【実施例】
【0029】
以下、本発明を、実施例によって具体的に説明するが、これらによって限定されるものではない。
【0030】
実施例1〜6
市販の還元鉄粉(JFEスチール社製、金属鉄97.55%、見掛密度2.73g/cm
3、流動度23.0、粒度分布(150〜106メッシュ;59.0%))と、酸性硫酸マグネシウム(MgO含有量=27〜28wt%、pH3、営口豊達硼製品有限公司社製)を、表1に示す割合でスーパーミキサーを使用して混合攪拌し、土壌処理材1〜7を作製した。
【0031】
【表1】
【0032】
実施例8〜14
ヒ素含有岩石の浸出水(ヒ素濃度1.60mg/L)100mL中に、実施例1〜7で得た土壌処理材1〜7をそれぞれ0.5g添加し、25℃で6時間攪拌し、接触させた。24時間後、溶液をミリポアフィルターでろ過し、ろ液中のヒ素濃度を公定法により測定した。また、溶液の状態を目視により観察するとともに、pHを測定した。その結果を表2〜3に示す。
なお、溶液の状態が黄褐色懸濁(YBS)である場合、鉄粉表面が活性化し、ヒ素を捕捉し、水酸化鉄として懸濁していることを示す。一方、溶液の状態が無色透明(CLT)である場合、鉄粉が不動態化し、ヒ素が捕捉されていないことを示す。表中、溶液の状態において、YBTは黄褐色透明を、YTは黄色透明を意味する。
【0033】
比較例1〜2
実施例1で使用したと同じ還元鉄粉及び酸性硫酸マグネシウムをそれぞれ単独で使用して、土壌処理材H1(還元鉄粉100%)、土壌処理材H2(酸性硫酸マグネシウム100%)とした。
この土壌処理材H1及びH2を、実施例8〜14と同様にヒ素含有岩石の浸出水に添加し、評価した。その結果を表3に示す。
本発明の土壌処理材は、ヒ素の除去能力が高いことが示された。
【0034】
【表2】
【0035】
【表3】
【0036】
実施例15〜16、比較例3〜4
市販の還元鉄粉の代わりに市販のアトマイズ鉄粉(JFEスチール社製)又は銑ダライ(同社製)を用いた他は、実施例1と同様にして土壌処理材8、及び9を作製した。また、上記アトマイズ鉄粉又は銑ダライを単独で用いて土壌処理材H3〜H4とした。土壌処理材を表4に示す。
実施例8〜14で使用したと同じヒ素含有岩石の浸出水(ヒ素濃度1.60mg/L)100mL中に、土壌処理材8〜9、H3〜H4をそれぞれ0.5g添加し、25℃で6時間攪拌し、接触させた。24時間後、溶液をミリポアフィルターでろ過し、ろ液中のヒ素濃度を公定法により測定した。また、溶液の状態を目視により観察するとともに、pHを測定した。その結果を表5に示す。
【0037】
【表4】
【0038】
【表5】
【0039】
実施例17〜18
実施例1〜6で使用したと同じ鉄粉と、硫酸第一鉄(粉末状工業用薬品;石原産業社製)、硫酸アルミニウム(粉末状工業用薬品;大明化学社製)を使用し、表6に示す混合比率でスーパーミキサーを使用して混合攪拌し、土壌処理材10、11を作製した。
【0040】
【表6】
【0041】
実施例19〜21
重金属含有土壌として、化学工場跡地から発生したヒ素汚染土壌(含水率26%)を使用した(汚染土壌1)。この汚染土壌に土壌処理材10、11及び3を、表7に示す量で添加し、卓上ミキサーで10分間攪拌、混合した。得られた処理土壌について溶出量試験(環境省告示第18号)を実施した。結果を表7に示す。参考例は、土壌処理材を添加しない例であり、基準となる。
【0042】
【表7】
【0043】
比較例5〜7
実施例19で使用したと同じ汚染土壌1に、土壌処理材H1を表10に示す量で添加し、卓上ミキサーで10分間混合した。得られた処理土壌について溶出量試験を実施した。結果を表8に示す。
【0044】
比較例8〜10
汚染土壌1に、土壌処理材H1と、濃硫酸(比重1.84;和光純薬工業(株)製)を表10に示す量で添加し、卓上ミキサーで10分間混合した。得られた処理土壌について溶出量試験を実施した。結果を表8に示す。
