(58)【調査した分野】(Int.Cl.,DB名)
前記コントローラに通信可能に結合された第1の温度センサおよび第2の温度センサを備え、前記第1の温度センサは、前記周囲温度を示すフィードバックを前記コントローラに提供するように構成され、前記第2の温度センサは、前記凝縮器を出る前記作動流体の温度を示すフィードバックを前記コントローラに提供するように構成される、請求項1に記載の冷房システム。
前記コントローラは、前記周囲温度が目標温度未満またはそれに等しい場合、前記自由冷却回路の前記流れ制御弁を閉鎖し、前記自由冷却回路の前記凝縮器バイパス弁を開放するように構成される、請求項1に記載の冷房システム。
前記自由冷却回路の前記加熱器を備え、前記コントローラは、前記周囲温度が前記目標温度を下回った場合に前記加熱器をオンにするように構成される、請求項4に記載の冷房システム。
前記コントローラは、前記流れ制御弁が所定の時間にわたって閉じられた後、作動流体を前記凝縮器に方向付けるように前記自由冷却回路の前記流れ制御弁を開放位置に向けて調整するように構成され、および前記コントローラは、前記自由冷却回路の前記流れ制御弁が全開位置に達すると、前記自由冷却回路の前記凝縮器バイパス弁を閉鎖位置に向けて調整するように構成される、請求項4に記載の冷房システム。
前記プロセッサ実行可能命令が、前記熱交換器を出る前記冷却流体の前記第1の温度に基づいて前記凝縮器の前記少なくとも1つのファンの前記第1の速度を調整するように構成される、請求項9に記載の1つまたは複数の有形の非一時的機械可読媒体。
前記プロセッサ実行可能命令が、前記凝縮器を出る前記作動流体の前記第2の温度または前記凝縮器の前記少なくとも1つのファンの第1のファンの前記第1の速度、あるいはその両方に基づいて前記ポンプの前記第2の速度を調整するように構成される、請求項9に記載の1つまたは複数の有形の非一時的機械可読媒体。
前記自由冷却回路の前記凝縮器の前記少なくとも1つのファンの前記第1の速度を調整することが、前記熱交換器を出る前記冷却流体の前記第1の温度に基づいて前記凝縮器の前記少なくとも1つのファンの前記第1の速度を調整することを含む、請求項13に記載の方法。
前記自由冷却回路の前記ポンプの前記第2の速度を調整することが、前記凝縮器を出る前記作動流体の前記第2の温度、または前記凝縮器の前記少なくとも1つのファンの第1のファンの前記第1の速度、あるいはその両方に基づいて、前記ポンプの前記第2の速度を調整することを含む、請求項13に記載の方法。
【発明を実施するための形態】
【0008】
本開示は、負荷を冷却するための自由冷却システムおよび機械冷却システムを含む冷房システム用の拡張制御システムに関する。本明細書において、自由冷却システムは、流体を外気と熱交換の関係に置くシステムを含むことができる。相応して、自由冷却システムは、周囲環境の外気を冷却および/または加熱流体として使用することができる。冷房システムは、自由冷却システムを単独で使用するか(例えば、自由冷却モード)、機械冷却システムを単独で使用するか(例えば、機械冷却モード)、または自由冷却システムおよび機械冷却システムを同時に使用する(例えば、混成冷却モード)ことができる。どのシステムを動作させるかを特定するために、冷房システムは、冷房システムの動作状態(例えば、ファンの速度、コンプレッサの速度、外気温度、冷却流体温度)を測定する様々なセンサおよび/または他の観測装置を含むことができる。例えば、本開示の実施形態によれば、どのシステムを動作させるかの特定については、少なくとも、望ましい冷却負荷要求(例えば、負荷の望ましい温度)および/または外気温度(例えば、冷房システムの周囲環境の温度)に依存し得る。
【0009】
一般的に、自由冷却システムは、機械冷却システム(例えば、蒸気圧縮冷凍サイクルのコンプレッサ)よりも電力消費が少ないと考えられるので、通常、冷房システムは、機械冷却システムを動作させる前に、自由冷却システムの空気流を最大空気流まで増大させる。例えば、自由冷却システムは、熱交換器のコイルを流れる冷却流体を冷却するために、空気をコイルに向かって誘導する1つまたは複数のファンを含むことができる。ファンが動作するために、電力が1つまたは複数のファンに供給され、それにより、空気がコイルを越えて流れて、冷却流体から熱を吸収することができる。自由冷却システムによって行われる自由冷却の量は、複数の定速ファンを回転させながら、コイルバイパス弁を制御することで調整することができる。
【0010】
機械冷却システムは、1つまたは複数の蒸気圧縮冷凍サイクルを含むことができ、各蒸気圧縮冷凍サイクルは、蒸発器、コンプレッサ、凝縮器、および/または膨張装置を含む。冷媒は、可変速駆動体によって駆動することもできるコンプレッサによって送出されて、機械冷却システム(例えば、冷媒ループ)内を通ることができる。コンプレッサに連結された可変速駆動体は、コンプレッサの速度の制御、ひいては、蒸気圧縮冷凍サイクルによって行われる冷却の量の制御を可能にする。
【0011】
自由冷却システムのファンは、機械冷却システムのコンプレッサよりも電力消費が少ないと考えられるので、通常、冷房システムは、機械冷却システムのコンプレッサに動力を供給する前に、自由冷却システムを最大能力(例えば、最大ファン速度)で動作させる。さらに、従来の冷房システムは、電力が機械冷却システムの1つまたは複数のコンプレッサに供給されたときに、自由冷却システムを最大能力(例えば、最大ファン速度)で動作させ続けることがある。本実施形態は、自由冷却システムのファンの速度を最大で閾値速度まで上げることで、冷房システム全体(例えば、自由冷却システムおよび機械冷却システム)に入力される電力量を最小限にしようとするものであり、この場合に、閾値速度は、ファンの最大速度(例えば、ファンが物理的に超えることができない速度)未満である。場合によっては、ファンが閾値速度に達したときに(またはファンが閾値速度に達する前に)、機械冷却システムのコンプレッサに電力を供給することができる。冷媒システムをそのような形で動作させることで、システムに供給される電力量を最小限にすることができ、それにより、冷房システムの効率が高くなる。
【0012】
ここで図を参照すると、
図1は、冷房システムの例示的な用途を示している。そのようなシステムは通常、暖房、換気、空調、および冷房(HVAC&R)分野内およびこの分野外の両方で、様々な環境に適用することができる。冷房システムは、データセンタ、電気装置、フリーザ、クーラ、または他の環境に蒸気圧縮冷凍、吸収冷凍、および/または熱電冷却を通じて冷気を供給することができる。しかし、現在検討されている用途として、冷房システムは、住居、ビルディング、構造物などの空間または包囲体を暖める、または冷却するために、住居用途、商業用途、軽工業用途、工業用途、および他の任意の用途で使用することもできる。さらに、冷房システムは、適切な場合に、様々な分野の基本冷房および暖房を行うために、工業用途で使用することができる。
【0013】
図1は、この場合に1つまたは複数の熱交換器を使用できるビルディング環境管理用の暖房、換気、空調、および冷房システム(HVAC&R)である例示的な用途を示している。例えば、ビルディング10は、冷房システム12およびボイラー14を含むシステムによって冷房される。示すように、冷房システム12は、ビルディング10の屋上に配置され、ボイラー14は地下に配置されているが、冷房システム12およびボイラー14は、他の機器室またはビルディング10の隣の区域に配置することができる。冷房システム12は、空冷装置および/または水(または、グリコールなどの他の冷却流体)を冷却する冷凍サイクルを実装した機械冷却システムである。冷房システム12は、機械冷却回路、自由冷却システム、ならびにポンプ、弁、および配管などの関連する機材を含むことができる単一構造物内に収容されている。例えば、冷房システム12は、自由冷却システム、機械冷却システムを内蔵した単一収容庫の屋根ユニットとすることができる。ボイラー14は、水を加熱するための炉を含む閉鎖容器である。冷房システム12およびボイラー14からの水(または他の冷却流体)は、水管16によってビルディング10中を循環する。水管16は、個々の階でビルディング10の仕切られた置き場内に配置されたエアハンドラ18に通される。
【0014】
