特許第6795736号(P6795736)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コンパクト イメージング,インコーポレイテッドの特許一覧

特許6795736ヘッドマウント式光コヒーレンストモグラフィ
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6795736
(24)【登録日】2020年11月17日
(45)【発行日】2020年12月2日
(54)【発明の名称】ヘッドマウント式光コヒーレンストモグラフィ
(51)【国際特許分類】
   A61B 3/10 20060101AFI20201119BHJP
   G01N 21/17 20060101ALI20201119BHJP
【FI】
   A61B3/10ZDM
   A61B3/10 100
   G01N21/17 620
【請求項の数】4
【外国語出願】
【全頁数】20
(21)【出願番号】特願2019-4970(P2019-4970)
(22)【出願日】2019年1月16日
(62)【分割の表示】特願2016-533486(P2016-533486)の分割
【原出願日】2014年8月9日
(65)【公開番号】特開2019-130300(P2019-130300A)
(43)【公開日】2019年8月8日
【審査請求日】2019年2月14日
(31)【優先権主張番号】61/864,556
(32)【優先日】2013年8月10日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】319005785
【氏名又は名称】コンパクト イメージング,インコーポレイテッド
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100091214
【弁理士】
【氏名又は名称】大貫 進介
(72)【発明者】
【氏名】ホーガン,ジョシュア,ノエル
【審査官】 牧尾 尚能
(56)【参考文献】
【文献】 特表2011−515194(JP,A)
【文献】 米国特許出願公開第2005/0286019(US,A1)
【文献】 特開平01−113025(JP,A)
【文献】 特開2010−268900(JP,A)
【文献】 特表2009−510445(JP,A)
【文献】 国際公開第2008/142823(WO,A1)
【文献】 特開平03−215243(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 3/00 − 3/18
G01N 21/17
G06T 7/00 − 7/90
(57)【特許請求の範囲】
【請求項1】
装置であって:
フレームと、
ユーザカスタマイズ可能なユニットと、
光コヒーレンストモグラフィシステムであって、前記フレームに取り付けられた前記光コヒーレンストモグラフィシステム及び前記ユーザカスタマイズ可能なユニットは、検査下の眼にプローブ放射が入ることを可能にするように、前記フレームは、ユーザの頭に取り付け可能であり、前記頭は検査されることになる少なくとも1つの前記眼を有する、光コヒーレンストモグラフィシステムと、
所定の期間の間オンおよびオフを切り替えられる発光ダイオードと、を有し、
前記発光ダイオードからの光は、ダイクロイックミラーによりコリメートされ前記光コヒーレンストモグラフィシステムのプローブビームと組み合わされ且つコリニアにされ、
転向ミラーが光学経路内にあり且つ前記検査下の眼に対して第1の位置に配置され、
前記転向ミラーは、前記転向ミラーが前記第1の位置にあるとき、予め選択された方向での固定のために向けられ、適所にあるとき、前記発光ダイオードはオンにされ、前記発光ダイオードがオフにされると、前記転向ミラーは第2の位置に向けられ、前記第2の位置は、所望のターゲット領域の深さスキャンを得るために前記プローブビームを向けることを達成するための位置の範囲を含む、
装置。
【請求項2】
前記転向ミラーは、前記第1の位置を推定し、前記固定が達成され、前記検査下の眼の少なくとも1つの選択された部分の深さ走査が達成される少なくとも1つの前記第2の位置を推定するシーケンスを繰り返し実行する。
請求項1に記載の装置。
【請求項3】
検査下の眼の選択された部分の厚さを測定する方法であって、前記方法は:
被験者に対して眼鏡と同様な方法で被験者の頭に装着可能なフレームに取り付けられた光コヒーレンストモグラフィシステムを使用するステップであって、発光ダイオードからの光が、ダイクロイックミラーによりコリメートされ前記光コヒーレンストモグラフィシステムのプローブビームと組み合わされ且つコリニアにされる、ステップと;
前記検査下の眼に対して第1の位置に光学経路内の転向ミラーを位置決めするステップであって、前記第1の位置は、予め選択された方向での固定のために向けられ、前記第1の位置にあるとき、前記発光ダイオードはオンにされる、ステップと;
所望のターゲット領域の深さスキャンを得るために位置の範囲にわたって前記プローブビームを向けるための複数の第2の位置で、前記発光ダイオードをオフにした状態で、前記転向ミラーを位置決めするステップと;を含む、
方法。
【請求項4】
前記第1の位置を推定する前記転向ミラーのステップに前記複数の第2の位置を推定するステップが続くシーケンスが繰り返し実行される
請求項3に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
[関連出願の相互参照]
