(58)【調査した分野】(Int.Cl.,DB名)
芯材と、前記芯材を挟んで対向して設けられた一対の積層膜からなる外包材と、を備え、前記積層膜は、外側から順に、表面保護層、保護層、ガスバリア層及び熱溶着層がこの順で積層された物である真空断熱材の製造方法であって、
前記一対の積層膜を作製する工程と、
前記一対の積層膜の内部に前記芯材を配置し、前記一対の積層膜の端部において、前記一対の積層膜のそれぞれの前記熱溶着層を接合する工程と、を有し、
前記一対の積層膜のそれぞれの前記熱溶着層を接合する工程において、前記積層膜の端部が、前記積層膜を構成する各層の積層方向に対して垂直な方向に沿って、前記外包材の内部から外部へ向かって先細りとなる形状を有するように、かつ、前記一対の積層膜のそれぞれの前記熱溶着層の接合面と、前記一対の積層膜のそれぞれの前記熱溶着層の外側の表面とがなす角αが鋭角であり、前記一対の積層膜のそれぞれの前記熱溶着層の接合面の最端部は、厚さが無くなるように熱溶着されているように前記一対の積層膜の前記熱溶着層を熱溶着することを特徴とする真空断熱材の製造方法。
【発明を実施するための形態】
【0016】
以下、本発明に係る実施形態について詳細に説明する。
【0017】
[真空断熱材]
図1は本発明に係る真空断熱材の断面を示す模式図である。
図1に示すように、真空断熱材1は、外包材3と、外包材3に収納された芯材2及び吸着剤(ゲッター剤11)とを有する。外包材3は、一対の積層膜10a,10bが、端部(
図1のA部分)で熱溶着によって接合されて封止されている。なお、吸着剤11は必要に応じて外包材3に封入されるものであり、本発明において必須の構成ではない。
【0018】
図2は
図1のA部分を拡大する図である。
図2に示すように、外包材3を構成する積層膜10aは、外気に触れる外側の表面(外包材3の真空の内部と接触する表面と反対側の表面)から、第1層(表面保護層)5a、第2層(保護層)6a、第3層(ガスバリア層)7a及び熱溶着層8aがこの順で積層された多層構造を有する。積層膜10bも、積層膜10aと同様の構成を有する。上述したように、外包材3は、積層膜10a,10bが重ね合わされ、熱溶着層8a,8bの端部(熱溶着部,接合部)4が熱溶着されることによって封止されている。熱溶着層8a,8bが熱溶着によって接合されている面を接合面81と称する。
【0019】
本発明においては、接合面81と、熱溶着部4における熱溶着層8a,8bの外側の表面80a,80bとがなす角α(
図2に拡大して図示)が、鋭角となっている(0°<α<90°)。言い換えると、熱溶着層8a,8bは、真空断熱材1の外周に向かって薄肉化している。このような構成とすることで、熱溶着層8a,8bの端面82のみが外気に露出し、熱溶着層8a,8bの他の部分は、積層膜10a,10bの他の層によってほぼ覆われる構造となっている。
【0020】
ここで、従来の真空断熱材の構成について説明する。
図3は従来の真空断熱材の断面を示す模式図であり、
図4は
図3のB部分を拡大する図である。
図3及び
図4に示すように、従来の真空断熱材1´の外包材3´は、熱溶着部4´における熱溶着層8a´,8b´の外側の表面80a´,80b´と接合面81´とが平行になっており、溶着層8a´,8b´の外気に露出している端面82a´,82b´の面積が、
図2に示す本発明の場合よりも大きくなっている。
【0021】
外包材3の内部へ侵入するガスとしては、外包材3を構成する各層5a´〜8a´、5b´〜8b´の積層方向から侵入するガス(第1層(表面保護層)5aの表面から侵入するガス)30と、外包材3の積層方向と垂直な方向から侵入するガス(熱溶着層8a´,8b´の82a´,82b´端面から侵入するガス)31が考えられる。本発明者が得た知見によると、第1層(表面保護層)5a´をアルミニウム箔とし、外包材3´の積層方向からのガス30の侵入を抑制しても、外包材3´の内部の圧力が上昇し、熱伝導率が上昇(断熱特性が劣化)することがわかった。すなわち、外包材3´の内部に侵入するガスを低減するためには、外包材3´の積層方向からのガス30の侵入のみならず、熱溶着層8a´,8b´の端面82a´,82b´から侵入するガス31を抑制する必要がある。
【0022】