エアハンドラ18は、エアハンドラ18間で空気を配送するように構成された配管20に接続され、外部取込み口(図示せず)からの空気を受け入れることができる。エアハンドラ18は、加熱または冷却された空気を供給するために、冷房システム12からの冷水と、ボイラー14からの温水とを循環させる熱交換器を含む。エアハンドラ18内のファンは、熱交換器のコイルを横断した空気を吸い込み、調整された空気をルーム、アパートメント、またはオフィスなどのビルディング10内の環境に送って、環境を、指定された温度に維持する。ここではサーモスタット22を含むとして示す制御装置は、調整された空気の温度を示すために使用することができる。制御装置22を使用して、エアハンドラ18を通り抜けたエアハンドラ18からの空気の流れを制御することもできる。当然ながら、水の流れおよび圧力を調整する制御弁、ならびに/または水、空気などの温度および圧力を検出する温度トランスデューサもしくはスイッチなどの他の装置もシステム内に含むことができる。さらに、制御装置は、ビルディング10から遠く離れたシステムを含む他のビルディング制御または観測システムと一体化された、および/またはそれらのシステムから独立したコンピュータシステムを含むことができる。なお、水が冷却流体として説明されたが、冷房システム12において、任意の適切な冷却流体を使用することができることに留意されたい。
【0015】
本開示の実施形態によれば、冷房システム12は、自由冷却システムを含むように改良および/または拡張できる機械冷却システムを含むことができる。例えば、
図2は、冷房システム12全体の効率を高めるために、機械冷却システム(例えば、蒸気圧縮冷凍サイクル)および自由冷却システムの両方を含むことができる冷房システム12の斜視図である。特定の実施形態では、冷房システム12の機械冷却システムは、Johnson Controls Incorporatedから入手可能なYVAA冷却機と同様な空冷式可変速ねじ冷却機とすることができる。例えば、機械冷却システムは、可変速凝縮器ファン(例えば、1つまたは複数の空冷式熱交換器と共に使用することができるファン)を含む2回路の可変速ねじ冷却機とすることができる。さらに、冷房システム12は、単独で、または機械冷却システム(例えば、蒸気圧縮冷凍サイクル)と組み合わせて使用できる自由冷却システムを含むことができる。
【0016】
特定の実施形態では、冷房システム12は、外気(例えば、冷房システムの周囲環境の空気)の温度および/または冷却負荷要求(例えば、負荷が要求する冷却量)に基づいて、機械冷却システムおよび/または自由冷却システムを動作させるかどうか(および、どのように動作させるか)を判断するように構成された制御システムを含むことができる。相応して、冷房システム12は、冷却負荷要求を満たすために、機械冷却システムを単独にて(例えば、機械冷却モード)、自由冷却システムを単独にて(例えば、自由冷却モード)、または機械冷却システムおよび自由冷却システムを同時に(例えば、混成冷却モード)動作させることができる。
【0017】
上記のように、冷房システム12に入力されるエネルギ量を最小限にして、冷房システム12の効率を最大限にすることが望ましい。典型的な冷房システムでは、自由冷却システムのファンの速度は、望ましい冷却負荷を達成するために、機械冷却システムのコンプレッサが作動する前に最大にすることができる。しかし、ファンの最大速度に達する前に機械冷却システムのコンプレッサを作動させる方が、機械冷却システムのコンプレッサを作動させる前にファンを最大速度で動作させるよりもエネルギの消費が少ないことがあると現時点で分かっている。
【0018】
例えば、
図3は、本開示の実施形態に従って使用できる冷房システム12のブロック図である。例示した実施形態に示すように、冷房システム12は、自由冷却システム52および機械冷却システム54(例えば、1つまたは複数の蒸気圧縮冷凍サイクル)を含む。自由冷却システム52は、冷却流体58(例えば、水および/またはグリコール)を受け入れて、冷却することができる空冷式熱交換器56を含むことができる。例えば、空冷式熱交換器56は、1つまたは複数のファン60によって形成される流路59に沿って配置することができ、これらのファン60は、空冷式熱交換器56のコイルを越えるよう空気を誘導する。外気が比較的低い温度の場合、コイルを越えるように誘導された空気は、冷却流体58から熱を吸収し、それにより、冷却流体58の温度を下げ、空冷式熱交換器56のコイルを越えて流れる外気の温度が上がる。特定の実施形態では、冷却流体58については、空冷式熱交換器56が負荷62から受け取ることができる。したがって、冷却流体58は、最終的に負荷62に向かって再度送られて、負荷62(例えば、誘導されてビルディングまたは機械の中を通ることができる空気または流体)の温度を下げることができる。
【0019】
しかし、自由冷却システム52は、外気温度が比較的高い場合に効果的でないことがある。例えば、空冷式熱交換器56において、冷却流体58と外気との間で起こる熱伝達の量は、外気温度が高くなるにつれて少なくなり得る(例えば、外気が比較的温かい場合に、外気は、冷却流体58から同じだけ熱を吸収することができない)。したがって、冷房システム12は、自由冷却システム52に向かって流れることができる冷却流体58の量を制御する三方弁64を含むことができる。例えば、三方弁64は、冷却流体58が機械冷却システム54の蒸発器66に向かって直接流れるのを阻止することができ、同時に、外気温度が負荷62から戻った冷却流体58の温度よりも十分に低い場合に、自由冷却が冷却負荷要求の少なくとも一部を担うように、流れが空冷式熱交換器56を通るのを可能にする。この場合に、冷却流体58は、冷却流体58をさらに冷却することができる蒸発器66を流れることができる。
【0020】
図3の例示した実施形態に示すように、三方弁64は、ポンプ65から冷却流体58を受け取り、冷却流体58の流れを負荷62から直接的に蒸発器66に向かって送るか、または空冷式熱交換器56から蒸発器66に向かって送るかの間で選択することができる。特定の実施形態では、三方弁64は、T字管と、弁の位置を調整できる、アクチュエータに機械連結された2つの二方蝶形弁(例えば、他方の蝶形弁が閉じたときに、一方の蝶形弁が開く)を含むことができる。なお、
図3の実施形態では、三方弁64は、空冷式熱交換器56の上流に配置されているが、別の実施形態では、三方弁64は、空冷式熱交換器56の下流に配置することができる。さらに別の実施形態では、三方弁64は、空冷式熱交換器56に向かう冷却流体58の流れと、負荷62から直接的に蒸発器66に向かう冷却流体58の流れとを同時に供給および制御するように構成することができる。
【0021】
自由冷却が、実質的にすべての冷却負荷要求を果たすことができる場合に(例えば、外気温度が閾値温度未満の場合に)、機械冷却システム54は動作しない。したがって、冷却流体58は、実質的な温度変化を受けることなく蒸発器66を流れる(例えば、熱は、実質上、蒸発器66内で冷却流体58からの移動ではない)。一部の実施形態では、冷房システム12は、冷却流体58(または冷却流体58の一部分)が蒸発器66を迂回するのを可能にするバイパス弁67を含むことができる。特定の実施形態では、蒸発器66を迂回することで、蒸発器66を流れるときに冷却流体58が受ける圧力降下を実質的に回避することができる。
【0022】
自由冷却が、実質的にすべての冷却負荷要求を果たすことができない場合に、機械冷却システム54が始動することができる(例えば、単独か、または自由冷却システム52と同時に動作する)。特定の実施形態では、機械冷却システム54は、いくつかある構成要素の中で特に、蒸発器66、コンプレッサ70、凝縮器72、および/または膨張装置74を含む蒸気圧縮冷凍サイクル68とすることができる。例えば、機械冷却システム54は、冷媒76を循環させるように構成することができ、冷媒76は、冷却流体58との熱伝達によって蒸発器66内で蒸発する(例えば、気化する)ことができる(例えば、冷却流体58は、蒸発器66内で熱エネルギを冷媒76に伝達する)。したがって、蒸発器66内で、冷却流体58から冷媒76に熱を伝達することができ、それにより、(例えば、自由冷却システム52の代わりにか、または自由冷却システム52に加えて)冷却流体58の温度を下げることができる。特定の実施形態では、冷却流体58および/または冷媒76は、グリコール(または、グリコールおよび水の混合物)を含むことができる。一部の実施形態では、凝縮器72の1つまたは複数のコイルセットは、微小チャネルコイルを含むことができる。
【0023】
空冷式熱交換器56は、熱伝達を改善するための内部拡張管とルーバ付きフィンとを有する円管のプレートフィンコイルを含むことができる。蒸発器66は、ろう付けプレートの直膨式(DX)シェルアンドチューブ型熱交換器、満液式シェルアンドチューブ型熱交換器、流下液膜式シェルアンドチューブ型熱交換器、複合流下液膜および満液式熱交換器、またはそれらの任意の組み合わせとすることができる。DX蒸発器を使用する実施形態の場合、冷媒はチューブ側にあり、冷媒は、蒸発器を貫通する複数の流路(例えば、2つ、3つ、4つ以上)を進むことができる。冷媒がシェル側にある蒸発器を使用する実施形態の場合、水またはグリコールは、1つ、2つ、3つ、またはそれを超える流路で、チューブ内を流れることができる。
【0024】
