(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0014】
以下、本発明の実施形態を図面に基づいて説明する。なお、すべての図面において、同様な構成要素には同一符号を付し、その詳細な説明は重複しないように適宜省略される。また、図は概略図であり、実際の寸法比率とは必ずしも一致していない。また、文中の数字の間にある「〜」は特に断りがなければ、以上から以下を表す。
【0015】
はじめに、本実施形態に係る熱伝導性シートについて説明する。
【0016】
本実施形態に係る熱伝導性シートは、エポキシ樹脂(A)と、エポキシ樹脂(A)中に分散された無機充填材(B)とを含む。
そして、本実施形態に係る熱伝導性シートは、エポキシ樹脂(A)のエポキシ当量をXg/eqとし、昇温速度5℃/min、周波数1Hzの条件で動的粘弾性測定により測定される、当該熱伝導性シートの硬化物のガラス転移温度をY℃としたとき、X×Yが3.0×10
4g・℃/eq以上であり、より好ましくは3.3×10
4g・℃/eq以上であり、さらに好ましくは3.8×10
4g・℃/eq以上であり、特に好ましくは4.5×10
4g・℃/eq以上である。
上記X×Yの上限値は特に限定されないが、例えば、10.0×10
4g・℃/eq以下である。
エポキシ当量は、電位差滴定法(JIS K7236)により測定することができる。
なお、本実施形態において、熱伝導性シートはBステージ状態のものをいう。また、熱伝導性シートを硬化させたものを「熱伝導性シートの硬化物」と呼ぶ。また、熱伝導性シートを半導体装置に適用し、硬化させたものを「熱伝導材」と呼ぶ。熱伝導性シートの硬化物は熱伝導材を含む。また、本実施形態において、熱伝導性シートの硬化物はCステージ状態のものをいい、Bステージ状態の熱伝導性シートを、例えば、180℃、10MPaで40分間熱処理することにより硬化して得られたものである。
【0017】
熱伝導性シートは、例えば、半導体装置内の高熱伝導性が要求される接合界面に設けられ、発熱体から放熱体への熱伝導を促進する。これにより、半導体チップ等における特性変動に起因した故障を抑え、半導体装置の安定性の向上が図られている。
本実施形態に係る熱伝導性シートを適用した半導体装置の一例としては、例えば、半導体チップがヒートシンク(金属板)上に設けられており、ヒートシンクの半導体チップが接合された面とは反対側の面に、熱伝導材が設けられた構造が挙げられる。
また、本実施形態に係る熱伝導性シートを適用した半導体装置の他の例としては、熱伝導材と、熱伝導材の一方の面に接合した半導体チップと、上記熱伝導材の上記一方の面とは反対側の面に接合した金属部材と、上記熱伝導材、上記半導体チップおよび上記金属部材を封止する封止樹脂と、を備えるものが挙げられる。
【0018】
本発明者の検討によれば、熱伝導性シートの硬化物のガラス転移温度を高めることにより、その硬化物を用いた半導体装置の安定性をある程度向上できることが明らかになった。しかし、熱伝導性シートの硬化物のガラス転移温度を高めるだけでは、高温環境下において、まだまだ十分な半導体装置の安定性が得られなかった。
そこで、本発明者は、上記事情に鑑みて鋭意検討した結果、熱伝導性シートの上記X×Yが上記下限値以上であると、高温環境下における半導体装置の安定性が向上することを見出した。この理由としては、熱伝導性シートの上記X×Yが上記下限値以上であると、高温環境下において熱伝導性シートの硬化物の熱伝導性の低下が抑制されるからだと考えられる。
そのため、本実施形態に係る熱伝導性シートによれば、高温環境下における使用時の安定性に優れた半導体装置を実現できる。
【0019】
本実施形態に係る熱伝導性シートは、下記条件で得られた抽出水をイオンクロマトグラフにより分析することにより測定されるイオンの総量が、好ましくは30,000ppm以下であり、より好ましくは20,000ppm以下である。
ここで、上記イオンは、Li
+、Na
+、NH
4+、K
+、Ca
2+、Mg
2+、F
−、Cl
−、NO
22−、Br
−、NO
3−、PO
43−、SO
42−、(COO)
22−、CH
3COO
−、およびHCOO
−から選択される一種または二種以上である。
(条件)
凍結粉砕させた熱伝導性シートの硬化物2gに対して40mLの純水を加え、125℃20時間熱水抽出し、抽出水を得る。
【0020】
上記イオンの総量が上記上限値以下であることにより、高温での熱伝導性シートの絶縁性をより一層向上させることができる。熱伝導性シートを構成する各成分中のイオン性不純物の量を調整することや、加水分解してイオンを生成する無機充填材を含有する場合は、表面積の小さい無機充填材を選択することで熱伝導性シートの硬化物中の上記イオンの総量を調整することができる。
【0021】
本実施形態に係る熱伝導性シートは、昇温速度5℃/min、周波数1Hzの条件で動的粘弾性測定により測定される、当該熱伝導性シートの硬化物のガラス転移温度が好ましくは160℃以上であり、より好ましくは165℃以上であり、特に好ましくは167℃以上である。上記ガラス転移温度の上限値は特に限定されないが、例えば300℃以下である。