上述したように、従来の構成では、外包材3´の端部は外気に接触しており、この部分から経年的にガスが侵入してしまい、真空断熱材1´の内部の圧力が高くなり、結果として熱伝導率が高くなる。特に、熱溶着層8a´,8b´は、ガスバリア層7a´,7b´よりも内部に近い位置に配置されていることや、他の層と比較して厚さが厚くなる傾向にあることから、ガスが侵入しやすい構造となる。
【0023】
そこで、本発明は、
図2に示すように、熱溶着層8a,8bの端面のほとんどが、外包材3を構成する積層膜の他の層によって覆われる構造とし、熱溶着層8a,8bの外気に触れる部分を極力低減して、外包材3の内部への気体の侵入を防止し、長期に渡って断熱特性の低下を防止することができる構成とした。
【0024】
上述した特許文献1は、真空断熱材端面からのガスの侵入を抑制し断熱特性の維持を図ったものである。具体的には、真空断熱材の外被材として用いるラミネートフィルムの断面をエチレンポリビニルアルコール共重合体またはポリアクリル酸系樹脂によりコートした真空断熱材が開示されている。しかし、コートに用いているエチレンポリビニルアルコール共重合体またはポリアクリル酸系樹脂のガス透過性は比較的低いものの、透過量がゼロではないことから、断熱特性の劣化は進行してしまう。また、端面にコートする樹脂材料を使用することやコートをするプロセスが増加してしまうことからコストアップにもつながるものである。
【0025】
本発明において、角度αは、熱溶着層8a,8bの端面がほとんど覆われる角度であればよい。角度αは、3°以下とすることが好ましい。角度αを3°以下とすることで、外包材3の積層方向と垂直な方向からのガスの侵入を抑制することができる。また、角度αは溶着層の厚さや後述する熱溶着部4の幅(
図2中矢印で示す部分の寸法)により変化するが、傾斜角度が高くなると溶着が困難になることから3°以下とすることが好ましい。なお、角度αは電子顕微鏡(Scanning Electron Microscope,SEM)による断面観察によって測定することができる。
【0026】
熱溶着部(接合面)4の幅(シール幅)は、7〜20mm(7mm以上20mm以下)とすることが好ましい。熱溶着部4の幅は角度αに依存する。幅を20mmより大きくすると外包材全体に対する割合が大きくなり効率が悪く、7mm未満とすると接着強度が低下することから、7〜20mmとすることが好ましい。
【0027】
さらに、熱溶着層8a,8bの厚さ(熱溶着前の厚さ、すなわち熱溶着部4以外の部分の厚さ)は30×10
−6m以上であることが好ましい。これにより、溶着層8a,8bの端面からのガス侵入が少なくし、真空断熱材内部の圧力上昇を抑制することで熱伝導率の経時的な変化を低くすることが可能となる。
【0028】
第1層(表面保護層)5a,5b、第2層(保護層)6a,6b、第3層(ガスバリア層)7a,7b、熱溶着層8a,8b、芯材2及び脱酸素材11には、従来用いられている材料を使用することができる。例えば、第1層(表面保護層)5a及び第2層(保護層)6aとしては、ポリエチレンテレフタレートフィルム、ポリアミドフィルム及びポリプロピレンフィルム等の延伸加工品等を用いることができる。第3層(ガスバリア層)7aとしては、金属蒸着フィルム、無機質蒸着フィルム及び金属箔等を用いることができる。熱溶着層8a,8bとしては、低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、ポリプロピレンフィルム、ポリアクリロニトリルフィルム、無延伸ポリエチレンレテレフタレートフィルム及び直鎖状低密度ポリエチレンフィルム等を用いることができる。
【0029】
スペーサの役割を持つ芯材2は、熱伝導率低減の観点から空隙率の高い部材を用いることが望ましい。また、芯材2の内部の空隙は減圧により気体を除去できるように、連続的につながった形状であることが望ましい。このような特性をもつ材料の例として、無機材料を繊維化し集積した繊維集合体等がある。繊維集合体は、ソーダライムガラス等のガラスを原料とし、溶融したガラス材料を延伸法や火炎法などにより繊維化することで作製され、繊維化後は吸引機能を持ったコンベア等で集積される。
【0030】
また、溶融延伸法で作製したガラス繊維を水に分散した後、集積しシート化する湿式法で作製した無機繊維シートや溶融延伸法で作製した繊維を集積した後に熱と圧力を加えて成形した無機繊維マット等の芯材を用いることができる。さらに、芯材である無機繊維は使用する前に繊維表面に吸着した水分を除去するために、加熱による乾燥を行うことが望ましく、これにより真空断熱材を作製する際の真空排気時間を低減することができる。