【0045】
【表8】
【0046】
実施例22〜24
実施例19で使用したと同じ汚染土壌1に、実施例19〜21で使用したと同じ土壌処理材10、11及び3を、表9に示す量で添加し、卓上ミキサーで10分間混合した。得られた処理土壌を、樹脂性トレイに開けて薄く敷均し、ポリ袋中に挿入した40mm×25mm×厚さ15mmで、表面磁束密度392.9mTのネオジム磁石を満遍なく処理土壌と接触させて、磁着物粒子を磁性分離除去し、処理土壌について溶出量試験(環境省告示第18号)を実施した。結果を表9に示す。磁性分離除去後重量(wt%)は、磁性分離前を100 wt%として計算された値である。なお、磁着物粒子量(wt%)は、100−磁性分離除去後重量(wt%)で計算される。
本発明による土壌処理材の添加と磁着物粒子の磁性分離除去により、汚染物質溶出量が低下することが示された。
【0047】
【表9】
【0048】
比較例11〜13
実施例19で使用したと同じ汚染土壌1に土壌処理材H1を、表10に示す量(重量%)で添加し、卓上ミキサーで10分間混合した。得られた処理土壌を、樹脂性トレイに開けて薄く敷均し、ポリ袋中に挿入した40mm×25mm×厚さ15mmで、表面磁束密度392.9mTのネオジム磁石を満遍なく処理土壌と接触させて、磁着物粒子を磁性分離除去し、処理土壌について溶出量試験を実施した。結果を表10に示す。
【0049】
比較例14〜16
汚染土壌1に土壌処理材H1と、濃硫酸を表10に示す量で添加し、卓上ミキサーで10分間混合した。得られた処理土壌を、樹脂性トレイに開けて薄く敷均し、ポリ袋中に挿入した40mm×25mm×厚さ15mmで、表面磁束密度392.9mTのネオジム磁石を満遍なく処理土壌と接触させて、磁着物粒子を磁性分離除去し、処理土壌について溶出量試験を実施した。結果を表10に示す。
【0050】
【表10】
【0051】
実施例25〜28
重金属含有土壌として、化学工場跡地から発生した汚染土壌(含水率25%)を使用した(汚染土壌2)。この汚染土壌に実施例3の土壌処理材3を、表11に示す量で添加し、混合機で10分間混合した。得られた処理土壌を、樹脂性トレイに開けて薄く敷均し、ポリ袋中に挿入した30mm×40mm×厚さ10mmのネオジウム磁石を満遍なく処理土壌と接触させて、磁着物粒子を磁性分離除去し、処理土壌について溶出量試験を実施した。結果を表11に示す。
【0052】
【表11】
【0053】
実施例29〜31
重金属含有土壌として、化学工場跡地から発生した汚染土壌(含水率27%)を使用した(汚染土壌3)。この汚染土壌に実施例17の土壌処理材10を、表12に示す量で添加し、混合機で10分間混合した。得られた処理土壌を、樹脂性トレイに開けて薄く敷均し、ポリ袋中に挿入した30mm×40mm×厚さ10mmのネオジウム磁石を満遍なく処理土壌と接触させて、磁着物粒子を磁性分離除去し、処理土壌について溶出量試験を実施した。結果を表12に示す。
【0054】
【表12】
【0055】
実施例32〜34
重金属含有土壌として、化学工場跡地から発生した流動性を有する汚染土壌(含水率30%)を使用した(汚染土壌4)。この汚染土壌に実施例18の土壌処理材11を、表13に示す量で添加し、混合機で10分間混合した。得られた処理土壌は、流動性が解消し磁力選別が可能な状態となったため、樹脂性トレイに開けて薄く敷均し、ポリ袋中に挿入した30mm×40mm×厚さ10mmのネオジウム磁石を満遍なく処理土壌と接触させて、磁着物粒子を磁性分離除去し、処理土壌について溶出量試験を実施した。結果を表13に示す。本発明による土壌処理材の添加と磁着物粒子の磁性分離除去により、汚染物質溶出量が低下することが示された。また、含水率が高く流動性を有する汚染土壌に対して、通常では添加される中性固化材の使用なしでも、磁性分離が比較的しやすく、中性固化材の添加は不要であった。
【0056】
【表13】