【実施例】
【0061】
実施例1:CD123CARが形質導入されたT細胞は、in vitroにおいて、AMLに対する強力な細胞傷害活性および複数のエフェクター機能を示す
材料と方法
[0078]細胞株:そうでないことが弁明されない限りにおいて、全ての細胞株を、以下では完全培地(CM)と称する、2mMのL−グルタミン、25mMのHEPES、および10%の熱不活化FCS(Hyclone)を補充したRPMI 1640(Irvine Scientific)中で維持した。既に記載されている[19]通りに、末梢血単核細胞(PBMC)を、エプスタイン−バーウイルスで形質転換して、リンパ芽球様細胞株(LCL)を作製した。LCL−OKT3細胞は、膜に結合したOKT3を発現させ
るが、これを、0.4mg/mlのハイグロマイシンを補充したCM中で成長させた[20]。K562細胞は、ATCCから得、推奨される通りに培養した。KG1a細胞(Ravi Bhatia博士による恵与)は、25mMのHEPES、4mMのL−グルタミン(Irvine Scientific)、および20%のFCSを含むIMDM(Irvine Scientific)中で維持した。293T細胞(The Center for Biomedicine and Genetics at City of Hopeからの恵与)は、DMEM+10%の熱不活化FCS中で維持した。
【0062】
[0079]初代AML試料:初代AML試料は、患者の末梢血から得た(本明細書では、AML試料ID番号:179、373、493、519、545、559、605、722、および813と称する)。試料の特徴を、下記の表1にまとめる。
[表1は次頁に記載]。
【0063】
【表1】
【0064】
[0080]フローサイトメトリー:蛍光色素をコンジュゲートさせたアイソタイプ対照である、抗CD4、抗CD8、抗T細胞受容体αβ(TCRαβ)、抗CD123(9F5)
、抗CD34(8G12)、および抗CD38(HIT2)は、BD Biosciencesから購入した。ビオチニル化抗Fc抗体は、Jackson ImmunoResearch Laboratoriesから購入した。ビオチニル化セツキシマブ(Erbitux)は、COH pharmacyから購入したが、これについては既に記載されている[20]。ビオチニル化抗CD2、抗CD3、抗CD7、抗CD10、抗CD11b、抗CD19、抗CD33、および抗CD235Aは、eBioscienceから購入した。データ収集は、FACSCalibur、LSRII(BD Biosciences)、またはMACSQuant Analyzer(Miltenyi Biotec)上で実施し、FCS Express、Version 3(De Novo Software)を使用して解析した。
【0065】
[0081]293T細胞へのCD123のトランスフェクション:CD123 cDNAは、CD123−pMD18−T(Sino Biological Inc.)から、ポリメラーゼ連鎖反応およびプライマー(CD123−F:5’−ATAAGGCCTGCCGCCACCATGGTCCTCCTTTGGCTCACG−3’およびCD123−R5’−ATAGCTAGCTCAAGTTTTCTGCACGACCTGTACTTC−3’)を使用して増幅した。PCR産物は、StuI制限部位およびNheI制限部位を使用して、pMGPacにクローニングした。293T細胞には、製造元の指示書に従い、Lipofectamine 2000(Life Technologies)を使用してトランスフェクトした。トランスフェクションの24時間後、フローサイトメトリーにより、CD123の発現を確認した。
【0066】
[0082]レンチウイルスベクターの作製:本研究において使用されるCAR構築物を作製するため、VH鎖およびVL鎖、修飾IgG4ヒンジドメインおよび修飾CD28膜貫通ドメイン(RLLH→RGGH[22])をコードする、コドンを最適化したDNA配列を合成し(GENEART)、NheI部位およびRsrII部位を使用して、CD19RCAR−T2AEGFRt_epHIV7[20]にクローニングして、CD19RCARを置きかえた。レンチウイルスは、CalPhos(商標)哺乳動物細胞トランスフェクションキット(Clontech)を使用して、293T細胞に、レンチウイルスベクター、ならびにパッケージングベクターであるpCMV−Rev2、pCHGP−2、およびpCMV−Gをトランスフェクトすることにより製造した。これらの26292 CAR構築物および32716 CAR構築物を、本明細書ではまた、26292CAR(S228P+L235E)または26292CAR(S228P+L235E+N297Q)(