ここで、熱伝導性シートの硬化物のガラス転移温度は次のように測定できる。まず、熱伝導性シートを180℃、10MPaで40分間熱処理することにより、熱伝導性シートの硬化物を得る。次いで、得られた硬化物のガラス転移温度(Tg)を、DMA(動的粘弾性測定)により昇温速度5℃/min、周波数1Hzの条件で測定する。
ガラス転移温度が上記下限値以上であると、導電性成分の運動開放をより一層抑制できるため、温度上昇による熱伝導性シートの絶縁性の低下をより一層抑制できる。その結果、より一層絶縁安定性に優れた半導体装置を実現できる。
ガラス転移温度は熱伝導性シートを構成する各成分の種類や配合割合、および熱伝導性シートの作製方法を適切に調節することにより制御することができる。
【0022】
本実施形態に係る熱伝導性シートは、例えば、半導体チップ等の発熱体と当該発熱体を搭載するリードフレーム、配線基板(インターポーザ)等の基板との間、あるいは、当該基板とヒートシンク等の放熱部材との間に設けられる。これにより、半導体装置の絶縁性を保ちつつ、上記発熱体から生じる熱を、半導体装置の外部へ効果的に放散させることができる。このため、半導体装置の安定性を向上させることが可能となる。
【0023】
本実施形態に係る熱伝導性シートの平面形状は、特に限定されず、放熱部材や発熱体等の形状に合わせて適宜選択することが可能であるが、例えば矩形とすることができる。熱伝導性シートの硬化物の膜厚は、50μm以上250μm以下であることが好ましい。これにより、機械的強度や耐熱性の向上を図りつつ、発熱体からの熱をより効果的に放熱部材へ伝えることができる。さらに、熱伝導材の放熱性と絶縁性のバランスがより一層優れる。
【0024】
本実施形態に係る熱伝導性シートは、エポキシ樹脂(A)と、エポキシ樹脂(A)中に分散された無機充填材(B)とを含む。以下、本実施形態に係る熱伝導性シートを構成する各材料について説明する。
【0025】
(エポキシ樹脂(A))
エポキシ樹脂(A)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールM型エポキシ樹脂(4,4'−(1,3−フェニレンジイソプリジエン)ビスフェノール型エポキシ樹脂)、ビスフェノールP型エポキシ樹脂(4,4'−(1,4−フェニレンジイソプリジエン)ビスフェノール型エポキシ樹脂)、ビスフェノールZ型エポキシ樹脂(4,4'−シクロヘキシジエンビスフェノール型エポキシ樹脂)等のビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、テトラフェノール基エタン型ノボラック型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;ビフェニル骨格を有するエポキシ樹脂;キシリレン型エポキシ樹脂、ビフェニルアラルキル骨格を有するエポキシ樹脂等のアリールアルキレン型エポキシ樹脂;ナフチレンエーテル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、ナフタレン骨格を有する2ないし4官能エポキシ樹脂、ビナフチル型エポキシ樹脂、ナフタレンアラルキル骨格を有するエポキシ樹脂等のナフタレン型エポキシ樹脂;アントラセン型エポキシ樹脂;フェノキシ型エポキシ樹脂;ジシクロペンタジエン骨格を有するエポキシ樹脂;ノルボルネン型エポキシ樹脂;アダマンタン骨格を有するエポキシ樹脂;フルオレン型エポキシ樹脂;フェノールアラルキル骨格を有するエポキシ樹脂等が挙げられる。
【0026】
これらの中でも、エポキシ樹脂(A)としては、ジシクロペンタジエン骨格を有するエポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、アダマンタン骨格を有するエポキシ樹脂、フェノールアラルキル骨格を有するエポキシ樹脂、ビフェニルアラルキル骨格を有するエポキシ樹脂、ナフタレンアラルキル骨格を有するエポキシ樹脂等から選択される一種または二種以上が好ましい。
このようなエポキシ樹脂(A)を使用することで、本実施形態に係る熱伝導性シートの硬化物のガラス転移温度を高くするとともに、熱伝導性シートおよびその硬化物の放熱性および絶縁性を向上させることができる。
【0027】
エポキシ樹脂(A)のエポキシ当量は、好ましくは1.5×10
2g/eq以上であり、より好ましくは1.8×10
2g/eq以上であり、さらに好ましくは2.0×10
2g/eq以上であり、特に好ましくは2.2×10
2g/eq以上である。エポキシ樹脂(A)のエポキシ当量が上記下限値以上であると、得られる半導体装置において、高温環境下における使用時の安定性をより一層向上させることができる。
また、エポキシ樹脂(A)のエポキシ当量の上限値は特に限定されないが、例えば、6.0×10
2g/eq以下であり、好ましくは5.0×10