【0031】
また、芯材2とともに減圧封止後の残存ガス及び水分を吸着する吸着剤(ゲッター剤)11を同包することが好ましい。ゲッター剤としては、モレキュラーシーブス、シリカゲル、酸化カルシウム、合成ゼオライト、活性炭、水酸化カリウム、水酸化ナトリウム及び水酸化リチウム等を用いることができる。
【0032】
[真空断熱材を備えた機器]
次に、上述した本発明に係る真空断熱材を備えた機器の例について説明する。
図5は本発明に係る真空断熱材を備えた機器(冷蔵庫)の一例の断面を示す模式図であり、
図6は本発明に係る真空断熱材を用いたヒートポンプ給湯器の一例の断面を示す模式図である。
【0033】
図5に示す冷蔵庫12の冷蔵庫箱体は、冷蔵庫外箱13又は冷蔵庫内箱14に、上述した本発明に係る真空断熱材を張り付けた後、冷蔵庫外箱13と冷蔵庫内箱14を組み合わせ、両者の間に形成された隙間に発泡ウレタン樹脂15を注入して作製することができる。冷蔵庫扉16についても、冷蔵庫箱体と同様に作製することができる。作製した冷蔵庫箱体と冷蔵庫扉16、コンプレッサー17、熱交換機及び電気品等の部品とを用いて冷蔵庫12を完成することができる。本発明に係る真空断熱材を用いた冷蔵庫12は、真空断熱材への外気の侵入を長期に渡って抑制することができることから、長期にわたって熱伝導率の上昇を抑制し、機器の消費電力を低く抑えられることができる。
【0034】
図6に示すヒートポンプ給湯器18の貯湯タンク19にはヒートポンプユニット21で暖められたお湯(図示せず)が貯められている。お湯を使用しない場合にタンク内の湯温が低下すると沸かし直しを行う必要があるため、給湯器の成績係数(COP:Coefficient of Performance)が低下してしまう。
図6に示すように、本発明に係る真空断熱材1を貯湯タンク19の側面に設ければ、長期に渡って熱伝導率の上昇を抑制することができるので、湯タンク19の湯音の低下を抑制することができ、機器の消費電力を低く抑えられることができる。
【0035】
本発明に係る真空断熱材1は、上述した冷蔵庫12及びヒートポンプ給湯器18の他、自動販売機及び業務用のショーケース等にも好適である。
【0036】
[真空断熱材の製造方法]
図9は、本発明に係る真空断熱材の製造方法の一例を示すフロー図である。
図9に示すように、本発明に係る真空断熱材の製造方法は、外包材3を構成する一対の積層膜10a,10bを作製する工程(S1)と、作製した一対の積層膜10a,10bの内側に芯材2を配置する工程(S2)と、一対の積層膜10a,10bの端部において、一対の積層膜10a,10bのそれぞれの熱溶着層(8a,8b)を接合(熱融着)する工程(S3)とを有する。
【0037】
S1では、積層膜10a(10b)を構成する表面保護層5a(5b)、保護層6a(6b)及び熱溶着層8a(8b)を重ね合わせ、ドライシール等によって接合して積層膜10a(10b)を作製することができる。
【0038】
図7は本発明に係る真空断熱材の製造方法に使用するラミネーター(ヒートシーラー)の一例を示す断面模式図であり、
図8は
図7のC部分を拡大する図である。熱溶着層(8a,8b)の接合(熱溶着)は、
図7及び
図8に示す装置を用いて行う。
【0039】
ヒートシーラーは、一片毎にシールが可能なバータイプのものや、連続的にシールを行うもの等を用いることができる。
図7及び
図8に示すヒートシーラー70は、上部シールバー77及び下部シールバー78を有するバータイプのものである。
【0040】
本発明に係る真空断熱材の角度αは、シールバー77,78の傾斜角度によって調整することが可能である。
【0041】
本開示における真空断熱材は、ガラス繊維を有する芯材と熱により溶着した部分が外周方向へ傾斜的に薄肉化した外包材を用いることができる。これにより、溶着層端面からのガス侵入が少なくし、真空断熱材内部の圧力上昇を抑制することで熱伝導率の経時的な変化を低くすることが可能となる。
【実施例】
【0042】
以下、本発明を実施例に基づいてより詳細に説明する。
【0043】
(1.1)実施例1の真空断熱材の作製