図11および13)および32716CAR(S228P+L235E)または32716CAR(S228P+L235E+N297Q)(
図10および12)とも称する。レンチウイルスの上清は、トランスフェクションの24、48、および72時間後において回収し、超遠心分離により濃縮した。
【0067】
[0083]健常ドナーのPBMCおよびAML患者のPBMCへの形質導入:匿名化されたPBMCは、施設内倫理委員会で承認されたプロトコール下で、説明同意文書に署名した健常ドナーおよび患者から得た。健常ドナーでは、毎週3回ずつ、25U/mlのIL−2および0.5ng/mlのIL−15を補充されるCM(本明細書では、T細胞培地と称する)中のOKT3(30ng/ml)を使用して、T細胞を活性化させた。活性化の72時間後、800gおよび32℃で30分間にわたり遠心分離することにより、T細胞に、レンチウイルスを、MOI=3でスピノキュレートした。CARの発現については、レンチウイルスを形質導入した12〜14日後に、フローサイトメトリーで解析した。EGFRtを発現させるT細胞は、既に記載されている[20]通りに濃縮した。T細胞は、急速増殖法[23]により、T細胞培地中で増殖させた。
【0068】
[0084]AML患者に由来するT細胞を遺伝子改変するため、Dynabeads(登録
商標)Human T−Expander CD3/CD28(Life Technologies)を使用して、T細胞培地中に3:1のビーズ:CD3+細胞比で、融解させた末梢血またはアフェレーシス生成物を刺激した。ビーズによる刺激の72時間後、細胞に、レンチウイルスを、MOI=3でスピノキュレートした。初期刺激の9〜14日間後、DynaMag(商標)−50磁石(Life Technologies)を使用してビーズを除去し、T細胞を、T細胞培地中で維持した。AML患者に由来する、CARを発現させるT細胞株は、殺滅アッセイにおける使用の前に免疫磁気選択しなかった。
【0069】
[0085]CFSE増殖アッセイ:T細胞を、製造元の指示書に従い、0.5μMのカルボキシフルオレセインスクシンイミジルエステル(CFSE;Molecular Probes)で標識した。標識されたT細胞を、10U/mlのIL−2を補充したCM中に2:1のE:T比で、刺激細胞を伴い、またはこれを伴わずに共培養した。72〜96時間後、細胞を採取し、ビオチニル化セツキシマブのほか、ヨウ化プロピジウムまたはDAPIで染色して、死細胞を解析から除外した。試料を、フローサイトメトリーで解析して、CFSEの希釈により、EGFRt陽性生細胞の増殖を査定した。
【0070】
[0086]クロム放出アッセイおよびサイトカイン分泌アッセイ:標的細胞を、1時間にわたり、51Cr(PerkinElmer)で標識し、5回にわたり洗浄し、多様なエフェクター対標的(E:T)比でエフェクター細胞を含むウェル1つ当たり5×10
3個の細胞で、3連でアリコートに分けた。4時間にわたる共培養の後で、上清を採取し、ガンマカウンターまたはTopcount(PerkinElmer)を使用して放射線を測定した。特異的溶解パーセントは、既に記載されている[24]通りに計算した。E:T比を10:1とする共培養の24時間後におけるサイトカイン産生は、既に記載されている通りに計算した[25]。
【0071】
[0087]CD107aの脱顆粒および細胞内のサイトカイン産生:T細胞を、E:Tを2:1とする標的細胞と共に、GolgiStop(商標)(BD Biosciences)および抗CD107aクローンであるH4A3またはアイソタイプの対応する対照抗体の存在下、37℃で6時間にわたり共培養した。6時間にわたるインキュベーションの終了時において、細胞を採取し、洗浄し、抗CD3、抗CD4、抗CD8、およびビオチニル化セツキシマブで染色した後、PEコンジュゲートストレプトアビジンを使用して二次染色を施した。次いで、細胞を固定し、製造元の指示書に従い、透過処理し(Cytofix/Cytoperm(商標);BD Biosciences)、抗IFN−
(BD Biosciences;クローンB27)および抗TNF−α(BD Biosciences;クローンMAb11)で染色した。データ収集は、MACSQuant analyzer(Miltenyi Biotec)を使用して実施し、解析は、FCS Express Version 3(De Novo Software)を使用して行った。
【0072】