2g/eq以下である。エポキシ樹脂(A)のエポキシ当量が上記上限値以下であると、エポキシ樹脂(A)のハンドリング性が優れる。
【0028】
本実施形態に係る熱伝導性シート中に含まれるエポキシ樹脂(A)の含有量は、当該熱伝導性シート100質量%に対し、1質量%以上30質量%以下が好ましく、5質量%以上28質量%以下がより好ましい。エポキシ樹脂(A)の含有量が上記下限値以上であると、ハンドリング性が向上し、熱伝導性シートを形成するのが容易となる。
エポキシ樹脂(A)の含有量が上記上限値以下であると、熱伝導性シートおよびその硬化物の強度や難燃性がより一層向上したり、熱伝導性シートおよびその硬化物の熱伝導性がより一層向上したりする。
【0029】
(無機充填材(B))
無機充填材(B)としては、例えば、シリカ、アルミナ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。
【0030】
無機充填材(B)の形状は、特に限定されないが、通常は球状である。
【0031】
無機充填材(B)としては、本実施形態に係る熱伝導性シートおよびその硬化物の熱伝導性をより一層向上させる観点から、鱗片状窒化ホウ素の一次粒子を凝集させることにより形成される二次凝集粒子であることが好ましい。
【0032】
鱗片状窒化ホウ素の一次粒子を凝集させることにより形成される二次凝集粒子は、例えば鱗片状窒化ホウ素にバインダーを混ぜてスラリーを作製し、スプレードライ法等を用いて凝集させたあと、これを焼成することにより形成することができる。焼成温度は、例えば1200〜2500℃である。焼成時間は、例えば2〜24時間である。
このように、無機充填材(B)として、鱗片状窒化ホウ素の一次粒子を焼結させて得られる二次凝集粒子を用いる場合には、エポキシ樹脂(A)中における無機充填材(B)の分散性を向上させる観点から、エポキシ樹脂(A)としてジシクロペンタジエン骨格を有するエポキシ樹脂がとくに好ましい。
【0033】
鱗片状窒化ホウ素を凝集させることにより形成される二次凝集粒子の平均粒径は、例えば5μm以上180μm以下であることが好ましく、10μm以上100μm以下であることがより好ましい。これにより、熱伝導性と絶縁性のバランスにより一層優れた熱伝導性シートを実現することができる。
ここで、二次凝集粒子の平均粒径は、レーザー回折式粒度分布測定装置により、粒子の粒度分布を体積基準で測定したときのメディアン径(D
50)である。
【0034】
二次凝集粒子を構成する鱗片状窒化ホウ素の一次粒子の平均長径は、好ましくは0.01μm以上20μm以下であり、より好ましくは0.1μm以上15μm以下である。これにより、熱伝導性と絶縁性のバランスにより一層優れた熱伝導性シートおよびその硬化物を実現することができる。
なお、この平均長径は電子顕微鏡写真により測定することができる。例えば、以下の手順で測定する。まず、二次凝集粒子をミクロトームなどで切断しサンプルを作製する。次いで、走査型電子顕微鏡により、数千倍に拡大した二次凝集粒子の断面写真を数枚撮影する。次いで、任意の二次凝集粒子を選択し、写真から鱗片状窒化ホウ素の一次粒子の長径を測定する。このとき、10個以上の一次粒子について長径を測定し、それらの平均値を平均長径とする。
【0035】
本実施形態に係る熱伝導性シート中に含まれる無機充填材(B)の含有量は、当該熱伝導性シート100質量%に対し、50質量%以上95質量%以下であることが好ましく、55質量%以上88質量%以下であることがより好ましく、60質量%以上80質量%以下であることが特に好ましい。
無機充填材(B)の含有量を上記下限値以上とすることにより、熱伝導性シートおよびその硬化物における熱伝導性や機械的強度の向上をより効果的に図ることができる。一方で、無機充填材(B)の含有量を上記上限値以下とすることにより、樹脂組成物の成膜性や作業性を向上させ、熱伝導性シートおよびその硬化物の膜厚の均一性をより一層良好なものとすることができる。
【0036】
本実施形態に係る無機充填材(B)は、熱伝導性シートおよびその硬化物の熱伝導性をより一層向上させる観点から、上記二次凝集粒子に加えて、上記二次凝集粒子を構成する鱗片状窒化ホウ素の一次粒子とは別の鱗片状窒化ホウ素の一次粒子をさらに含むのが好ましい。この鱗片状窒化ホウ素の一次粒子の平均長径は、好ましくは0.01μm以上20μm以下であり、より好ましくは0.1μm以上15μm以下である。
これにより、熱伝導性と絶縁性のバランスにより一層優れた熱伝導性シートおよびその硬化物を実現することができる。
【0037】
(硬化剤(C))
本実施形態に係る熱伝導性シートは、さらに硬化剤(C)を含むのが好ましい。
硬化剤(C)としては、硬化触媒(C−1)およびフェノール系硬化剤(C−2)から選択される1種以上を用いることができる。