蒸発器66を出た冷媒76は、コンプレッサ70に向かって流れることができ、コンプレッサ70は、冷媒に蒸気圧縮冷凍サイクル68の中を循環させるように構成されている。さらに、コンプレッサ70は、冷媒76が、蒸気圧縮冷凍サイクル68の中を流れるときに(例えば、循環するときに)、冷媒76の圧力を高めることができる。冷媒76の圧力を高めることで、冷媒76の温度を上げることもできるので、コンプレッサ70を出た冷媒76の温度は、コンプレッサ70に入る冷媒76の温度よりも高い。これを受けて、冷媒76が、最終的に蒸発器66内の冷却流体58から熱を吸収できるように、冷媒76の温度を下げることが望ましい。
【0025】
したがって、コンプレッサ70を出た冷媒76は、凝縮器72に向かって流れることができる。特定の実施形態では、機械冷却システム54の凝縮器72は、自由冷却システム52の空冷式熱交換器56と同様の空冷式熱交換器とすることができる。凝縮器72が空冷式熱交換器である実施形態では、凝縮器72は、空冷式熱交換器56とファン60を共有することができる。
図3の例示的な実施形態に示すように、凝縮器72は、自由冷却時に冷却流体58が外気温度に近づくことができるように、空気流路59において、空冷式熱交換器56の下流に配置することができる。別の実施形態では、凝縮器72は、ファン60とは別個のファン77を含むことができる(例えば、
図4および
図5)。さらに別の実施形態では、機械冷却システム54の凝縮器72は、冷媒76から別の媒体(例えば、水、空気)に熱を伝達するように構成された任意の適切な熱交換器とすることができる。いずれにせよ、凝縮器72は、冷媒76の温度を下げ、通常、冷媒76を液化する(例えば、凝縮させる)ように構成されている。
【0026】
特定の実施形態では、機械冷却システム54は、冷媒76の圧力を下げるだけでなく、冷媒76の温度をさらに下げることができる膨張装置74を含むこともできる。膨張装置74は、膨張弁、フラッシュタンク、膨張コイル、または冷媒76の圧力を下げる(かつ、冷媒76の温度を下げる)ように構成された他の任意の装置を含むことができる。他の実施形態では、機械冷却システム54は、膨張装置74を使用することができない。
【0027】
上記のように、冷却流体58は、自由冷却システム52および/または機械冷却システム54の蒸発器66を流れることで温度を下げることができる。しかし、冷却負荷要求(例えば、負荷62の所定の、および/または望ましい温度、ならびに/あるいは蒸発器66を出た冷却流体58の所定の温度)が、自由冷却システム52が単独で実現できる量を上回る場合、自由冷却システム52および機械冷却システム54は、同時に動作することができる(例えば、混成冷却モード)。相応して、冷却流体58は、自由冷却システム52の空冷式熱交換器56に向かって送ることができ、空冷式熱交換器56において、冷却流体58は、第1の温度から第2の温度に温度を下げることができる(例えば、第2の温度は第1の温度よりも低い)。さらに、冷却流体58は、空冷式熱交換器56を出ると機械冷却システム54の蒸発器66に向かって送ることができる。冷却流体58は、混成冷却モード時に、第2の温度から第3の温度に温度をさらに下げることができる(例えば、第3の温度は、第2の温度よりも低く、したがって、第1の温度よりも低い)。蒸発器66を出ると、冷却流体58は、負荷62に向かって送ることができ、負荷62において、冷却流体58を使用して、負荷62を冷却することができる。
【0028】
特定の実施形態では、冷却流体58の第1の部分は、自由冷却システムの空冷式熱交換器56に向かって送ることができ、一方、冷却流体58の第2の部分は、(例えば、三方弁64を介して)機械冷却システム54の蒸発器66に向かって送ることができる。他の実施形態では、概ねすべての冷却流体58が、蒸発器66に入る前に空冷式熱交換器56を流れるか、または蒸発器66を直接流れることができる。
【0029】
冷房システム12は、三方弁64の位置、バイパス弁67の位置、1つまたは複数のファン60の速度、1つまたは複数のファン77の速度(例えば、
図5)、コンプレッサ70の速度、および/または負荷62に供給される冷却流体58の温度に影響を及ぼし得る他の任意の動作状態を調整できるコントローラ78を含むことができる。相応して、冷房システム12は、冷房システム12の動作状態を観測できる1つまたは複数のセンサを含むことができる。例えば、冷房システム12は、戻り冷却流体温度センサ81、供給冷却流体温度センサ83、吸い込み圧力センサ85、吐出圧力センサ87、および/または外気温度センサ89を含むことができる。温度および/または圧力センサは、コントローラ78にフィードバックを供給することができ、次いで、コントローラ78は、1つまたは複数のセンサから受け取ったフィードバックに基づいて、三方弁64の位置、弁67の位置、1つまたは複数のファン60の速度、1つまたは複数のファン77(
図5)の速度、および/またはコンプレッサ70の速度を調整することができる。
【0030】
特定の実施形態では、コントローラ78は、プロセッサ80およびメモリ82を含むことができる。例えば、コントローラ78は、本明細書に開示された技術を実施するために、プロセッサ(例えば、プロセッサ80)によって使用される非一時的コードまたはマシン可読媒体(例えば、メモリ82)に格納された命令を含むことができる。メモリ82は、プロセッサ80が実行できるコンピュータ命令を格納することができる。さらに、メモリ82は、実験データおよび/または冷房システム12の所定の動作状態に関する他の値を格納することができる。コントローラ78は、例えば、1つまたは複数のセンサから受け取ったフィードバックに基づいて、三方弁64の位置、弁67の位置、1つまたは複数のファン60の速度、1つまたは複数のファン77の速度、および/またはコンプレッサ70の速度を調整することで、冷房システム12の動作を観測および制御することができる。冷房システム12のコントローラ78は、冷房システム12の効率を高めることができる命令を実行するように構成することができる。そのような命令は、
図6を参照して本明細書でさらに詳細に説明される。
【0031】
図4は、機械冷却システム54が、第2の蒸気圧縮冷凍サイクル90を含む冷房システム12のブロック図である。第2の蒸気圧縮冷凍サイクル90は、第2のコンプレッサ91、第2の凝縮器92、および第2の膨張装置93を含むことができる。さらに、第2の蒸気圧縮冷凍サイクル90は、冷却負荷要求が比較的高い場合にさらに冷却するために、冷媒94を誘導して蒸発器66に通すように構成することができる。第2の蒸気圧縮冷凍サイクル90は、冷却された冷媒94を蒸発器66に供給するために、蒸気圧縮冷凍サイクル68と実質的に同じ態様で動作するように構成することができ、冷却された冷媒94は、蒸発器66において、冷却流体58から熱を吸収することができる。一部の実施形態では、冷媒94は、冷媒76と同じ流体(例えば、水、グリコール、および/または水とグリコールとの混合物)とすることができる。他の実施形態では、冷媒94は、冷媒76と異なってよい。
【0032】
図4に示すように、2つの冷凍回路68、90は、単一の蒸発器66を共有している。この実施形態では、蒸発器66は、冷媒がシェル側で、水またはグリコールがチューブ側のシェルアンドチューブ型熱交換器を含む。仕切り95は、2つの冷凍回路68、90を分離し、2つの回路68、90間の管板として機能する。他の実施形態では、複数の冷凍回路68、90が冷房システム12に含まれる場合に、DX蒸発器またはろう付けプレート蒸発器を使用することができる。
【0033】
図4の例示的な実施形態に示すように、第2の凝縮器92は、凝縮器72とは別の空気流路96に配置することができる。第2の空冷式熱交換器97は、空気流路96に沿って配置することができ、第2の凝縮器92とファン98を共有することができる。この実施形態では、空気流59は、周囲環境から吸い込まれて、空冷式熱交換器59、凝縮器72、およびファン60を通り、次いで、上方に(例えば、冷房システム12の外に)放出されている。同様に、空気流路96は、周囲環境から吸い込まれて、第2の空冷式熱交換器97、第2の凝縮器92、およびファン98を通り、次いで、上方に(例えば、冷房システム12の外に)放出されている。他の実施形態では、凝縮器72、第2の凝縮器92、および空冷式熱交換器56は、冷却負荷要求を満たすために、任意の適切な配列で配置することができる。さらに別の実施形態では、凝縮器72、第2の凝縮器92、および空冷式熱交換器56の1つまたは複数は、ファンを共有することができて(例えば、凝縮器72、第2の凝縮器92、および/または空冷式熱交換器56は、同じ空気流路に配置される)、外気は、直列の流れ構成の空冷式熱交換器56、凝縮器72、第2の凝縮器92、およびファン60を貫流する。
【0034】
さらに、コントローラ78は、第2のコンプレッサ91に出入りする冷媒94の圧力を観測するために、第2の吸い込み圧力センサ99および第2の吐出圧力センサ100に通信可能に接続することができる。一部の実施形態では、第2のコンプレッサ91に出入りする冷媒94の圧力により、コントローラ78は、第2のコンプレッサ91の速度を上げるか、および/または下げるかを判断することができる。