[0088]コロニー形成細胞アッセイ:免疫磁気カラムによる分離(Miltenyi Biotech)を使用して、臍帯血(CB)単核細胞または初代AML試料に由来するCD34+細胞を選択した。10
3個のCD34+CB細胞を、25×10
3個のエフェクター細胞と共に、4時間にわたり共培養してから、2連のウェル内の半固体のメチルセルロースによる前駆細胞培養物[26]中に播種した。14〜18日後、顆粒球マクロファージコロニー形成単位(CFU−GM)コロニーおよび赤芽球バースト形成単位(BFUE)コロニーを計数した。AML試料では、5×10
3個のCD34+AML細胞を、125×10
3個のエフェクター細胞と共に、4時間にわたり共培養してから、2連のウェル内の半固体のメチルセルロースによる前駆細胞培養物中に播種した。
【0073】
[0089]統計学的解析:統計学的解析は、Graphpad Prism v5.04を
使用して実施した。対応のないスチューデントのt検定を使用して、処置群間の有意差を確認した。
【0074】
結果
CD123CAR発現T細胞の作製
[0090]T細胞の特異性をリダイレクトするため、CD123CARをコードするレンチウイルスベクターを開発した。CARの各々は、それぞれ、2つのCD123特異的scFvである26292および32716[18]のうちの1つをコードする、コドンを最適化した配列を含む。scFvは、ヒトIgG4 Fc領域と、CD28共刺激ドメインと、CD3ζシグナル伝達ドメインとにインフレームで融合されている。CAR配列のすぐ下流には、T2Aリボソームスキップ配列および切断型ヒトEGFR(EGFRt)形質導入マーカー(
図1A)を置く。健常ドナーに由来する、OKT3で刺激されたPBMCに、レンチウイルスで形質導入し、ビオチニル化Erbitux抗体を使用する免疫磁気選択により、CARを発現させるT細胞を単離した後、抗ビオチン抗体磁気ビーズによる二次染色を施した。1REMサイクルの後、単離された細胞を、フローサイトメトリーで、CARの表面発現およびT細胞の表現型について解析した。FcおよびEGFRtのいずれの発現も、3例の健常ドナーから作製されたT細胞株中の90%を超え、最終のT細胞産物は、CD4陽性T細胞とCD8陽性T細胞との混合物からなった(
図1B、1C)。
【0075】
CD123CAR T細胞は、CD123を発現させる腫瘍細胞株を特異的に標的化する
[0091]CD123CAR T細胞の特異性を確認するため、遺伝子改変されたT細胞の、CD123を発現させるように一過性にトランスフェクトされた293T細胞を溶解させる能力を検討した(293T−CD123;
図2A)。いずれのCD123CAR T細胞も、293T−CD123の溶解を効率的にもたらしたが、CD19を発現させるように一過性にトランスフェクトされた293T細胞の溶解はもたらさなかったことから、CD123の特異的認識が裏付けられる(
図2B)。次に、CD123特異的T細胞の、in vitroにおける、CD123を内因的に発現させる腫瘍細胞株に対する細胞溶解能について探索した。LCL細胞株上およびKG1a細胞株上のCD123の発現は、フローサイトメトリーにより確認した(
図2C)。いずれのCD123特異的T細胞株も、LCL標的細胞株およびKG1a標的細胞株を効率的に溶解させたが、CD123−K562細胞株は溶解させなかった(
図2C)。対応するCD19特異的T細胞は、CD19+LCL標的を有効に溶解させたが、CD19−KG1aまたはK562標的は溶解させなかった(
図2D)。mock形質導入親細胞は、陽性対照のLCL−OKT3細胞株だけを溶解させた(
図2D)。
【0076】
CD123CAR T細胞は、CD123陽性標的細胞と共に共培養されると、複数のエフェクター機能を活性化させる
[0092]CD123特異的T細胞のエフェクター機能について検討するため、多様な腫瘍細胞株との共培養後における、IFN−γおよびTNF−αの分泌を測定した。いずれのCD123CARを発現させるT細胞も、CD123+標的細胞と共に共培養されると、IFN−γおよびTNF−αの両方を産生したのに対し、対応するCD19特異的T細胞は、CD19+LCLまたはLCL−OKT3細胞株と共に共培養された場合に限り、これらのサイトカインを分泌した(
図3A)。加えて、いずれのCD123特異的T細胞株も、CD123+細胞株であるLCL、LCL−OKT3、またはKG1aのうちのいずれかと共に共培養されると増殖したが、CD123−K562細胞株と共に共培養されると増殖しなかった(
図3B)。これに対し、対応するCD19 CARを発現させるT細胞は、LCLまたはLCL−OKT3と共に共培養された場合に限り増殖した(