硬化触媒(C−1)としては、例えばナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)等の有機金属塩;トリエチルアミン、トリブチルアミン、1,4−ジアザビシクロ[2.2.2]オクタン等の3級アミン類;2−フェニル−4−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2,4−ジエチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール等のイミダゾール類;トリフェニルホスフィン、トリ−p−トリルホスフィン、テトラフェニルホスホニウム・テトラフェニルボレート、トリフェニルホスフィン・トリフェニルボラン、1,2−ビス−(ジフェニルホスフィノ)エタン等の有機リン化合物;フェノール、ビスフェノールA、ノニルフェノール等のフェノール化合物;酢酸、安息香酸、サリチル酸、p−トルエンスルホン酸等の有機酸;等、またはこれらの混合物が挙げられる。硬化触媒(C−1)として、これらの中の誘導体も含めて1種類を単独で用いることもできるし、これらの誘導体も含めて2種類以上を併用したりすることもできる。
本実施形態に係る熱伝導性シート中に含まれる硬化触媒(C−1)の含有量は、特に限定されないが、熱伝導性シート100質量%に対し、0.001質量%以上1質量%以下が好ましい。
【0038】
また、フェノール系硬化剤(C−2)としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂、アミノトリアジンノボラック樹脂、ノボラック樹脂、トリスフェニルメタン型のフェノールノボラック樹脂等のノボラック型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン骨格及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物;レゾール型フェノール樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
これらの中でも、ガラス転移温度の向上及び線膨張係数の低減の観点から、フェノール系硬化剤(C−2)がノボラック型フェノール樹脂またはレゾール型フェノール樹脂が好ましい。
フェノール系硬化剤(C−2)の含有量は、特に限定されないが、熱伝導性シート100質量%に対し、1質量%以上30質量%以下が好ましく、5質量%以上20質量%以下がより好ましい。
【0039】
(カップリング剤(D))
さらに、本実施形態に係る熱伝導性シートは、カップリング剤(D)を含んでもよい。
カップリング剤(D)は、エポキシ樹脂(A)と無機充填材(B)との界面の濡れ性を向上させることができる。
【0040】
カップリング剤(D)としては、通常用いられるものなら何でも使用できるが、具体的にはエポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤およびシリコーンオイル型カップリング剤の中から選ばれる1種以上のカップリング剤を使用することが好ましい。
カップリング剤(D)の添加量は無機充填材(B)の比表面積に依存するので、特に限定されないが、無機充填材(B)100質量部に対して0.1質量部以上10質量部以下が好ましく、特に0.5質量部以上7質量部以下が好ましい。
【0041】
(フェノキシ樹脂(E))
さらに、本実施形態に係る熱伝導性シートは、さらにフェノキシ樹脂(E)を含んでもよい。フェノキシ樹脂(E)を含むことにより熱伝導性シートおよびその硬化物の耐屈曲性をより一層向上できる。
また、フェノキシ樹脂(E)を含むことにより、熱伝導性シートおよびその硬化物の弾性率を低下させることが可能となり、熱伝導性シートおよびその硬化物の応力緩和力を向上させることができる。
また、フェノキシ樹脂(E)を含むと、粘度上昇により流動性が低減し、ボイド等が発生することを抑制できる。また、熱伝導性シートと放熱部材との密着性を向上できる。これらの相乗効果により、半導体装置の高温環境下における使用時の安定性をより一層高めることができる。
【0042】
フェノキシ樹脂(E)としては、例えば、ビスフェノール骨格を有するフェノキシ樹脂、ナフタレン骨格を有するフェノキシ樹脂、アントラセン骨格を有するフェノキシ樹脂、ビフェニル骨格を有するフェノキシ樹脂等が挙げられる。また、これらの骨格を複数種有した構造のフェノキシ樹脂を用いることもできる。
【0043】
フェノキシ樹脂(E)の含有量は、例えば、熱伝導性シート100質量%に対し、3質量%以上10質量%以下である。
【0044】
(その他の成分)
本実施形態に係る熱伝導性シートには、本発明の効果を損なわない範囲で、酸化防止剤、レベリング剤等を含むことができる。
【0045】
本実施形態に係る熱伝導性シートは、例えば次のようにして作製することができる。
まず、上述の各成分を溶媒へ添加して、ワニス状の樹脂組成物を得る。本実施形態においては、例えば、溶媒中にエポキシ樹脂(A)等を添加して樹脂ワニスを作製したのち、当該樹脂ワニスへ無機充填材(B)を入れて三本ロール等を用いて混練することにより樹脂組成物を得ることができる。これにより、無機充填材(B)をより均一に、エポキシ樹脂(A)中へ分散させることができる。