【0035】
冷房システム12は、節約装置101、フィルタ102、オイルセパレータ104、および/またはさらなる弁をさらに含むことができ、これらは、負荷62を冷却する制御および能力を向上させ、それにより、冷房システム12の効率を高めることができる。例えば、
図5は、そのような増設した装置を含む冷房システム12のブロック図である。
図5の例示的な実施形態に示すように、蒸気圧縮冷凍サイクル68は、節約装置101を含む。節約装置101は、膨張装置74およびフラッシュタンク106を含むことができる。特定の実施形態では、フラッシュタンク106は、冷媒76を膨張装置74から比較的低い圧力および低い温度で受け取ることができる。フラッシュタンク106は、凝縮した冷媒から任意の蒸気状の冷媒を分離するために、冷媒76の圧力をさらにいっそう急速に下げるように構成された容器とすることができる。相応して、冷媒76の第1の部分は、フラッシュタンク106内での急速な膨張により気化する(例えば、液体から蒸気に変わる)ことができる。一部の実施形態では、気化した冷媒76の第1の部分は、バイパス回路107を経由して蒸発器66を迂回し、コンプレッサ70に向かって送られることが可能である。さらに、冷媒76の第2の部分は液体の形態を保つことができ、フラッシュタンク106の底部108に集まることができる。一部の実施形態では、弁110は、フラッシュタンク106の下流で、蒸発器66の上流に設けることができ、それにより、冷媒76の第2の部分の流れは、冷房システム12の他の動作状態に基づいて調整することができる。例えば、凝縮器72が、フラッシュタンク106を出た第1の部分が第2の部分よりも大幅に少なくなるようなレベルに冷媒76の温度を下げた場合に、弁110は、より多くの冷媒76が蒸発器66で蒸発し、コンプレッサ70に向かって送られるように、蒸発器66に向かって送られる冷媒76の第2の部分の流れを増やすように調整することができる。
【0036】
さらに、フラッシュタンク106は、フラッシュタンク106の底部108に集められた冷媒76の第2の部分(例えば、液体部分)の量を観測できる液位センサ111を含むことができる。液位センサ111は、フラッシュタンク106に集められた液体の量に関して、コントローラ78にフィードバックを供給するために、コントローラ78に通信可能に接続することができる。特定の実施形態では、コントローラ78は、液位センサ111から受け取ったフィードバックに基づいて、出力、機能、またはコマンドを実行するように構成することができる。例えば、特定の実施形態では、三方弁112は、凝縮器72と節約装置101との間に配置することができる。したがって、フラッシュタンク106内の液位が、閾値レベルを超えた場合に、三方弁112は、冷媒76をバイパス回路113に沿って蒸発器66の方に送り、それにより、節約装置101を迂回するように調整することができる(例えば、冷媒の温度が低すぎ、したがって、節約装置101がさらに冷却を進めることが望ましくないことがある)。さらに、フラッシュタンク106内の液位が所定のレベルよりも低い場合、三方弁112は、バイパス回路113を閉鎖することで、冷媒76のすべて、または大部分が節約装置101内でさらに冷却されるのを可能にし得る。
【0037】
図5の例示的な実施形態に示すように、蒸気圧縮冷凍サイクル68はまた、バイパス回路107に沿って配置された逆止弁115を含み、逆止弁115は、冷媒76の第1の部分が、コンプレッサ70からフラッシュタンク106に向かって流れるのを阻止することができる。相応して、冷媒76の第1の部分(例えば、蒸気状の冷媒)は、フラッシュタンク106から、冷媒76の第1の部分の圧力を高くすることができるコンプレッサ70に向かって送ることができる。さらに、逆止弁115により、冷媒76の第1の部分が、コンプレッサ70からフラッシュタンク106に向かって逆流するのを阻止することができる。それに加えて、またはそれに代えて、冷媒76の第1の部分の流れをコントローラ78が(例えば、弁116の位置を調整するように構成されたアクチュエータによって)調整できるように、弁116をフラッシュタンク106とコンプレッサ70との間に設けることができる。コンプレッサ70は、圧縮され得る冷媒76の速度を調整する(例えば、コンプレッサ速度に基づく)所定の能力を含むことができるので、フラッシュタンク106からコンプレッサ70に向かう冷媒76の第1の部分の流れを制御することが望ましい。相応して、コンプレッサ70が所定の能力に近い状態にある場合に、コントローラ78は、コンプレッサ70に向かって流れる冷媒76の第1の部分の流量を減らすように、弁116を調整することができる。同様に、コンプレッサが概ね能力未満で動作している場合に、コントローラ78は、コンプレッサ70に向かって流れる冷媒76の第1の部分の流れを増やすように、弁116を調整することができる。
【0038】
さらに、蒸気圧縮冷凍サイクル68は、冷媒76から汚染物を取り除くために使用することができるフィルタ102を含むことができる。特定の実施形態では、酸性物質および/またはオイルが、蒸気圧縮冷凍サイクル68の中を循環する冷媒76と混合されることがある。相応して、フィルタ102は、膨張装置74、フラッシュタンク106、コンプレッサ70、および/または蒸発器66に流入する冷媒76が、最小限の汚染物しか含まないように、そのような汚染物を冷媒76から取り除くように構成することができる。
【0039】
蒸気圧縮冷凍サイクル68はまた、例えば、コンプレッサ70の下流で、凝縮器72の上流に配置することができるオイルセパレータ104を含むことができる。オイルセパレータ104は、コンプレッサ70を流れるときに、冷媒76の中に集まることがあるオイルを除去するために使用することができる。相応して、オイルセパレータ104内の除去された任意のオイルは、オイルセパレータ104から再循環回路117を通ってコンプレッサ70に戻ることができる。さらに、冷媒76から除去されたオイルは、オイルセパレータ104内に集めることができる。したがって、コンプレッサ70に向かって流れるオイルの流れおよび/または圧力を制御するために、弁118を再循環回路117に沿って配置することができる。それにより、コンプレッサ70に戻されるオイルの量は、(例えば、弁118の位置を調整するように構成されたアクチュエータを媒介として)コントローラ78によって調整することができる。特定の実施形態では、オイルセパレータ104は、フラッシュベッセル、薄膜セパレータ、または冷媒76(例えば、水および/またはグリコール)からオイルを分離するように構成された他の任意の装置とすることができる。
【0040】
さらに、オイルセパレータ104に向かって流れる冷媒76の量を制御するために、弁119をコンプレッサ70とオイルセパレータ104との間に配置することができる。場合によっては、オイルセパレータ104は、コントローラ78および/またはオペレータが、オイルセパレータ104にどのくらいのオイルが集まったかを特定するのを可能にし得るオイル高さ観測装置(例えば、オイル高さセンサ120)を含むことができる。オイルセパレータ104中のオイルの量が所定の閾値レベルを超えた場合、コントローラ78は、オイルセパレータ104に向かう冷媒76の流れを減らすように弁119の位置を調整することができる。一部の実施形態では、コントローラ78はまた、オイルセパレータ104からコンプレッサ70に戻されるオイルの量を増やすために、弁118の位置を調整することができる。相応して、オイルセパレータ104中のオイルの高さを低くすることができ、それにより、より多くの冷媒76が、オイルセパレータ104に向かって、ひいては凝縮器72に向かって流れることが可能になる。本開示は、蒸気圧縮冷凍サイクル68に焦点を当てているが、第2の蒸気圧縮冷凍サイクル90も、節約装置、フィルタ、オイルセパレータ、ならびに/または
図5を参照して説明したさらなる弁および構成要素を含むことができることに留意されたい。
【0041】
冷房システム12の効率を高めるために、1つまたは複数のファン60が最大速度(例えば、1つまたは複数のファン60がそれより速く回転できない速度、および/またはメーカが定めた所定の最大速度)に達する前に、コンプレッサ70(および/または第2のコンプレッサ91)を動作させるのが望ましい。場合によっては、1つまたは複数のファン60が最大速度に達する前に、コンプレッサ70(および/または第2のコンプレッサ91)を作動させることで、冷房システム12の効率を高めることができる。例えば、
図6は、冷房システム12の効率を高めるために使用できるプロセス130のブロック図である。
【0042】