図3B)。
【0077】
CD123CAR T細胞は、初代AML試料と共に共培養されると、複数のエフェクター機能を活性化させる
[0093]初代AML試料におけるCD123の過剰発現は、十分に記載されており[27〜29]、本研究でも確認される(
図14)。多面的なT細胞応答は、感染およびワクチンに対する頑健な免疫応答に極めて重要であり、また、CARでリダイレクトしたT細胞の抗腫瘍活性においても役割を果たしうる[30]。初代AML試料に対する複数のエフェクター経路を活性化させる、CD123CAR T細胞の能力について探索するため、操作されたT細胞を、3つの異なるAML患者試料(179、373、および605)と共に、6時間にわたり共培養し、多色フローサイトメトリー(
図15に示されるゲーティング戦略)を使用して、CD107aの上方調節およびIFN−γおよびTNF−αの産生について査定した。CD123特異的T細胞のCD4区画およびCD8区画のいずれにおいても、CD107aの細胞表面における移動が観察されたのに対し、対応するCD19R T細胞では、初代AML試料に対する感知できるほどの脱顆粒はなかった(
図4A、棒グラフ)。さらにまた、CD107a+CD123CAR T細胞の亜集団も、IFN−γ、TNF−α、または両方のサイトカインを産生した(
図4A、円グラフ)。この多機能性応答は、CD4集団およびCD8集団のいずれについても観察された(
図4Aおよび4B)。加えて、CARを操作されたT細胞の、初代AML試料との共培養に応答して増殖する能力も検討した。いずれのCD123特異的T細胞株も、AML813試料またはプレB−ALL802試料との共培養後において、増殖することが可能であった(
図4C)。増殖は、CD4集団およびCD8集団のいずれについても観察された(
図16)。対応するCD19特異的T細胞は、CD19+プレB−ALL802と共に共培養されると増殖したが、AML813と共に共培養されると増殖しなかった。
【0078】
CD123CARを発現させるT細胞は、in vitroにおいて、初代AML細胞を標的化する
CD123特異的T細胞は、in vitroにおいて、臍帯血細胞によるコロニー形成を消失させない
[0094]CD123は、骨髄系共通前駆細胞(CMP)上で発現する[31]ことを踏まえると、操作されたT細胞の、CD34に富む正常な臍帯血(CB)試料のコロニー形成能力に対する効果について探索した。CB試料による骨髄系および赤血球系のコロニー形成は、E:Tを25:1とする共培養の4時間後において、CD123−CARを発現させるT細胞により、対応するCD19R CAR T細胞と比較してそれほど低減されなかった(
図6AおよびB)。次に、CD123特異的T細胞の、初代クローン原性AML細胞の成長を阻害する能力を、in vitroにおいて検討した。いずれのCD123CAR T細胞株も、白血病コロニーの形成を、対応するCD19R T細胞と比較して著明に減殺した(
図6C)。CD123特異的T細胞が、白血病コロニー形成に対して、正常な骨髄系コロニー形成と比較して大きな影響を及ぼしたことは注目に値する(
図6D、それぞれ、69%の低減対31%の低減)。
【0079】
AML患者に由来するT細胞を遺伝子改変して、CD123CARを発現させ、自己腫瘍細胞を特異的に標的化することができる
[0095]AML患者に由来するT細胞は、アクチンを再極性化せず、自己芽球と共に欠損した免疫シナプスを形成することが公知である[32]。加えて、本発明者らが知る限りにおいて、AML患者に由来する、CARを発現させるT細胞はいまだ記載されていない。したがって、AML患者に由来するT細胞を遺伝子改変して、CD123CARを発現させうるのかどうかについて決定した。低温保存されたPBMC(AML605およびAML722)またはアフェレーシス産物(AML559)を、CD3/CD28ビーズで刺激し、レンチウイルスで形質導入して、CD123CARまたはCD19R対照CARのうちのいずれかを発現させた。3例の患者試料に由来するT細胞は全て、26292
CAR(40〜65%の形質導入効率)、32716 CAR(46〜70%の形質導入効率)、およびCD19R CARを発現させた(CD123特異的T細胞の、初代AML細胞を死滅させる能力を査定するため、対応するCD19R CARまたはCD123CARを発現させるT細胞を、4時間にわたる
51Cr放出アッセイにおいて、CD34に富む初代AML患者試料と共に共培養した。対応するCD19R T細胞とは対照的に、いずれのCD123CAR T細胞株も、全ての被験初代AML患者試料を頑健に溶解させた(