上記溶媒としては特に限定されないが、メチルエチルケトン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテル、シクロヘキサノン等が挙げられる。
【0046】
次いで、熱伝導性シート用樹脂組成物に対しエージングを行うことが好ましい。これにより、得られる熱伝導性シートについて、絶縁性を向上させることができる。これは、エージングによって無機充填材(B)の熱硬化性樹脂(A)に対する親和性が上昇すること等が要因として推定される。エージングは、例えば、30〜80℃、12〜24時間の条件により行うことができる。
【0047】
次いで、上記樹脂組成物をシート状に成形して、熱伝導性シートを形成する。本実施形態においては、例えば基材上にワニス状の上記樹脂組成物を塗布した後、これを熱処理して乾燥することにより熱伝導性シートを得ることができる。基材としては、例えば放熱部材やリードフレーム、剥離可能なキャリア材等を構成する金属箔が挙げられる。また、樹脂組成物を乾燥するための熱処理は、例えば80〜150℃、5分〜1時間の条件において行われる。熱伝導性シートの膜厚は、例えば60μm以上500μm以下である。
【0048】
次に、本実施形態に係る半導体装置について説明する。
図1は、本発明の一実施形態に係る半導体装置100の断面図である。
【0049】
以下においては、説明を簡単にするため、半導体装置100の各構成要素の位置関係(上下関係等)が各図に示す関係であるものとして説明を行う場合がある。ただし、この説明における位置関係は、半導体装置100の使用時や製造時の位置関係とは無関係である。
【0050】
本実施形態では、金属板がヒートシンクである例を説明する。本実施形態に係る半導体装置100は、ヒートシンク130と、ヒートシンク130の第1面131側に設けられた半導体チップ110と、ヒートシンク130の第1面131とは反対側の第2面132に接合された熱伝導材140と、半導体チップ110およびヒートシンク130を封止している封止樹脂180と、を備えている。
以下、詳細に説明する。
【0051】
半導体装置100は、例えば、上記の構成の他に、導電層120、金属層150、リード160およびワイヤ(金属配線)170を有する。
【0052】
半導体チップ110の上面111には図示しない電極パターンが形成され、半導体チップ110の下面112には図示しない導電パターンが形成されている。半導体チップ110の下面112は、銀ペースト等の導電層120を介してヒートシンク130の第1面131に固着されている。半導体チップ110の上面111の電極パターンは、ワイヤ170を介してリード160の電極161に対して電気的に接続されている。
【0053】
ヒートシンク130は、金属により構成されている。
【0054】
封止樹脂180は、半導体チップ110およびヒートシンク130の他に、ワイヤ170と、導電層120と、リード160の一部分ずつと、を内部に封止している。各リード160の他の一部分ずつは、封止樹脂180の側面より、該封止樹脂180の外部に突出している。本実施形態の場合、例えば、封止樹脂180の下面182とヒートシンク130の第2面132とが互いに同一平面上に位置している。
【0055】
熱伝導材140の上面141は、ヒートシンク130の第2面132と、封止樹脂180の下面182と、に対して貼り付けられている。つまり、封止樹脂180は、ヒートシンク130の周囲において熱伝導材140のヒートシンク130側の面(上面141)に接している。
【0056】
熱伝導材140の下面142には、金属層150の上面151が固着されている。すなわち、金属層150の一方の面(上面151)は、熱伝導材140におけるヒートシンク130側とは反対側の面(下面142)に対して固着されている。
【0057】
平面視において、金属層150の上面151の外形線と、熱伝導材140におけるヒートシンク130側とは反対側の面(下面142)の外形線と、が重なっていることが好ましい。
【0058】
また、金属層150は、その一方の面(上面151)に対する反対側の面(下面152)の全面が封止樹脂180から露出している。なお、本実施形態の場合、上記のように、熱伝導材140は、その上面141が、ヒートシンク130の第2面132および封止樹脂180の下面182に貼り付けられているため、熱伝導材140は、その上面141を除き、封止樹脂180の外部に露出している。そして、金属層150は、その全体が封止樹脂180の外部に露出している。
【0059】
なお、ヒートシンク130の第2面132および第1面131は、例えば、それぞれ平坦に形成されている。
【0060】
半導体装置100の実装床面積は、特に限定されないが、一例として、10×10mm以上100×100mm以下とすることができる。ここで、半導体装置100の実装床面積とは、金属層150の下面152の面積である。
【0061】