図1に示す構成を有する真空断熱材を作製した。芯材2には、ガラス繊維の集合体(繊維集合体)を用いた。これは、ソーダライムガラスを遠心法により溶融紡糸した平均繊維径5.0μmのグラスウール繊維を、吸引機能がついたコンベアで集積したグラスウールシートである。グラスウールシートの目付(シート状のグラスウール1m
2あたりの重量)は1枚当り1500g/m
2となっており、本実施例では3枚重ねて使用した。また、芯材2は使用前に300mm×300mmの大きさに切断し、温度200℃の乾燥炉で30分間乾燥した。
【0044】
外包材3は、表面保護層5a,5bとしてポリアミドフィルム(厚さ25×10
−6m)、保護層6a,6bとしてアルミニウム蒸着層を付加したポリエチレンテレフタレートフィルム(厚さ12×10
−6m)、ガスバリア層7a,7bとし、アルミニウム蒸着したエチレン−ビニルアルコール共重合体(厚さ15×10
−6m)を用いた。また、熱溶着層8a,8bとして直鎖状低密度ポリエチレンフィルム(厚さ50×10
−6m)を用い、上記表面保護層5a,5b、保護層6a,6b、ガスバリア層7a,7b及び熱溶着層8a,8bをドライラミネート法により積層し、4層構成からなる積層膜(10a,10b)を作製した。
【0045】
作製した外包材3を380×450mmに切断し、熱溶着層8a,8b同士が接触するように重ね、3辺の端部を、熱溶着部4の幅10mmとし、傾斜構造を持つヒートシーラーで熱溶着し熱溶着した。作製した熱溶着部4の断面を電子顕微鏡にて観察したところ、熱溶着層8a,8bは
図2に示す構造を有しており、その角度αは0.6°であった。
【0046】
吸着剤11としては合成ゼオライト(重量5g)を用いた。乾燥により水分を除去した芯材2と、吸着剤11を一緒に袋状の外包材3中に入れた後、減圧用のチャンバー内にセットし、減圧操作を行った。減圧操作は油回転ポンプで5分間行い、続いて油拡散ポンプで5分間行った。減圧操作が終了した後、開口部(ヒートシールされていない1辺)を熱溶着により接着し封止した。熱溶着部の形状は他の3辺と同様とした。実施例1の熱溶着層の構成を、後述する表1に記載する。
【0047】
(1.2)実施例1の真空断熱材の熱伝導率の評価
作製した真空断熱材1の厚さは18mmであった。作製した真空断熱材1の熱伝導率(初期値)を英弘精機(株)製のオートラムダを用いて平均温度10℃で測定した結果、1.89mW/m・Kであった。さらに、作製した真空断熱材について、経時的な熱伝導率の変化を評価するため70℃で30日間の加熱試験を実施した。その結果、加熱試験後の熱伝導率は3.01mW/m・Kとなり、熱伝導率の変化分を初期値で割って100倍した、変化率は59となった。実施例1の真空断熱材の熱伝導率の評価結果を、後述する表1に併記する。
【0048】
(1.3)実施例1の真空断熱材を備えた機器の作製と評価
実施例1の真空断熱材を用いて
図5に示す冷蔵庫を作製し、消費電力を測定したところ、実施例1の真空断熱材を用いない場合と比較して約40%低くなった。このことから、本実施例の真空断熱材を用いることで機器の消費電力を低く抑えられることが明らかとなった。
【0049】
(2.1)実施例2の真空断熱材の作製
実施例2の真空断熱材は、外包材3の表面保護層5a,5b、保護層6a,6b及びガスバリア層7a,7bについては実施例1と同様である。実施例2では、熱溶着層8a,8bとして高密度ポリエチレンフィルム(厚さ75×10
−6m)を用い、熱溶着部の幅を7mmとした。実施例1と同様に積層膜(10a,10b)を作製し、顕微鏡によって断面を観察したところ、角度αは1.2°であった。実施例2の熱溶着層の構成を、後述する表1に併記する。
【0050】
(2.2)実施例2の真空断熱材の熱伝導率の評価
作製した真空断熱材1の厚さは18mmであった。作製した真空断熱材1の熱伝導率(初期値)、加速試験後の熱伝導率及び変化率を、実施例1と同じ装置及び条件を用いて評価を行ったところ、熱伝導率(初期値)は1.79mW/m・K加熱試験後の熱伝導率は2.75mW/m・K、熱変化率は54となった。実施例2の真空断熱材の熱伝導率の評価結果を、後述する表1に併記する。
【0051】
(2.3)実施例2の真空断熱材を備えた機器の作製と評価
実施例2の真空断熱材1を複数枚用いて
図6に示すヒートポンプ給湯器18を作製した。本実施例の真空断熱材を適用した場合COPに約10%の改善が確認された。このことから、本実施例の真空断熱材を用いることで機器の消費電力を低く抑えられることが明らかとなった。