図5A)。加えて、CD123CARを発現させるT細胞の細胞溶解能力の間で統計学的差違が認められなかったのに対し、いずれのCD123特異的T細胞も、細胞傷害作用の、対応するCD19R−CAR T細胞と比較した顕著な増強を裏付けた(
図5B)。
【0080】
[0096]23〜37%の形質導入効率)。AML患者に由来するCAR T細胞の表現型の代表例を、
図7Aに示す。次に、4時間にわたる
51Cr放出アッセイにおいて、CD34に富む自己標的細胞に対する、AML患者に由来するCAR T細胞の細胞溶解の潜在能力を検討した。CD34に富む自己細胞の全ては、百分率および強度を変化させたが、CD123を発現させた(
図7B)。AML605およびAML722に由来するT細胞が、自己芽球を効率的に溶解させるのに対し、AML559に由来するT細胞は、おそらくAML559芽球上の低度で不均質なCD123の発現に起因して、低レベルの自己芽球溶解を表した(
図7C)。
【0081】
考察
[0097]本明細書で記載される実施形態は、組換え免疫毒素(RIT)に由来するscFvを使用する、2つの新規のCD123標的化CARであって、異なるエピトープに結合し、CD123に対して同様の結合親和性を有する[18]CD123標的化CARである、26292および32716の作製を含む。T細胞集団により発現させると、これらのCD123標的化CAR T細胞は、CD123を発現させる細胞に対する特異性をリダイレクトする。標準的な4時間にわたるクロム51(51Cr)放出アッセイを使用したところ、CD123CARを発現させるように操作された健常ドナーのT細胞は、CD123+細胞株および初代AML患者試料を効率的に溶解させた。加えて、CD123CAR T細胞のいずれも、CD123+細胞株および初代AML患者試料との共培養後において、複数のエフェクター機能を活性化させた。さらに、CD123標的化T細胞は、臍帯血(CB)に由来する顆粒球マクロファージコロニー形成単位(CFU−GM)コロニーまたは赤芽球バースト形成単位(BFU−E)コロニーの数を、CD19 CAR T細胞と比較してそれほど低減しなかった。CD19特異的T細胞が、初代AML試料の白血病コロニー形成に対して影響をほとんど及ぼさなかったのに対し、CD123標的化T細胞は、in vitroにおける白血病コロニー形成を著明に低減したことは注目に値する。また、AML患者に由来するT細胞が、CD123CARを発現させ、in vitroにおいて自己芽球を溶解させうることも示された。
【0082】
[0098]2つのCD123特異的CARのうちのいずれかを発現させるT細胞も、in vitroにおいて、CD123を発現させる細胞株および初代AML患者試料を特異的に溶解させることが可能であり、複数のエフェクター機能を、抗原特異的な形で活性化させうることから、いずれのエピトープも、処置のための潜在的な標的であることが裏付けられる。CD123+細胞と共に共培養したところ、CD123CARを操作されたT細胞株の間で、標的細胞の殺滅、サイトカインの分泌、または増殖に関して大きな差異は観察されなかった。これについての1つの可能な説明は、CD123−CARにおいて使用される、CD123特異的scFvの結合親和性が、ナノモル範囲にあり、3倍未満の差違であり、このため、いずれのscFvも、抗原への結合の標的化において顕著な利点を付与しないということである[18]。
【0083】
[0099]AML細胞上の複数の細胞表面抗原の発現については、十分に記載されている[4、27、34]。これらの抗原のうちのいくつかに対する、CARを発現させるT細胞を介する標的化は、実現可能でない場合がある。例えば、AML関連抗原であるTIM−3は、消耗したT細胞のサブセット上で発現し[35、36]CARで操作されたT細胞を使用して、TIM−3を標的化する結果として、遺伝子改変細胞の自己溶解がもたらされる可能性がある。加えて、CD47も、遍在的に発現する[37]ため、CARで操作されたT細胞により標的化可能となる可能性が低い。CD33分化抗原は、主に骨髄系細胞上で発現し、現在、CD33/CD3二特異的なT細胞係合抗体であるゲムツズマブオゾガマイシン、およびCD33 CARなど、CD33を標的化する免疫療法が、臨床状況および前臨床状況において使用されている[17、38、39]。TIM−3と同様に、CD33も、T細胞のサブセット上で発現することから、CARベースの治療のための理想的な標的とはならない[40]。加えて、CD33標的化療法の抗白血病活性は、正常な造血幹細胞(HSC)の長期にわたる自己再生時における、CD33発現の結果である可能性が高い、造血および血球減少の回復の緩徐化[41]を伴うことが多かった。さらに、肝毒性も、CD33標的化処置の一般的な副作用であり、CD33+クッパー細胞の意図されない標的化に起因する可能性がある[42]。