ブロック132で、コントローラ78は、外気(例えば、冷房システム12の周囲環境の空気)の温度および/または冷却負荷(例えば、負荷62)要求を求めることができる。例えば、コントローラ78は、外気温度を観測する外気温度センサ89に通信可能に接続することができる。さらに、コントローラ78は、冷却負荷要求を求めるために、戻り冷却流体温度センサ81および/または供給冷却流体温度センサ83に通信可能に接続することができる。本明細書において、外気温度は、冷房システム12を囲む環境の空気の温度とすることができる。さらに、冷却負荷要求は、所定の、または望ましい負荷62の温度(例えば、ユーザインターフェイスから受け取った温度)と負荷62の実際の温度(例えば、負荷62を観測するセンサから受け取った温度)との差、および/あるいは負荷62に供給される、または負荷62から戻される(例えば、ユーザインターフェイスから受け取った)冷却流体58の望ましい温度と、負荷62に供給される、または負荷62から戻される冷却流体58の実際の温度(例えば、戻り冷却流体温度センサ82または供給冷却流体温度センサ83から受け取った温度)との温度差に基づくことができる。
【0043】
ブロック134で、コントローラ78は、空冷式熱交換器56の1つまたは複数のファン60を少なくとも外気の温度および/または冷却負荷要求に基づいて、第1の速度で動作させるように構成することができる。相応して、コントローラ78は、1つまたは複数のセンサから受け取ったフィードバックに基づいて、ファンの第1の速度を(例えば、プロセッサ80により)計算するように構成することができる。1つまたは複数のファン60の第1の速度は、冷却負荷要求が高くなるにつれて、および/または外気温度が高くなるにつれて速くすることができる。反対に、第1の速度は、冷却負荷要求が低くなるにつれて(例えば、冷房しているときに、負荷の実際の温度が、負荷の所定の温度よりも低い場合に)、および/または外気温度が低下した場合に遅くすることができる。
【0044】
特定の実施形態では、1つまたは複数のファン60は、最大速度(例えば、1つまたは複数のファン60が物理的に超えることのできない速度)を含むことができる。しかし、今や、1つまたは複数のファン60の速度を最大速度まで上げることは望ましくないことがあると分かっている。むしろ、外気温度が高くなった場合、および/または冷却負荷要求が高くなった場合に、コンプレッサ70を動作させる、かつ/またはコンプレッサ70の圧力を高くすることで、冷房システム12に入力される電力を削減することができる。したがって、コントローラ78のメモリ82は、1つまたは複数のファン60の閾値速度を(例えば、アルゴリズムを使用して)計算するように構成することができ、この閾値速度は、1つまたは複数のファン60の最大速度未満とすることができる。例えば、1つまたは複数のファン60の閾値速度は、最大速度の50%〜99%、最大速度の70%〜95%、または最大速度の80%〜90%とすることができる。一部の実施形態では、コントローラ78は、自由冷却のみのモード時の閾値ファン速度を軽算すために、下記の式1を使用することができる。
閾値速度={[dl×(ECHLT−T
amb)
2]+d0}×FanFactorl (1)
【0045】
式1で、d1およびd0は、空冷式熱交換器56に特有の所定の要素を表すことができる。さらに、ECHLTは、流入冷液温度(ECHLT)、すなわち、蒸発器66から負荷62に向かって送られる冷却流体58の温度(例えば、供給冷却流体温度センサ83から受け取った温度)を表す。T
ambは外気温度であり、FanFactor1は、空冷式熱交換器56に特有であり得るプログラム可能な要素である。
【0046】
自由冷却のみのモードで動作する場合、コントローラは、流出冷液温度を所定の設定値の近くに維持するために、ファン速度を調整する。負荷および/または外気温度が高くなると、コントローラは、ファン60の速度が閾値速度に達するまで、ファン60の速度を上げる。閾値速度で、コントローラ78は、閾値速度を超える1つまたは複数のファン60の速度の上昇を阻止することができる。負荷または外気温度の任意のさらなる上昇、または、設定値を超える、流出冷水温度の対応する上昇をもたらす他の動作状態により、コントローラは、1つまたは複数のコンプレッサを始動させる。式1で示すように、閾値速度は、様々な動作状態に対して異なることがある(例えば、外気温度および/または冷却負荷の様々な組み合わせに対して閾値速度は異なる)。コンプレッサ70(および/または第2のコンプレッサ91)の速度は、当技術分野で公知のアルゴリズムを使用して、コントローラ78によって求めることができるので、冷却負荷要求は、冷房システム12によって達成することができる。
【0047】
1つまたは複数のファン60が閾値速度に達したときに、コントローラ78はまた、ブロック136に示すように、機械冷却システム54のコンプレッサ70(および/または第2のコンプレッサ91)を第1のコンプレッサ速度で動作させるように構成することができる。特定の実施形態では、コンプレッサ70の第1のコンプレッサ速度は、冷却負荷要求を達成し、さらに、冷房システム12に入力されるエネルギ量を削減する(例えば、最小エネルギ量が入力される)速度とすることができる。さらに、コントローラ78は、コンプレッサ70(および/または第2のコンプレッサ91)が動作しているときに、1つまたは複数のファン60の第2の速度を求めるように構成することができる。言い換えると、コンプレッサ70が動作するときに、1つまたは複数のファンを閾値速度で動作させ続けるのは望ましくないことがある。例えば、コントローラ78は、式2に基づいて、第2の速度を求めるように構成することができる。
第2の速度=b1×ファン当たりの単位全負荷+b2×FanFactor2 (2)
【0048】
したがって、第2の速度(例えば、混成動作モード中の1つまたは複数のファン60の速度)は、ファン当たりの単位全負荷(例えば、1つまたは複数のファン60の1つのファンによって行われる自由冷却および機械冷却の量)に基づくことができる。相応して、コントローラ78は、ファン当たりの単位全負荷を求めるように構成することができ、ファン当たりの単位全負荷は、特に、流入冷液温度(ECHLT)、外気温度(T
amb)、各ファンの自由冷却能力、各ファンの機械冷却能力、および冷房システム12に含まれるファンの数量に基づくことができる。要素b1、b2、FanFactor2は、実験データおよび/または冷房システム12に特有の(例えば、メーカから提供された)情報に基づいて、コンプレッサ70および/またはコンプレッサ91とファン60との全エネルギ使用量を最小限にするように前もって定めることができる。ファン当たりの単位全負荷は、コンプレッサ70および/またはコンプレッサ91によって付与される機械冷却能力に空冷式熱交換器56から付与される自由冷却能力を加えたものから推定することができる。
【0049】
第2の速度は、コンプレッサ70および/またはコンプレッサ91とファン60との全エネルギ使用量を最小限にすることができる推定ファン速度を表している。場合によっては、コンプレッサオイルの圧力、コンプレッサ吸い込み圧力、コンプレッサ吐出圧力、および/または許容できる制御限界内の他の動作状態を維持するために、第2の速度に基づき、特定の冷媒回路68および/または冷媒回路90に対してファン速度を調整することが望ましい。
【0050】
特定の実施形態では、コンプレッサ70は、1つまたは複数のファン60が閾値速度に達したとき、外気温度が所定の値に達したとき、および/または冷却負荷要求が所定の値に達したときに動作することができる。相応して、コントローラ78は、流出冷液温度、1つまたは複数のファン60の第2の速度、外気温度、および/または冷却負荷要求に基づいて、コンプレッサ70の第1のコンプレッサ速度(および/または第2のコンプレッサ91の速度)を求めることができる。他の実施形態では、コンプレッサ70(および/または第2のコンプレッサ91)は、1つまたは複数のファン60が閾値速度に達するまで動作することができない。いずれにせよ、最大速度未満の1つまたは複数のファン60とコンプレッサ70とを同時に動作させることで、冷房システム12によって消費される電力量を削減することができ、これは、冷房システムの効率を高めることができる。
【0051】
場合によっては、動作状態(例えば、外気温度および/または冷却負荷要求)は、冷房システムの動作中に変わることがある。相応して、ブロック138で、コントローラ78は、動作状態の変化に合わせて、1つまたは複数のファン60の速度、コンプレッサ70のコンプレッサ速度、および/または第2のコンプレッサ91のコンプレッサ速度を調整するように構成することができる。さらに、コントローラ78は、冷房システム12の様々な動作モード間で切り換えるように構成することができる(例えば、