本特許出願、事件整理番号CI130701PTは、“Multiple Reference Non−invasive Analysis System”というタイトルの米国特許第7,526,329号及び“Frequency Resolved Imaging System” というタイトルの米国特許第7,751,862号に関連し、これらの両方の内容は、本出願に完全に記載されているかのように、本出願に組み込まれる。この特許出願はまた、次の3つの特許出願と関連し、これらの全ては2012年11月3日に出願されている:“Improved Correlation of Concurrent Non−invasively Acquired Signals”というタイトルのPCT特許出願番号第PCT/US2012/063471号(事件整理番号CI120625);“A Field of Light based Device”というタイトルの特許出願番号第13,668,261号(事件整理番号CI121103);及び“Non−invasive Optical Monitoring”というタイトルの特許出願番号第13, 668, 258号(事件整理番号CI121101);これらの全ての内容は、本出願に完全に記載されているかのように本出願に組み込まれる。
【0002】
この出願に記載され且つ図示されている発明は、光コヒーレンストモグラフィ(OCT)のような非侵襲イメージング及び分析技術に関する。特に、眼の様相(aspect)の生体内測定を行うためのOCTシステムの使用に関する。このようなOCTシステムは、限定されるものではないが、米国特許第7,751,862号及び第7,526,329号に記載される、MROシステムと称される、複数参照OCTシステムを含む。
【背景技術】
【0003】
ターゲットの非侵襲イメージング及び分析は、分析されているターゲットに損傷を与えることのような、望ましくない副作用なしに系又はターゲットに関する情報を入手するための貴重な手法である。人間の組織のような、生きている実体を分析する場合、侵襲的な分析の望ましくない副作用は、痛みを伴う感染のリスク及び侵襲プロセスに関連する不快感を含む。
【0004】
光コヒーレンストモグラフィ(OCT)は、非侵襲イメージング及び分析のための技術である。1より多いOCT技術が存在する。タイムドメインOCT(TD−OCT)は、典型的には、ターゲットを調べ且つ分析する又は画像化するために、スーパールミネセントダイオード(SLD)のような、短いコヒーレンス長を持つ広帯域光源を使用する。複数参照OCT(MRO)は、複数の参照信号を使用するTD−OCTの変形である。他のOCT技術は、フーリエドメインOCT(FD−OCT)である。スウェプトソースOCT(SS−OCT)と呼ばれる、フーリエドメインOCTの変形は、典型的には、その周波数(又は波長)が広い波長範囲にわたって掃引される(変えられる)狭帯域レーザ光源を使用する。TD−OCTシステムでは、広帯域光源の帯域幅が深さ分解能を決定する。SS−OCTシステムでは、光源が掃引される波長範囲が深さ分解能を決定する。FD−OCTの他の変形形態は、検出プロセスが分光器を用いて波長を分離するスペクトラルドメインである。
【0005】
TD−OCT技術は、光源からターゲットにプローブ放射を加えることによって及び干渉法によってターゲットからの後方散乱プローブ放射を同様に光源から生じた参照放射と結合させることによって、動作する。典型的なTD−OCT技術は、典型的には、ペリクル、ビームスプリッタキューブ、又はファイバカプラのような、ビームスプリッタにより、出力ビームをプローブビーム及び参照ビームに分割することを含む。プローブビームは、ターゲットに当てられる。光又は放射は、ターゲットによって散乱し、その幾つかは後方散乱プローブビームを形成するように後方散乱し、本明細書では信号放射と称される。
【0006】
参照ビームは典型的には、ミラーによってビームスプリッタに反射して戻る。ターゲットから後方に散乱した光は、参照放射とも称される参照ビームと、共伝播参照放射及び信号放射を形成するようにビームスプリッタによって結合される。短いコヒーレンス長のために、その光路長が参照ミラーへの経路長と実質的に等しいターゲット内のある深さから散乱する光だけが、意味のある干渉信号を生成することができる。
【0007】
したがって、干渉信号は、ターゲット内の特定の深さにおける散乱特性の測定を提供する。従来のTD−OCTシステムでは、様々な深さにおける散乱値の測定が、参照経路長の大きさを変化させることによって、典型的には参照ミラーを動かすことによって、決定されることができる。この方法では、深さの関数としての散乱値が決定されることができ、ターゲットの深さスキャン(走査)をもたらす。
【0008】
様々な技法が、参照経路長の大きさを変化させるために存在する。電気機械ボイスコイルアクチュエータは、かなりの走査範囲を有することができるが、参照ミラーの指向精度又は安定性を維持することに問題がある。ファイバストレッチャを使用するファイバベースのシステムは、速度制限を有するとともに、サイズ及び偏光の問題を有する。回転回折格子は、より高い速度で動くことができるが、アライメントに敏感であるとともにサイズの問題を有する。
【0009】
ピエゾ装置は、高速走査を実現することができるとともに高指向精度を有することができるが、より大きい走査範囲を実現することは、高価な制御システムを必要とし、このようなシステムは速度に限界がある。ピエゾ装置の走査範囲を効果的に増幅する操作方法が、先に参照された特許文献1及び2に記載されている。