また、一のヒートシンク130に搭載された半導体チップ110の数は、特に限定されない。1つであってもよいし、複数であってもよい。例えば、3つ以上(6個等)とすることもできる。すなわち、一例として、一のヒートシンク130の第1面131側に3つ以上の半導体チップ110が設けられ、封止樹脂180はこれら3つ以上の半導体チップ110を一括して封止してもよい。
【0062】
半導体装置100は、例えば、パワー半導体装置である。この半導体装置100は、例えば、封止樹脂180内に2つの半導体チップ110が封止された2in1、封止樹脂180内に6つの半導体チップ110が封止された6in1または封止樹脂180内に7つの半導体チップ110が封止された7in1の構成とすることができる。
【0063】
次に、本実施形態に係る半導体装置100を製造する方法の一例を説明する。
【0064】
先ず、ヒートシンク130および半導体チップ110を準備し、銀ペースト等の導電層120を介して、半導体チップ110の下面112をヒートシンク130の第1面131に固着する。
【0065】
次に、リード160を含むリードフレーム(全体図示略)を準備し、半導体チップ110の上面111の電極パターンとリード160の電極161とをワイヤ170を介して相互に電気的に接続する。
【0066】
次に、半導体チップ110と、導電層120と、ヒートシンク130と、ワイヤ170と、リード160の一部分ずつと、を封止樹脂180により一括して封止する。
【0067】
次に、熱伝導材140を準備し、この熱伝導材140の上面141を、ヒートシンク130の第2面132と、封止樹脂180の下面182と、に対して貼り付ける。更に、金属層150の一方の面(上面151)を、熱伝導材140におけるヒートシンク130側とは反対側の面(下面142)に対して固着する。なお、熱伝導材140をヒートシンク130および封止樹脂180に対して貼り付ける前に、予め熱伝導材140の下面142に金属層150を固着しておいてもよい。
次に、各リード160をリードフレームの枠体(図示略)から切断する。こうして、
図1に示すような構造の半導体装置100が得られる。
【0068】
以上のような実施形態によれば、半導体装置100は、ヒートシンク130と、ヒートシンク130の第1面131側に設けられた半導体チップ110と、ヒートシンク130の第1面131とは反対側の第2面132に貼り付けられた絶縁性の熱伝導材140と、半導体チップ110およびヒートシンク130を封止している封止樹脂180と、を備えている。
【0069】
上述のように、半導体装置のパッケージがある程度よりも小さい場合には熱伝導材の絶縁性の悪化が問題として顕在化しなくても、半導体装置のパッケージが大面積となるほど、熱伝導材の面内で電界が最も集中する箇所での電界が強くなる。このため、熱伝導材の僅かな膜厚の変動による絶縁性の悪化も、問題として顕在化する可能性があると考えられる。
これに対し、本実施形態に係る半導体装置100は、例えば、その実装床面積が10×10mm以上100×100mm以下の大型のパッケージであったとしても、上記の構造の熱伝導材140を備えることにより、十分な耐久性を得ることが期待できる。
【0070】
また、本実施形態に係る半導体装置100は、例えば、一のヒートシンク130の第1面131側に3つ以上の半導体チップ110が設けられ、これら3つ以上の半導体チップを封止樹脂180が一括して封止している構造のものであったとしても、すなわち、半導体装置100が大型のパッケージであったとしても、上記の構造の熱伝導材140を備えることにより、十分な耐久性を得ることが期待できる。
【0071】
また、熱伝導材140におけるヒートシンク130側とは反対側の面(下面142)に対して一方の面(上面151)が固着された金属層150を半導体装置100が更に備える場合、この金属層150によって好適に放熱することができるため、半導体装置100の放熱性が向上する。
【0072】
また、金属層150の上面151が熱伝導材140の下面142よりも小さいと、熱伝導材140の下面142が外部に露出し、異物などの突起物により熱伝導材140にクラックが発生する懸念が生じる。一方、金属層150の上面151が熱伝導材140の下面142よりも大きいと金属層150の端部が宙に浮いたような格好になり、製造工程での取り扱いの際などにおいて、金属層150が剥がれてしまう可能性がある。
これに対し、平面視において、金属層150の上面151の外形線と、熱伝導材140の下面142の外形線と、が重なっている構造とすることにより、熱伝導材140におけるクラックの発生および金属層150の剥離を抑制することができる。
【0073】
また、金属層150の下面152の全面が封止樹脂180から露出しているので、金属層150の下面152の全面での放熱が可能となり、半導体装置100の高い放熱性が得られる。
【0074】
図2は、本発明の一実施形態に係る半導体装置100の断面図である。この半導体装置100は、以下に説明する点で、
図1に示した半導体装置100と相違し、その他の点では、
図1に示した半導体装置100と同様に構成されている。
【0075】