図7を参照のこと)。非限定的な例として、冷房システム12が屋外環境に配置された場合に、(例えば、日照または日照不足により)外気温度は夜間に下がり、日中に上がり得る。したがって、空冷式熱交換器56の1つまたは複数のファン60とコンプレッサ70とを使用する混成冷却動作モード中に、コントローラ78は、夜間において、1つまたは複数のファン60の速度を第1の速度から第2の速度に下げ(例えば、第2の速度は第1の速度よりも遅い)、かつ/またはコンプレッサ70のコンプレッサ速度を第1のコンプレッサ速度から第2のコンプレッサ速度に下げる(例えば、第2のコンプレッサ速度は、第1のコンプレッサ速度よりも遅い)ように構成することができる。同様に、日中に外気温度が上昇したときに、コンプレッサ78は、1つまたは複数のファン60の速度を第1の速度および/または第2の速度から第3の速度に上げ(例えば、第3の速度は第1の速度および/または第2の速度よりも速い)、かつ/あるいはコンプレッサ70のコンプレッサ速度を第1のコンプレッサ速度および/または第2のコンプレッサ速度から第3のコンプレッサ速度に上げる(例えば、第3のコンプレッサ速度は、第1のコンプレッサ速度および/または第2のコンプレッサ速度よりも速い)ように構成することができる。
【0052】
さらに、コントローラ78は、冷却負荷要求が高くなった、および/または低くなった場合に、1つまたは複数のファン60の速度および/またはコンプレッサ70(および/または第2のコンプレッサ91)の速度を調整するように構成することができる。いずれにせよ、コントローラ78は、冷房システム12に入力される電力量を実質的に、または概ね最小限にする、1つまたは複数のファン60の速度とコンプレッサ70のコンプレッサ速度(および/または第2のコンプレッサ91の速度)との組み合わせを計算する(例えば、式2を参照のこと)ことで、1つまたは複数のファン60の速度とコンプレッサ70(および/または第2のコンプレッサ91)のコンプレッサ速度とを求めるように構成することができる。相応して、冷房システム12の効率を高めることができる。
【0053】
図7は、冷房システム12の様々な動作モードにおける冷却負荷要求に応じた外気温度のグラフ
図150である。グラフ図は、一定の流出冷液温度(LCHLT)(例えば、戻り冷却流体温度センサ81から受け取った温度)および流量を想定している。相応して、グラフ
図150は、冷房システム12が、少なくとも外気温度および冷却負荷要求に基づいて、所与のモードで動作できる場合を示している。
図7の例示的な実施形態に示すように、外気温度が閾値温度線152より低い場合に、自由冷却システム52は動作することができる。特定の実施形態では、閾値温度線152は、測定した戻り冷液温度、測定した外気温度、および/または他の動作パラメータに基づいて、自由冷却が、冷却流体58から熱を吸収するのにまだ有効であり得る外気温度を表すことができる。さらに、外気温度が第2の閾値温度線154より低い場合に、冷房システム12は、自由冷却のみのモード156で動作することができる。第2の閾値温度線154は、機械冷却システム54を使用することなく、かつ/または1つまたは複数のファン60を閾値速度を超えて動作させることなく、冷却負荷要求を達成できる外気温度を表すことができる。
【0054】
外気温度が第2の閾値温度線154を超えるが、閾値温度線152よりも低い場合に、コントローラ78は、蒸気圧縮冷凍サイクル68のコンプレッサ70を第1の混成冷却モード158で動作させるように構成することができる。第1の混成冷却モード158では、自由冷却システム52および蒸気圧縮冷凍サイクル68が行う冷却の量により、冷却負荷要求が達成される。しかし、場合によっては、外気温度は、閾値温度線152より低いが、自由冷却システム52および蒸気圧縮冷凍サイクル68は、冷却負荷要求を達成することができないことがある(例えば、冷却負荷要求が冷却負荷要求閾値線159を超える場合)。したがって、所望のレベルの冷却を達成するために、空冷式熱交換器56および蒸気圧縮冷凍サイクル68のコンプレッサ70に加えて、第2の蒸気圧縮冷凍サイクル90の第2のコンプレッサ91が動作することができる。そのような場合に、冷房システム12は、第2の混成冷却モード160で動作することができる。
【0055】
外気温度が、閾値温度線152を超えて高くなると、自由冷却システム52は、十分な冷却量を全く供給することなく、エネルギを消費し得る。したがって、1つまたは複数のファン60に供給される電力を止めて、第1の機械冷却のみのモード162を実施することができる。第1の機械冷却のみのモード162は、蒸発器66を流れる冷却流体58を冷却するために、蒸気圧縮冷凍サイクル68のコンプレッサ70を動作させることができる。第1の機械冷却のみのモード162は、第2の冷却負荷要求閾値線164より下の所望のレベルの冷却を達成することができる。このため、冷却負荷要求が第2の冷却負荷要求閾値線164を超えた(かつ、外気温度が温度閾値線152を超えた)場合に、コントローラ78により、第2の機械冷却のみのモード166を開始することができる。第2の機械冷却のみのモード166は、冷却負荷要求を達成するために、蒸気圧縮冷凍サイクル68のコンプレッサ70および第2の蒸気圧縮冷凍サイクル90の第2のコンプレッサ91の両方を動作させることができる。
【0056】
特定の実施形態では、温度閾値線152および第2の温度閾値線154は、外気温度を表す軸170に沿った点168で交差することができる。点168は、LCHLTを表す点172よりも低くすることができ、そのため、冷却流体58から外気に熱を伝達することができる。
【0057】
図8は、空冷式熱交換器56に加えて、またはその代わりに利用することができる自由冷却回路200の一実施形態の概略図である。自由冷却回路200は、冷却流体58を、自由冷却回路200の作動流体202との熱交換関係に置く。例えば、冷房システム12は、冷却流体58と自由冷却回路200の作動流体202との間の熱エネルギの伝達を可能にし得る熱交換器204を含み得る。いくつかの実施形態では、冷却流体58は、(例えば、熱交換器204が三方弁64に取って代わるとき、または三方弁64の上流または下流に配置されるときに)連続的に熱交換器204を通って流れてもよい。他の実施形態では、三方弁64を使用して冷却流体58を熱交換器204に選択的に向けることができる(例えば、熱交換器204は空冷式熱交換器56に取って代わるか、または空冷式熱交換器56の上流または下流に配置される)。いくつかの実施形態では、作動流体202はグリコール、水とグリコールの混合物、および/または他の適切な流体である。自由冷却回路200は、作動流体202を空気流208との熱交換関係に置く凝縮器206を通して作動流体202を導くことができる。したがって、冷却流体58は、自由冷却回路200を介して熱エネルギを間接的に空気流208に伝達することができる。
【0058】
いくつかの実施形態では、自由冷却回路200は、流れ制御弁210(例えば、蝶形弁または流体の流量を制御するように構成された別の弁)、凝縮器バイパス弁212(例えば、蝶形弁または流体の流量を制御するように構成された別の弁)、逆止弁214、ポンプ216および/または1つまたは複数の加熱器218を含む。加熱器218は、ポンプ216、凝縮器バイパス弁212、熱交換器204、および接続配管によって形成されたループ内で作動流体202の温度を目標温度に維持するように構成されている。したがって、ループ内の作動流体202の温度は、周囲温度が凍結点未満であるときでも凍結点より上である。そのため、ポンプの始動時に熱交換器が凍結点未満の温度にさらされることはない。いくつかの実施形態では、加熱器218のサイズを最小化し、ループ内に均一な温度を提供するために、ループの構成要素の周りに断熱材を含めることができる。作動流体は、熱交換器204から第1のT字接続部220に流れることができる。流れ制御弁210および/または凝縮器バイパス弁212は、作動流体202をT字接続部220から凝縮器206へ、熱交換器204に戻るように、または凝縮器206と熱交換器204の両方に向けるように調整することができる。例えば、流れ制御弁210が開いて凝縮器バイパス弁212が閉じているとき、作動流体202は凝縮器206に流れ得る。同様に、流れ制御弁210が閉じられ、凝縮器バイパス弁212が開かれると、作動流体202は熱交換器204に向かって逆流し、それによって凝縮器206を迂回することができる。流れ制御弁210および凝縮器バイパス弁212の両方が開かれているとき(または部分的に開かれているとき)、作動流体202は、凝縮器206からの作動流体202と凝縮器バイパス弁212からの作動流体202とが第2のT字接続部221で混合するように、凝縮器206の方に、および熱交換器204に戻るように向けることができる。
【0059】