【0052】
(3.1)実施例3の真空断熱材の作製
実施例3の真空断熱材は、外包材3の表面保護層5a,5b、保護層6a,6b及びガスバリア層7a,7bについては実施例1及び2と同様である。実施例3では、熱溶着層8a,8bとして直鎖状低密度ポリエチレンフィルム(厚さ50×10
−6m)を用い、熱溶着部の幅を20mmとした。実施例1と同様に積層膜(10a,10b)を作製し、顕微鏡によって断面を観察したところ、角度αは0.3°であった。実施例3の熱溶着層の構成を、後述する表1に併記する。
【0053】
(3.2)実施例3の真空断熱材の熱伝導率の評価
作製した真空断熱材1の厚さは18mmであった。作製した真空断熱材1の
熱伝導率(初期値)、加速試験後の熱伝導率及び変化率を、実施例1と同じ装置及び条件を用いて評価を行ったところ、熱伝導率(初期値)は1.83mW/m・K、加熱試験後の熱伝導率は2.8mW/m・K、変化率は53となった。実施例3の真空断熱材の熱伝導率の評価結果を、後述する表1に併記する。
【0054】
(4.1)実施例4の真空断熱材の作製
実施例4の真空断熱材は、外包材3の表面保護層5a,5b、保護層6a,6b及びガスバリア層7a,7bについては実施例1〜3と同様である。実施例4では、熱溶着層8a,8bとして直鎖状低密度ポリエチレンフィルム(厚さ100×10
−6m)を用い、熱溶着部の幅を7mmとした。実施例1と同様に積層膜(10a,10b)を作製し、顕微鏡によって断面を観察したところ、熱溶着層は外周部へ向かって傾斜しており、その角度αは1.6°であった。実施例4の熱溶着層の構成を、後述する表1に併記する。
【0055】
(4.2)実施例4の真空断熱材の熱伝導率の評価
作製した真空断熱材1の厚さは18mmであった。作製した真空断熱材1の熱伝導率(初期値)、加速試験後の熱伝導率及び変化率を、実施例1と同じ装置及び条件を用いて評価を行ったところ、熱伝導率(初期値)は1.83mW/m・K、加熱試験後の熱伝導率は2.92mW/m・K、変化率は60となった。実施例4の真空断熱材の熱伝導率の評価結果を、後述する表1に併記する。
【0056】
(5.1)比較例1の真空断熱材の作製
図4に示すように、熱溶着部4´における角度αをつけず、熱溶着層8a´,8b´の外側の表面80a´,80b´と接合面81´とが平行になるようにしたこと以外は実施例1と同様にして比較例1の積層膜10a´,10b´を作製した。
【0057】
(5.2)比較例1の真空断熱材の熱伝導率の評価
作製した真空断熱材1の厚さは18mmであった。作製した真空断熱材1´の熱伝導率(初期値)、加速試験後の熱伝導率及び変化率を、実施例1と同じ装置及び条件を用いて評価を行ったところ、熱伝導率(初期値)は1.83mW/m・K、加熱試験後の熱伝導率は3.9mW/m・K、変化率は113となり、実施例1と比較して大幅に高い値となった。これは、熱溶着層が外気に接触する面積が大きくなり、ガスの透過量が高くなったためと考える。
【0058】
(6.1)比較例2の真空断熱材の作製
図4に示すように、角度αをつけず、熱溶着部4´における熱溶着層8a´,8b´の外側の表面80a´,80b´と接合面81´とが平行になるようにしたこと以外は実施例2と同様にして比較例2の積層膜10a´,10b´を作製した。
【0059】
(6.2)比較例2の真空断熱材の熱伝導率の評価
作製した真空断熱材1の厚さは18mmであった。作製した真空断熱材1´の熱伝導率(初期値)、加速試験後の熱伝導率及び変化率を、実施例1と同じ装置及び条件を用いて評価を行ったところ、熱伝導率(初期値)は1.85mW/m・K、加熱試験後の熱伝導率は3.78mW/m・K、変化率は104となり、実施例2と比較して大幅に高い値となった。これは、熱溶着層が外気に接触する面積が大きくなり、ガスの透過量が高くなったためと考える。
【0060】
【表1】
【0061】
以上説明したように、本発明によれば、外包材の内部への気体の侵入を防止し、長期に渡って断熱特性の低下を防止することが可能な真空断熱材、それを備えた機器及び真空断熱材の製造方法を提供することができる。
【0062】
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。