本実施形態の場合、熱伝導材140は、封止樹脂180内に封止されている。また、金属層150も、その下面152を除き、封止樹脂180内に封止されている。そして、金属層150の下面152と、封止樹脂180の下面182とが互いに同一平面上に位置している。
【0076】
なお、
図2には、ヒートシンク130の第1面131に少なくとも2つ以上の半導体チップ110が搭載されている例が示されている。これら半導体チップ110の上面111の電極パターン同士が、ワイヤ170を介して相互に電気的に接続されている。第1面131には、例えば、合計6つの半導体チップ110が搭載されている。すなわち、例えば、2つずつの半導体チップ110が、
図2の奥行き方向において3列に配置されている。
【0077】
なお、上記の
図1または
図2に示した半導体装置100を基板(図示略)上に搭載することにより、基板と、半導体装置100と、を備えるパワーモジュールが得られる。
【0078】
なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
以下、本発明の参考形態の一例を示す。
<1>
エポキシ樹脂と、前記エポキシ樹脂中に分散された無機充填材と、を含む熱伝導性シートであって、
前記エポキシ樹脂のエポキシ当量をXg/eqとし、
昇温速度5℃/min、周波数1Hzの条件で動的粘弾性測定により測定される、当該熱伝導性シートの硬化物のガラス転移温度をY℃としたとき、
X×Yが3.0×104g・℃/eq以上である、熱伝導性シート。
<2>
<1>に記載の熱伝導性シートにおいて、
前記エポキシ当量が1.5×102g/eq以上である、熱伝導性シート。
<3>
<1>または<2>に記載の熱伝導性シートにおいて、
下記条件で得られた抽出水をイオンクロマトグラフにより分析することにより測定される、前記熱伝導性シートの前記硬化物中のイオンの総量が30,000ppm以下であり、
前記イオンがLi+、Na+、NH4+、K+、Ca2+、Mg2+、F−、Cl−、NO22−、Br−、NO3−、PO43−、SO42−、(COO)22−、CH3COO−、およびHCOO−から選択される一種または二種以上である、熱伝導性シート。
(条件)
凍結粉砕させた当該熱伝導性シートの硬化物2gに対して40mLの純水を加え、125℃20時間熱水抽出し、抽出水を得る
<4>
<1>乃至<3>いずれか一つに記載の熱伝導性シートにおいて、
前記エポキシ樹脂がジシクロペンタジエン骨格を有するエポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、アダマンタン骨格を有するエポキシ樹脂、フェノールアラルキル骨格を有するエポキシ樹脂、ビフェニルアラルキル骨格を有するエポキシ樹脂、およびナフタレンアラルキル骨格を有するエポキシ樹脂から選択される一種または二種以上である、熱伝導性シート。
<5>
<1>乃至<4>いずれか一つに記載の熱伝導性シートにおいて、
前記硬化物のガラス転移温度が160℃以上である、熱伝導性シート。
<6>
<1>乃至<5>いずれか一つに記載の熱伝導性シートにおいて、
前記無機充填材は、鱗片状窒化ホウ素の一次粒子により構成されている二次凝集粒子である、熱伝導性シート。
<7>
<6>に記載の熱伝導性シートにおいて、
前記二次凝集粒子の平均粒径が5μm以上180μm以下である、熱伝導性シート。
<8>
<6>または<7>に記載の熱伝導性シートにおいて、
前記二次凝集粒子を構成する前記一次粒子の平均長径が0.01μm以上20μm以下である、熱伝導性シート。
<9>
<1>乃至<8>いずれか一つに記載の熱伝導性シートにおいて、
前記無機充填材の含有量が、当該熱伝導性シート100質量%に対し、50質量%以上95質量%以下である、熱伝導性シート。
<10>
<1>乃至<9>いずれか一つに記載の熱伝導性シートを硬化してなる熱伝導性シートの硬化物。
<11>
金属板と、
前記金属板の第1面側に設けられた半導体チップと、
前記金属板の前記第1面とは反対側の第2面に接合された熱伝導材と、
前記半導体チップおよび前記金属板を封止する封止樹脂とを備え、
前記熱伝導材が、<1>乃至<9>いずれか一つに記載の熱伝導性シートにより形成された半導体装置。
【実施例】
【0079】
以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。また、それぞれの厚みは平均膜厚で表わされている。
【0080】
(鱗片状窒化ホウ素の一次粒子により構成された二次凝集粒子の作製)
ホウ酸メラミン(ホウ酸:メラミン=2:1(モル比))と鱗片状窒化ホウ素粉末(平均長径:15μm)を混合して得られた混合物(ホウ酸メラミン:鱗片状窒化ホウ素粉末=10:1(質量比))を、0.2質量%のポリアクリル酸アンモニウム水溶液へ添加し、2時間混合して噴霧用スラリーを調製した(ポリアクリル酸アンモニウム水溶液:混合物=100:30(質量比))。次いで、このスラリーを噴霧造粒機に供給し、アトマイザーの回転数15000rpm、温度200℃、スラリー供給量5ml/minの条件で噴霧することにより、複合粒子を作製した。次いで、得られた複合粒子を、窒素雰囲気下、2000℃、10時間の条件で焼成することにより、平均粒径が80μmの凝集窒化ホウ素を得た。