【0084】
[00100]CD123の発現は、T細胞上では見られず、主に骨髄系統の細胞に限定され
[43]、大部分のHSC上でも見られない[27]。まとめると、これらの観察は、CD123を、CARに媒介されるT細胞療法のための魅力的な標的とした。CD123に特異的な治療剤は、第I相試験(ClinicalTrials.gov ID:NCT00401739およびNCT00397579)において好適な安全性プロファイルを表した。残念ながら、これらの治療は、処置された患者の大半において寛解を誘導できなかった。本発明で作製された、CD123−CARを発現させるT細胞は、in vitroにおいて、CD123+細胞株および初代AML試料に対する強力な細胞溶解能を表した。下記で記載される研究は、プアリスクのAMLを有する患者に由来する初代試料が、CD123CAR T細胞に媒介された細胞傷害作用を受けやすいことを示す。まとめると、短期間の細胞傷害作用アッセイのために使用された初代試料の小規模のコホートでは、診断時において高リスクの特徴を示し、かつ/または化学療法耐性を示したAML患者試料は、CD123+細胞株を使用する実験において観察されたのと同様に、CD123CARによる殺滅に対して感受性であった。さらに、これらの結果が大規模な試料コホートについても当てはまることを確認する解析も必要となろう。
【0085】
[00101]多機能性T細胞応答は、ウイルス感染の制御と相関し、抗腫瘍CAR T細胞
応答においても重要でありうる[44]。実際、CD19 CAR T細胞療法に対して応答性の患者は、ex vivoにおいて、CD19+標的に応答して、治療後における、検出可能なT細胞応答(すなわち、脱顆粒、サイトカインの分泌、または増殖)を示す[11、12、14]。下記の実施例では、CD123+細胞株および初代AML試料の両方に応答した、CD107aの上方調節、炎症性サイトカインの産生、およびCD123特異的T細胞の増殖を解析することにより、CD123−CARを発現させるT細胞の機能性が裏付けられた。さらに、多機能性は、CD4+区画およびCD8+区画のいずれにおいても観察されたが、これは、腫瘍の微小環境内で、持続的な抗白血病活性を促進し、抗白血病活性をブーストする可能性がある[45、46]。4−1BBなど、他の共刺激ドメインの組入れ、および分化の程度が小さな「若い」T細胞の使用はさらに、CD123CAR応答を増進する可能性があり、活発な研究領域である[9、47]。
【0086】
[00102]さらに、CD123特異的T細胞は、正常な前駆細胞によるコロニー形成を阻
害しない(E:Tを25:1としてもなお)。系統−CD34+CD38−細胞上のCD123の発現は、骨髄系共通前駆細胞の顕徴であり、このため、CD123CAR T細胞の標的である可能性が高い[31]。CB細胞を、CD123特異的T細胞とインキュ
ベートしたところ、骨髄系由来コロニーの相対百分率の減少が観察されたが、対応するCD19R CAR T細胞より顕著な減少ではなかった。限定された試料サイズは、この結果に起因する可能性があり、さらなる実験により、CD123CAR T細胞で処置された臍帯血試料中のCFU−GM形成の顕著な減少を明らかになる可能性もある。加えて、播種する前の4時間にわたる、T細胞とCB細胞との共培養は、正常な骨髄系前駆細胞のコロニー形成に対する効果を観察するのに十分に長い時間ではない可能性もあり、インキュベーション時間を長くすると、観察される骨髄系由来コロニーの数が減少する可能性もある。しかし、CB細胞に使用されたのと同じ方法を使用して、CD34に富む初代AML患者試料を、CD123CAR T細胞とインキュベートしたところ、形成される白血病コロニー数の実質的な減少が観察されたことから、4時間にわたるインキュベーション時間は、白血病コロニー形成と正常コロニー形成との間で効果を観察するのに十分であることが示唆される。代替的に、CB細胞上のCD123の相対発現が、AML細胞と比較して小さいことの部分的な結果として、in vitroにおいて、CD123CAR T細胞に、骨髄系由来コロニーの形成を変化させる能力がない可能性がある。他の研究者らは、CD123が、系統−CD34+CD38−HSCの小さな画分内だけで発現することを裏付けており、CD123を標的化する薬剤を使用する2つの第I相試験は、長期の骨髄抑制は見られないことを明らかにしたが、CD123CAR T細胞療法の、造血に対する効果を査定する、さらなる研究が必要とされている。望ましくないオフターゲット毒性を制御するために、EGFRtをレンチウイルス構築物内に組み入れて、CARを発現させるT細胞の除去を可能とした。また、CD123を発現させる正常な細胞を死滅させる潜在的可能性を踏まえ、誘導性カスパーゼ9によるアポトーシススイッチ[48]またはCAR mRNAの電気穿孔[49]など、CAR T細胞活性をモジュレートする他の戦略も、大きな関心の的となっている。