逆止弁214は、凝縮器バイパス弁212から凝縮器206に向かって流れる作動流体202の流れを遮断するが、作動流体202が凝縮器206(したがって流れ制御弁210)から熱交換器204へ流れることを可能にする。換言すれば、逆止弁214は、作動流体202が凝縮器206を通って一方向に流れることを可能にする。自由冷却回路200のポンプ216は、自由冷却回路200を通る作動流体202の流量を制御することができ、したがって、作動流体202と冷却流体58との間で伝達される熱の量を調整する。例えば、周囲温度が比較的高い場合、相当量の熱が冷却流体58から作動流体202に伝達され得るということはないので、ポンプ216はシャットダウンされ得る(例えば、停止し得る)。逆に、周囲温度が比較的低い場合、1つまたは複数の加熱器218は熱を作動流体202に伝達することがあり、その結果、作動流体202の温度は、閾値(例えば、冷却流体58を凍結させ得る温度)より上に維持される。
【0060】
冷房システム12のコントローラ78は、自由冷却回路200に沿って配置されかつ作動流体202の温度を監視するように構成されている1つまたは複数の温度センサ222に結合されてもよい。例えば、自由冷却回路200は、熱交換器204を出る作動流体202(例えば、温かい第2の冷却流体)の温度を監視するように構成された第1の温度センサ224を含んでもよい。自由冷却回路200はまた、凝縮器206を出る作動流体202(例えば、冷たい第2の冷却流体)の温度を監視するように構成された第2の温度センサ226を含んでもよい。さらに、自由冷却回路202は、熱交換器204に入る作動流体202(例えば、温かい第2の冷却流体、冷たい第2の冷却流体、または温かい第2の冷却流体と冷たい第2の冷却流体との混合物)の温度を監視するように構成される第3の温度センサ228を含んでもよい。いくつかの実施形態では、コントローラ78は、周囲温度を監視するように構成される温度センサ230に結合することもできる。
【0061】
コントローラ78は、温度センサ222の1つまたは複数から受信したフィードバックに基づいて、流れ制御弁210の位置、コイルバイパス弁212の位置、凝縮器ファン231の速度、および/またはポンプ216の速度を調整するように構成されてもよい。例えば、コントローラ78は、熱交換器204に入る作動流体202が設定点(例えば目標温度)に達するように、流れ制御弁210の位置、コイルバイパス弁214の位置、凝縮器ファン231の速度、および/またはポンプ216の速度を調整してもよい。設定点は、作動流体202と冷却流体58との間の所望の熱伝達量および/または冷却流体58の温度(例えば、目標温度)に基づいてもよい。
【0062】
いくつかの実施形態では、作動流体202は、冷却流体58よりも低い凍結点を含み得る(例えば、冷却流体が水であり、作動流体がグリコールであるとき)。したがって、冷却流体58の凍結を阻止するために、冷房システム12のコントローラ78は凍結防止システム232を含むことができる。凍結防止システム232は、冷房システム12の導管(例えば、熱交換器204内の管)内の凍結を阻止または低減するために、流れ制御弁210の位置、凝縮器バイパス弁212の位置、凝縮器ファン231の速度、および/またはポンプ216の速度を調整するように構成することができる。コントローラ78は、凝縮器206を離れる作動流体202の出口温度(例えば、第2の温度センサ226から受信された)、周囲温度(例えば、温度センサ230から受信された)、および/または凝縮器バイパス弁212および流れ制御弁210の一方または両方の位置に基づいて、流れ制御弁210、凝縮器バイパス弁212、凝縮器ファン231、および/またはポンプ216に信号を送るように構成され得る。
【0063】
凍結防止システム232は、自由冷却回路200の動作状態を示すフィードバックに基づいて特定の動作を実行することができる。下記の表1に示すように、凍結防止システム232は、周囲空気温度が第1の目標温度(例えば40°F)より高い場合、第1の動作モードで動作し得る。第1の動作モードで動作するとき、コントローラ78は、周囲温度が第1の目標温度(例えば、第1の閾値温度)より高い場合、凝縮器ファン231をオフにし(凝縮器ファン231がまだオフにされていない場合)、ポンプ216をオフにし(ポンプ216がまだオフにされていない場合)、加熱器218をオフにし(加熱器218がまだオフにされていない場合)、凝縮器バイパス弁212を閉じ、および/または流れ制御弁210を開くために、1つまたは複数の信号を送信するように構成される。第1の動作モードで動作するとき、凍結防止システム232は、作動流体202が熱交換器204に向けられる前に凝縮器206に流れることを可能にする。したがって、凍結防止システム232は、周囲温度が第1の目標温度よりも高い場合、第1のモードで動作し、その結果、作動流体202は、冷却流体58を熱交換器204内で凍結させる可能性がある温度を下回らない。
【0064】
周囲温度が第1の目標温度に達するかそれを下回ると、凍結防止システム232は、以下の表1に示すように、第2のモードで動作する。第2のモードでは、凍結防止システム232は、周囲温度が第1の目標温度未満かそれと等しい場合、凝縮器ファン231をオフにし(凝縮器ファン231がまだオフにされていない場合)、ポンプ216をオフにし(ポンプ216がまだオフにされていない場合)、加熱器218をオンにし、凝縮器バイパス弁212を開き、および/または流れ制御弁210を閉じるために、1つまたは複数の信号を送信する。第2のモードで動作するとき、作動流体202は凝縮器206を迂回し、バイパス弁212を通って熱交換器204に戻るように導かれる。したがって、作動流体202は、凝縮器206で周囲空気に熱エネルギを伝達することなく熱交換器204に戻される。しかしながら、作動流体202の温度は比較的低い可能性があるので、熱交換器204内の冷却流体58が凍結しないように、加熱器218を作動させることができる。例えば、周囲温度が第1の目標温度より低いので、凝縮器206を通って流れる作動流体202の温度は、(例えば、作動流体202との熱エネルギ伝達を介して)冷却流体58を熱交換器204内で凍結させる可能性があるレベルより低くなる可能性がある。したがって、加熱器218は作動流体202の温度を冷却流体58の凍結点より上に上昇させるように起動される。
【0065】
以下の表1にさらに示すように、凍結防止システム232は、凝縮器206を出る作動流体202の温度に基づいて第3のモードで動作してもよい。いくつかの実施形態では、凍結防止システム232の第3のモードは、第2の動作モードで所定の時間動作した後に開始される。例えば、第3のモードで動作しているとき、コントローラ78は、凝縮器ファン231をオフにし(凝縮器ファン231がまだオフにされていない場合)、ポンプ216を固定速度で動作させ、加熱器218をオフにし(加熱器がまだオフにされていない場合)、凝縮器バイパス弁212を開き、および/または流れ制御弁210を開くために、1つまたは複数の信号を送信する。したがって、流れ制御弁210は、凝縮器206を通る作動流体202の循環を開始するために開かれる。いくつかの実施形態では、流れ制御弁210は、熱交換器204に入る作動流体202の温度を冷却流体58の凍結点より上に(例えば冷却流体58からある量の熱エネルギを吸収して冷却流体58の温度をその凍結点未満に低下させる可能性がある作動流体202の温度に)維持するために漸増的に開かれる。このように、凝縮器バイパス弁212を通って流れる作動流体202は、作動流体202が熱交換器204に入る前に(例えば、第2のT字接続部221において)凝縮器206を出る作動流体202と混合する。したがって、熱交換器204に入る作動流体202の温度は、作動流体202が凝縮器206を通って流れ始めることを可能にしながら、冷却流体58の凍結点より上に留まるように調整される。
【0066】
熱交換器204を出る作動流体202の温度が上昇するにつれて、凍結防止システム232は第4の動作モードに切り替わることができる。第4の動作モードでは、コントローラ78は、凝縮器ファン231をオフにし(凝縮器ファン231がまだオフにされていない場合)、ポンプ216を固定速度で動作させ、加熱器218をオフにし(加熱器218がまだオフにされていない場合)、凝縮器バイパス弁212を閉じ、および/または流れ制御弁210を完全に開くために、1つまたは複数の信号を送信し得る。いくつかの実施形態では、凝縮器バイパス弁212は第4の動作モードで動作するとき、熱交換器204に入る作動流体202の温度を冷却流体58の凍結点より上に維持するために、増分的に閉じられる。換言すれば、いったん流れ制御弁210が全開位置(例えば100%開放すなわち完全に開かれている)に達すると、コントローラ78は、凝縮器206に向けられる作動流体202の流れを増加させ、凝縮器バイパス弁212を通って熱交換器204に向けられる作動流体202の流れを減少させるために、凝縮器バイパス弁212を閉じ始める。したがって、コントローラ78は、熱交換器204に入る作動流体202の温度を、冷却流体58の凍結点より上に留まるように調整する。いくつかの実施形態では、作動流体202の温度は、凝縮器ファン231がオフにされるために冷却流体58の凍結点より上に留まる。
【0067】