ここで、凝集窒化ホウ素の平均粒径は、レーザー回折式粒度分布測定装置(HORIBA社製、LA−500)により、粒子の粒度分布を体積基準で測定し、そのメディアン径(D
50)とした。
【0081】
(熱伝導性シートの作製)
実施例1〜5および比較例1〜3について、以下のように熱伝導性シートを作製した。
まず、表1に示す配合に従い、エポキシ樹脂(A)と、硬化剤(C)とを溶媒であるメチルエチルケトンに添加し、これを撹拌して熱硬化性樹脂組成物の溶液を得た。次いで、この溶液に無機充填材(B)を入れて予備混合した後、三本ロールにて混練し、無機充填材を均一に分散させた熱伝導性シート用樹脂組成物を得た。次いで、得られた熱伝導性シート用樹脂組成物に対し、60℃、15時間の条件によりエージングを行った。次いで、熱伝導性シート用樹脂組成物を、銅箔上にドクターブレード法を用いて塗布した後、これを100℃、30分間の熱処理により乾燥して、膜厚が400μmであるBステージ状の熱伝導性シートを作製した。
なお、表1中における各成分の詳細は下記のとおりである。
【0082】
(エポキシ樹脂(A))
エポキシ樹脂1:ビフェニル骨格を有するエポキシ樹脂(YX−4000、三菱化学社製)
エポキシ樹脂2:フェノールアラルキル骨格を有するエポキシ樹脂(NC−2000−L、日本化薬社製)
エポキシ樹脂3:ジシクロペンタジエン骨格を有するエポキシ樹脂(XD−1000、日本化薬社製)
エポキシ樹脂4:ビフェニルアラルキル骨格を有するエポキシ樹脂(NC−3000、日本化薬社製)
エポキシ樹脂5:ビスフェノールF型エポキシ樹脂(830S、DIC社製)
エポキシ樹脂6:ナフタレン骨格を有する4官能エポキシ樹脂(HP−4710、DIC社製)
エポキシ樹脂7:ナフタレン骨格を有する2官能エポキシ樹脂(HP−4032D、DIC社製)
エポキシ樹脂8:アミノフェノール型エポキシ樹脂(630、三菱化学社製)
【0083】
(無機充填材(B))
充填材1:上記鱗片状窒化ホウ素の一次粒子により構成された二次凝集粒子の作製により作製された凝集窒化ホウ素
【0084】
(硬化剤(C))
フェノール系硬化剤1:トリスフェノールメタン型フェノール樹脂(MEH−7500、明和化成社製)
硬化触媒1:2−フェニル−4,5−ジヒドロキシメチルイミダゾール(2PHZ−PW、四国化成社製)
【0085】
(Tg(ガラス転移温度)の測定)
熱伝導性シートの硬化物のガラス転移温度を次のように測定した。まず、得られた熱伝導性シートを180℃、10MPaで40分間熱処理することにより、熱伝導性シートの硬化物を得た。次いで、得られた硬化物のガラス転移温度(Tg)を、DMA(動的粘弾性測定)により昇温速度5℃/min、周波数1Hzの条件で測定した。
【0086】
(イオンの総量の測定)
熱伝導性シートの硬化物中のイオンの総量を次のように測定した。まず、得られた熱伝導性シートを180℃、10MPaで40分間熱処理することにより、熱伝導性シートの硬化物を得た。次いで、得られた硬化物を凍結粉砕させた。凍結粉砕させた熱伝導性シート2gに対して40mLの純水を加え、125℃20時間熱水抽出し、抽出水を得た。
この抽出水について、ダイオネクスICS-3000型、ICS-2000型、DX-320型イオンクロマトグラフ装置を用いてLi
+、Na
+、NH
4+、K
+、Ca
2+、Mg
2+、F
−、Cl
−、NO
22−、Br
−、NO
3−、PO
43−、SO
42−、(COO)
22−、CH
3COO
−、およびHCOO
−から選択される一種または二種以上のイオンの総量を測定した。
ここで、イオンクロマトグラフ装置に検液及び標準溶液を導入し、検量線法により各イオン濃度を求め、試料からの溶出イオン量を算出した。
【0087】
(高温環境下における半導体パッケージの安定性評価)
実施例1〜5および比較例1〜3のそれぞれについて、半導体パッケージの高温環境下における安定性を次のように評価した。まず、熱伝導性シートの硬化体を用いて得られた半導体パッケージを、サンプルとして300個用意した。次いで、各サンプルを200℃の環境下で24時間保管した。次いで、保管後におけるサンプルの故障率を算出した。ここでは、故障率が1%未満であるものを◎、1%以上3%未満であるものを○、3%以上であるものを×として、高温環境下における安定性の評価を行った。
【0088】
【表1】
【0089】
X×Yが3.0×10
4g・℃/eq以上である熱伝導性シートを用いた実施例1〜5の半導体パッケージは、高温環境下における安定性に優れていた。
X×Yが3.0×10
4g・℃/eq未満である熱伝導性シートを用いた比較例1〜3の半導体パッケージは、高温環境下における安定性に劣っていた。
したがって、本発明による熱伝導性シートを用いることにより、高温環境下における使用時の安定性に優れた半導体装置が得られることが分かった。