【0087】
[00103]さらに、活動性疾患を有するAML患者に由来する、低温保存されたPBMC
を遺伝子改変して、CD123CARを発現させ、試料3例中の2例において、自己白血病性芽球に対する強力な細胞溶解活性を示しうることも裏付けられた。AML559に由来する、CD123CARを発現させるT細胞は、低レベルのCD123を発現させる自己芽球を溶解させなかったが、これらのCAR T細胞は、CD123+LCL細胞株およびCD123+KG1a細胞株を溶解させた(データは示さない)ことから、作製されたT細胞は、CD123を発現させる標的細胞を標的化する潜在的な可能性を有することが示唆される。本発明者らが知る限りにおいて、これは、AML患者に由来するT細胞を、CARを発現させ、自己芽球に対する抗原特異的細胞傷害作用のリダイレクトを示すように操作しうることの初めての実証である。
【0088】
[00104]まとめると、下記の実施例において記載される研究の結果により、CD123
CAR T細胞は、CD123+細胞とCD123−細胞とを識別することが可能であり、プアリスクの初代AML患者試料のパネルに対して、T細胞の複数のエフェクター機能を活性化させうることが裏付けられる。CD123特異的T細胞は、in vitroにおいて、正常な前駆細胞コロニーの形成をそれほど変化させず、クローン原性骨髄性白血病性前駆細胞の成長を大幅に低減したことは注目に値する。また、AML患者に由来するT細胞を遺伝子改変して、CD123特異的CARを発現させることが可能であり、in vitroにおいて、自己芽球を溶解させうることも裏付けられた。したがって、CD123CAR T細胞は、AMLの免疫療法のための有望な候補細胞である。
【0089】
実施例2:CD123CARが形質導入されたT細胞は、in vivoにおいて、白血病の進行を遅延させる
[00105]CD123CAR構築物:26292CAR(S228P+L235E)およ
び32716CAR(S228P+L235E)構築物は、上記の実施例1で記載した通りに作製した。また、さらに2つのCD123CAR構築物であって、各scFvのIg
G4ヒンジ内の297位にさらなる突然変異(N297Q)を組み入れた構築物(「26292CAR(S228P+L235E+N297Q)」および「32716CAR(S228P+L235E+N297Q)」)も作製した(
図12および13、突然変異を太字とし、下線を付した)。
【0090】
[00106]NSGマウスに、AML腫瘍細胞を移植し(0日目)、5日目に、26292
CAR(S228P+L235E)または26292CAR(S228P+L235E+N297Q)を発現させる、5.0×10
6個のCAR+T細胞で処置し、生物発光イメージングにより、白血病の進行をモニタリングした。
図8において示される通り、8日目において、白血病負荷は、26292CAR(S228P+L235E)が形質導入されたT細胞で処置する、マウスの処置日と比較して進行したことから、ヒンジ領域の位置S228PおよびL235Eにおける突然変異を有する、CD123CAR構築物が形質導入された細胞は、in vivoにおいて、効果を及ぼさなかったことが指し示される。これに対し、26292CAR(S228P+L235E+N297Q)が形質導入されたT細胞で処置されたマウスは、処置日と比較した腫瘍サイズの低減を示したことから、ヒンジ領域の297位における突然変異(N297Q)の付加は、in vivoにおいて、白血病の進行を遅延させることが可能なCD123CAR構築物を結果としてもたらすことが指し示される。
【0091】
参考文献
以下に列挙する参考文献、特許および公開された特許出願、ならびに上記明細書中に引用された全ての参考文献は、本明細書中に完全に記載されているかのように、それらの全体が参照により本明細書中に組込まれる。
【0092】
【化1】
【0093】
【化2】
【0094】
【化3】
【0095】
【化4】
【0096】
【化5】
発明の態様
