
【0078】
一方、S1903で操作者が「自動」を選択した場合は、データ取得順序決定部112が自動的に最適と思われるデータ取得順序を決定する(S1904)。或いはデフォルトで設定されているデータ取得順序とする。最適か否かの判断は、例えば、あるデータ取得順序で実施した場合のMTC効果、SAR、撮像時間などを評価指標とし、そのいずれか或いは組み合わせについて評価することにより行うことができる。その後の処理(S1905、S1906)は、所定のデータ取得順序を選択した場合と同様である。或いはこれらの処理(S1905、S1906)を省略してもよい。
【0079】
なお
図19に示す処理の流れでは、データ取得順序が選択された後或いは決定した後、そのデータ取得順序について比較情報を提示する場合を示したが、
図21に示すような選択肢とともに各選択肢について比較情報を提示してもよい。操作者による選択に先立って比較情報を提示することで、操作者はどのデータ取得順序が適切か、を判断しやすくなる。
【0080】
また
図22に示すGUIが、選択されたデータ取得順序について比較情報を示す場合を説明したが、
図22に示すようなGUIを操作者の入力を促すGUIとしてもよい。この場合、パルス効果、SAR、撮像時間などの項目に対して、右側のボックスはブランクとし、操作者が所望する値や「高、中、低」のいずれかを入力或いは選択するようにしてもよい。データ取得順序決定部112は、このGUIを介した操作者の選択を考慮して、最適なデータ取得順序を決定する。データ取得順序決定後は、再度、比較情報の値を入力したGUIを表示し、操作者に決定したデータ取得順序とともに提示してもよい。
【0081】
以上説明したように、本実施形態のMRI装置は、データ取得順序の候補を提示すると共に前記候補の選択を受け付ける入力部を有し、データ取得順序決定部(データ取得順序決定部)は、入力部が受け付けた候補をデータ取得順序として決定する。また、データ取得順序の候補について、比較情報を算出し、入力部に提示させる比較情報演算部を備える。本実施形態によれば、操作者が撮像の目的等を考慮して、より適切なデータ取得順序を決定することが可能となる。例えば操作者がSAR、傾斜磁場の時間変動、撮像時間、パルス効果を高めた画質の向上、などから優先性の高いものを選択することで、それに最適なデータ取得順序を決定することができる。
【0082】
<第六実施形態>
本実施形態は、同じ撮像(同じ位置、同じ撮像条件での撮像)を繰り返し行う撮像方法に適用される実施形態であり、データ取得順序序を記録する手段を備え、撮像が繰り返される際に、一つの撮像における最後の観測位置を記録し、決定されているデータ取得順序に従って、記録された観測位置の次の観測位置から、次の撮像を開始する。データ取得順序は前述した第一〜第五実施形態のデータ取得順序決定手法のいずれで決定されたものでもよい。
【0083】
本実施形態が適用される撮像法として、例えば、複数回同じ撮像を繰り返し、これらの画像を足し合わせることで、SNRなどの画質を向上させる加算処理や、これらの画像を時系列に並べることで、生体組織(例えば、血流や心臓など)の動きなどを観察する時系列撮像などがある。
【0084】
本実施形態においても計算機(CPU)109の構成は、
図2と同様であるが、制御部の機能が追加される。
本実施形態の制御部の動作の流れを、
図23に示す。
図23において、観測位置決定処理S2301は、
図3の観測位置決定処理S302と同様であり、また撮像S2306から再構成処理S2309は、
図3の処理S304〜S307と同様である。以下、
図3と異なる点を中心に説明する。
【0085】
予め設定されている観測パターンとCSのサンプリング率に基づき観測位置を決定したのち、その撮像が1回目の撮像であれば(S2302 )、データ取得順序決定処理S2304に進み、2回目以降の撮像であれば、観測開始位置読込処理S2303に進む。
【0086】
データ取得順序決定処理S2304は、1回目の撮像であれば、第一〜第五実施形態の決定手法のいずれかによりデータ取得順序を決定する。このデータ取得順序は基本データ取得順序として記録媒体14に保存される。1回目の撮像における観測開始位置は、データ取得順序の決定手法に応じて所定の位置が決まる。例えば、k空間の原点が開始位置となる。またデータ取得順序が決まれば、1回の撮像で観測するデータ点の数に応じて、その回の撮像における観測終了位置が決まる。この観測終了位置は記憶媒体14に保存される(S2305)。その後、撮像(S2306)及びエコー収集(S2307)に進む。
【0087】
一方、2回目以降の撮像の場合には、観測開始位置読込処理S2303で、記憶媒体14に保存された観測位置(前回の撮像の観測終了位置)を読み込み、データ取得順序決定部112へ受け渡す。
【0088】
データ取得順序決定部112は、受け取った観測位置を元に、観測開始位置を決定し、この位置から始まるデータ取得順序を決定する(S2304)。データ取得順序は、1回目の撮像において決定した基本データ取得順序の開始位置をずらした順序となる。具体的には、受け取った前回の撮像の観測終了位置が、データ取得順序(初期)でn番目であったとすると、この回の観測開始位置は、決定されたデータ取得順序でn+1番目の位置を開始位置とする順序となる。
【0089】
データ取得順序が決定されると、その回に観測するデータ点の数によって、観測終了位置が決まるので、観測終了位置保存処理S2305において、観測終了位置を記憶媒体14に保存する。その後、撮像S2306、エコー収集S2307に進むことは1回目の撮像と同じである。
【0090】
なお
図23に示す処理の流れは、各回の撮像において観測するデータ点の数が予め決まっている場合を示しているが、データ点の数が撮像S2306を行ってからでなければ確定しない場合もある。この場合は、観測終了位置保存処理S2305は、撮像S2306の後に行われる(処理S2305と処理S2306の順番が入れ替わる)。
【0091】
本実施形態によれば、同一の撮像を繰り返し行う場合において、データ取得順序の連続性を保つことができる。