凝縮器バイパス弁212が完全に閉じられると、凍結防止システム232は第5の動作モード下に動作を開始することができる。第5の動作モードの間、コントローラ78は、少なくとも冷却要求および/またはコンプレッサ要求に基づいて凝縮器ファン231の速度を調整し、少なくとも作動流体202の凝縮器206への入口温度および/または凝縮器ファン231の1つの最高速度(例えば、凝縮器206が複数のファン231を有するとき)に基づいてポンプ216の速度を調整し、加熱器218をオフにし(加熱器がまだオフにされていない場合)、凝縮器バイパス弁212を完全に閉じ、および/または流れ制御弁210を完全に開く(流れ制御弁210がまだ全開位置にない場合)ために、1つまたは複数の信号を送信する。したがって、いったんコイルバイパス弁212が完全に閉じられ、流れ制御弁210が完全に開かれると、コントローラ78は、熱交換器204に入る作動流体202の温度を所定の温度(例えば目標温度)に維持するために、凝縮器ファン231の速度を調整し得、および/またはポンプ216の速度を調整し得る。熱交換器204に入る作動流体202の所定の温度は、(例えば、少なくとも熱交換器204を出る冷却流体58の温度によって決定される)冷却流体58の冷却要求に基づき得る。したがって、コントローラ78はフィードバックを受け取り、作動流体202の温度を所定の温度に維持するために凝縮器ファン206の速度および/またはポンプ216の速度を調整する。
【0068】
周囲空気温度が第2の目標温度(例えば34°F)を超えて上昇するとき、および/または作動流体202の温度が第3の目標温度(たとえば34°F)を超えて上昇するとき、凍結防止システム232は第6の動作モードを開始することができる。例えば、第6の動作モードで動作するとき、コントローラ78は、少なくとも冷却要求および/またはコンプレッサ要求に基づいて凝縮器206のファンの速度を調整し、少なくとも凝縮器ファン231のうちの1つの最高速度に基づいてポンプ216の速度を調整し、加熱器218をオフにし(加熱器218がまだオフにされていない場合)、凝縮器バイパス弁212を完全に閉じ(凝縮器バイパス弁212がまだ全閉位置にない場合)、および/または流れ制御弁210を完全に開く(流れ制御弁210がまだ全開位置にない場合)ために、1つまたは複数の信号を送信する。したがって、コントローラ78は、凝縮器ファン231の速度および/またはポンプ216の速度を調節して、熱交換器204に入る作動流体202の温度を調整する。
【0069】
表1の第1および第2の目標温度の値はそれぞれ40°Fおよび34°Fとして示されているが、第1および第2の目標温度の値は、熱交換器204内の局所的凍結を回避するために熱交換器204を通って循環する液体の凍結点を超える任意の適切な温度であり得る。いくつかの実施形態では、第1の目標温度の値は第2の目標温度の値よりも大きく、その結果、流れ制御弁210および凝縮器バイパス弁212は、ポンプ214が始動される(例えば、オンにされる)前に凝縮器206を通る作動流体202の循環を遮断する。追加的または代替的に、第2の目標温度の値は、熱交換器204における凍結を回避するための制御に十分なマージンを提供しながら自由冷却の量を増加させるために冷却流体58の凍結温度より高い。
【0070】
いくつかの実施形態では、作動流体202の温度が凍結点未満(例えば、約30°F)に低下した場合、低温限界を使用してポンプ214の動作を遮断することもできる。場合によっては、作動流体202は、不十分な構成要素の動作、構成要素への電力の供給の低下、周囲の気象条件、または他の動作上の欠陥の結果として低温限界に達することがある。低温限界は、わずかな温度変動に伴うトリップを回避するために第2の目標温度未満でもよいが、熱交換器204内の冷却流体58の凍結を回避するのに十分に高い。したがって、低温限界は熱交換器204内の凍結を回避するためのフェイルセーフを提供する。加えて、ポンプ214は、作動流体202の温度が第2の目標温度などの所定の温度まで上昇したときに作動する(例えば、始動するまたはオンになる)ように構成されてもよい。いくつかの実施形態では、警告メッセージまたは警報を作動させて、ビルディングオートメーション制御、機器オペレータ、および/またはサービス要員に、自由冷却回路200に関する潜在的な懸念を通知することができる。
【0072】
要約すると、凍結防止システム232は、凝縮器206からの冷却された作動流体202と混合される熱交換器204からの温かい作動流体202の量を調節して、作動流体202が熱交換器204内の冷却流体58をその凍結点未満に冷却することを阻止する。したがって、凍結防止システム232は、凝縮器バイパス弁212の位置、流れ制御弁210の位置、凝縮器ファン231の速度、および/またはポンプ216の速度を、周囲温度閾値、凝縮器206を出る作動流体202の閾値出口温度、および/または弁210および212の位置に基づいて調整し、凝縮器206を通って流れる作動流体202の量を制御し、作動流体202の温度を熱交換器204内において冷却流体58の凍結点より上に維持する。したがって、熱交換器204内の冷却流体58の凍結は低減および/または排除され、その結果、熱交換器204を通る冷却流体58の流れは遮断されない。加えて、凍結防止システム232は、凝縮器ファン231の速度および/または自由冷却回路200に沿って配置された1つまたは複数の加熱器218に供給される電力を、周囲温度閾値、凝縮器206を出る作動流体202の閾値出口温度、および/または弁210および212の位置に基づいて調整し、凝縮器206内で作動流体202から伝達される熱量を制御し、したがって熱交換器204内の作動流体202の温度を冷却流体58の凍結点より上に維持し得る。
【0073】
図9および10は、空冷式熱交換器56に加えて、またはその代わりに利用することができる自由冷却回路200の実施形態の斜視図である。
図9の示される実施形態に示すように、作動流体202は、凝縮器206の複数の導管250を通って導かれ得る。複数の導管250のうちの1つまたは複数の導管は、凝縮器206のそれぞれのファン231に対応し得る。他の実施形態では、凝縮器206は、作動流体202を凝縮器206の単一のファン231に向ける単一の導管を含む。いずれの場合も、コントローラ78は凝縮器206のファン231に結合され、その結果、コントローラ78はファン231の速度を調整して凝縮器206を出る作動流体202の温度を制御し得る。さらに、上述したように、コントローラ78はポンプ216に結合されており、ポンプ216の速度を調整し、自由冷却回路200を通って(例えば、熱交換器204から、凝縮器206を通って、および/または凝縮器バイパス弁212を通って)循環される作動流体202の量を制御するように構成されている。
【0074】
開示した実施形態の1つまたは複数は、単独で、または組み合わせて、自由冷却システムおよび機械冷却システムを含む冷房システムの効率を高めるのに有用な1つまたは複数の技術的効果をもたらすことができる。通常、本開示の実施形態は、自由冷却システムの1つまたは複数のファンが最大速度未満で動作している場合に、機械冷却システムのコンプレッサを動作させることを含む。場合によっては、コンプレッサと自由冷却システムのファンとを最大速度未満の速度で動作させるのは、コンプレッサおよび/またはファンを最大速度で動作させるよりも電力の消費を少なくすることができる。相応して、冷房システムに入力される電力を削減することができ、冷房システムの効率を高めることができる。本明細書における技術的効果および技術的問題は例示であり、限定するものではない。なお、本明細書で説明した実施形態は、他の技術的効果を有することができ、他の技術的問題を解決することができる。
【0075】
本開示の特定の特徴および実施形態だけが図示および説明されたが、当業者は、特許請求の範囲に記載した対象の新たな教示および利点から実質的に逸脱することなく、多くの修正および変更(例えば、様々な要素の大きさ、寸法、構造、形状、および割合、パラメータ(例えば、温度、圧力など)の値、取り付け構成、使用する材料、色、向きなどの変形型)を思いつくことができる。任意のプロセスまたは方法ステップの順序またはシーケンスは、代替の実施形態に応じて変える、または再度順序付けることができる。したがって、当然のことながら、添付の特許請求の範囲は、本開示の真の趣旨の範囲に入るそのようなすべての修正および変更を包含することを意図されている。さらに、例示的な実施形態についての説明を簡潔にするために、実装のすべての特徴について説明してはいない(すなわち、現在考えられる、実施形態を実施する最良の方式に無関係な特徴、または主張した実施形態を可能にするのに無関係な特徴)。当然のことながら、任意のそのような実装の開発に当たって、任意の技術または設計プロジェクトと同様に、実施に特有の様々な決断が行われ得る。そのような開発作業は手間がかかり、時間がかかるが、それでも、当業者が過度の実験を行うことなく本開示の恩恵を受けるための、設計、組み立て、および製造に関する日常業務である。