[1]CD123キメラ抗原受容体(CD123CAR)遺伝子であって、
S228Pアミノ酸置換およびL235Eアミノ酸置換をコードするヌクレオチド配列を含む修飾IgG4ヒンジ領域と、
T細胞受容体(TCR)ゼータ鎖のシグナル伝達ドメインと
にインフレームで融合した抗CD123scFv領域を含む、前記遺伝子。
[2]修飾IgG4ヒンジ領域が、N297Q置換をコードするヌクレオチド配列をさらに含む、態様1に記載のCD123CAR遺伝子。
[3]抗CD123scFv領域が、組換え免疫毒素26292または32716のVHドメインおよびVLドメインをコードする、態様1に記載のCD123CAR遺伝子。
[4]抗CD123scFv領域が、ヒト化されている、態様1に記載のCD123CAR遺伝子。
[5]CD27共刺激シグナル伝達ドメイン、CD28共刺激シグナル伝達ドメイン、4−1BB共刺激シグナル伝達ドメイン、OX40共刺激シグナル伝達ドメイン、またはこれらの任意の組合せから選択される少なくとも1つの共刺激シグナル伝達ドメインをさらに含む、態様1に記載のCD123CAR遺伝子。
[6]配列番号1、配列番号2、配列番号3、または配列番号4から選択されるヌクレオチド配列を含む、態様1に記載のCD123CAR遺伝子。
[7]遺伝子が、配列番号9、配列番号10、配列番号11、または配列番号12を含むアミノ酸配列をコードする、態様1に記載のCD123CAR遺伝子。
[8]遺伝子が、ウイルスベクター内に挿入された発現カセットの一部である、態様1に記載のCD123CAR遺伝子。
[9]発現カセットが、切断型上皮成長因子受容体(EGFRt)、切断型CD19(CD19t)遺伝子、または誘導性カスパーゼ9遺伝子から選択されるアクセサリー遺伝子をさらに含む、態様7に記載のCD123CAR遺伝子。
[10]CD123CAR遺伝子を含む発現カセットを含むウイルスベクターにより形質導入されたヒトT細胞集団であって、該遺伝子は、
S228Pアミノ酸置換およびL235Eアミノ酸置換をコードするヌクレオチド配列を含む修飾IgG4ヒンジ領域と、
少なくとも1つの共刺激シグナル伝達ドメインと、
T細胞受容体(TCR)ゼータ鎖のシグナル伝達ドメインと
にインフレームで融合した抗CD123scFv領域を含み、
CD123CAR遺伝子を発現する、前記ヒトT細胞集団。
[11]修飾IgG4ヒンジ領域が、N297Qアミノ酸置換をコードするヌクレオチド配列をさらに含む、態様10に記載のヒトT細胞集団。
[12]CD123CAR遺伝子が、配列番号1、配列番号2、配列番号3、または配列番号4から選択されるヌクレオチド配列を含む、態様10に記載のヒトT細胞集団。
[13]遺伝子が、配列番号9、配列番号10、配列番号11、または配列番号12を含むアミノ酸配列をコードする、態様9に記載のヒトT細胞集団。
[16]対象におけるAMLを処置する方法であって、第1のCD123CAR遺伝子が形質導入された第1のT細胞集団を対象に投与するステップを含み、第1のCD123CAR遺伝子が、
S228P置換、L235E置換、およびN297Q置換をコードするヌクレオチド配列を含む修飾IgG4ヒンジ領域と、
少なくとも1つの共刺激シグナル伝達ドメインと、
T細胞受容体(TCR)ゼータ鎖のシグナル伝達ドメインと
にインフレームで融合した抗CD123scFv領域を含む、前記方法。
[17]第1のCD123CAR遺伝子が、配列番号3または配列番号4から選択されるヌクレオチド配列を含む、態様16に記載の方法。
[18]第1のCD123CAR遺伝子が形質導入された第1のT細胞集団を、第2のCD123CAR遺伝子が形質導入された第2のT細胞集団と組み合わせて、対象に投与するステップをさらに含み、第2のCD123CAR遺伝子が、
S228P置換、L235E置換、およびN297Q置換を含む修飾IgG4ヒンジ領域と、
少なくとも1つの共刺激シグナル伝達ドメインと、
T細胞受容体(TCR)ゼータ鎖のシグナル伝達ドメインと
にインフレームで融合した抗CD123scFv領域を含む、態様17に記載の方法。
[19]第2のCD123CAR遺伝子が、配列番号3または配列番号4から選択されるヌクレオチド配列を含み、第2のCD123CAR遺伝子のヌクレオチド配列が、態様17で選択されたヌクレオチド配列と同じではない、態様18に記載の方法。
[20]第1のCD123CAR遺伝子が形質導入された第1のT細胞集団を、幹細胞移植、放射線療法、手術による切除、化学療法剤、免疫療法剤、標的化治療剤、またはこれらの組合せから選択される1種または複数の抗がん治療と組み合わせて投与するステップをさらに含む、態様16に記載の方法。