【0010】
これらの文献に記載されている技術は、走査範囲を増やすこと及び対応して周波数干渉信号を増加させることを伴う複数の参照信号を使用する。この走査方法は、良好な指向安定性とともに高速での大きい走査範囲を実現することができる。複数の参照信号に関連付けられる干渉信号は、結合干渉信号からなる複素信号として単一の検出器によって検出される。
【0011】
スウェプトソースフーリエドメインOCTシステムでは、深さ走査が、光源の波長を繰り返し掃引することによって遂行される。光源が掃引される波長範囲は深さ分解能を決定する。掃引繰り返しレートの周期は、深さ走査の周期を決定する。
【0012】
深さ走査に加えて、ターゲットの横方向走査が、多くのイメージング及び分析用途で必要とされる。横方向走査のための幾つかの従来の技術は、OCT走査システムを動かすためにステッパ又はリニアモータを使用する。幾つかの応用では、角度走査が、プローブビームを角度偏向させる、典型的にはガルバノスキャナ(galvo−scanners)と称される、電気機械振動ミラーによって遂行される。
【0013】
現在利用可能なOCTシステムは、大きく、重く、複雑且つ高コストである。現在利用可能なOCTシステムは、物理的に大きく且つコストのかかるシステムをもたらす複雑且つ大きい位置合わせ及び操作サブシステムを有する。さらに、典型的な眼科応用では、現在利用可能なOCTシステムは、訓練された医師又は技師によって操作されなければならない。必要なことは、専門家でない人による位置合わせに適し、信頼性が高く且つ正確な測定を提供する、軽量で、頑丈で、信頼性の高いモニタリング装置である。
【0014】
さらに、網膜検査のような、眼科応用はしばしば、網膜がOCTプローブビームに対して又はOCTプローブビームの走査領域に対して固定した配向になることを要求する。このプロセスはまた、眼の「固定」とも称される。OCTビームによって分析されている場所以外の場所での固定を必要とする現在利用可能なOCTシステムはまた、複雑な固定機構を必要とする。
【0015】
失明の主な原因は、黄斑変性及び糖尿病性網膜症である。これらの疾患の両方は、タイムリーな医学的介入から利益を得ることができる。有害な状況(例えば、弱く漏れやすい血管の成長)の発生が、タイムリーな方法で対処されないと、容赦なく視力の喪失に至る網膜への不可逆的なダメージを引き起こし得るので、これらの疾患による目のダメージのリスクがある人は、頻繁なモニタリングを必要とする。
【0016】
現在の医療は、医者への毎月の訪問を含む。これらの訪問の多くは、何も変わっていない場合無駄であり、変化の場合、かなりの不可逆的なダメージが1ヶ月以内に発生し得る。したがって、無駄になることなしに網膜測定の間の時間を減らすことが有利である。
【0017】
眼の網膜では、血管系及び中枢神経系の両方が、OCTシステムによる非侵襲分析のためにアクセス可能である。これは、黄斑変性及び糖尿病性網膜症に加えて、無数の疾患の発症又は進行をモニタする機会を提供する。このような疾患の頻繁なモニタリングは、訓練された専門家の助けなしに、必要な測定を行うことができる低コストシステムによって容易になるであろう。
【先行技術文献】
【特許文献】
【0018】
【特許文献1】米国特許第7,526,329号
【特許文献2】米国特許第7,751,862号
【発明の概要】
【発明が解決しようとする課題】
【0019】
したがって、眼の生体内OCT測定をすることを可能にする低コストOCTシステムに対する未だ対処されていない要求があり、このようなシステムは、訓練されたオペレータを必要とせず且つ好ましくは被験者彼又は彼女自身によって操作されることができる自動位置合わせ、走査及び固定機構を有する。そしてまた必要とされることは、走査結果を医療専門家に伝達するシステムである。
【0020】
本出願に教示される本発明は、前述の未だ対処されていない要求の少なくとも全てを満たす。
【課題を解決するための手段】
【0021】
本発明は、眼に対するOCTシステムの固定された粗い位置合わせ及び自動的な微細位置合わせを有する方法、装置及びシステムを提供する。幾つかの実施形態では、システムはまた、所望の領域の走査を提供するとともに柔軟な固定技術を使用する。
【0022】
好適な実施形態では、フォトニックモジュールが、メガネと同様であり得る方法で被験者の頭に取り付けるフレームに結合する。フレームは、フレームに取り付けられるとき、フォトニックモジュールが被験者の目の少なくとも一方と少なくとも粗く位置合わせされるように、及びOCT走査領域が眼の網膜と少なくとも粗く位置合わせされる、すなわち、眼の軸方向長さと位置合わせされるように、選択される。
【0023】
好適な実施形態では、フレームは、OCTビームを被験者の眼の中に向ける転向ミラーを含む。代替実施形態では、1又は複数の補正レンズが、被験者の眼の屈折異常を補償する。さらなる代替実施形態では、補正レンズは、手動で又は電子制御によってのいずれかで、調整可能である。このような調整可能なレンズは、設定変更可能な補正レンズと呼ばれる。
【0024】
好適な実施形態では、フォトニックモジュールは、動的な微細な軸方向長さ調整を可能にする移動可能な構成要素を含む。この微細な軸方向長さ調整は、網膜の処理されたOCT深さ走査からのフィードバックを使用して実行される。
【0025】
好適な実施形態では、フォトニックモジュールは、ターゲットの眼の前の中心の場所に対して、及びターゲットの眼の軸方向長さに対して、及びターゲットの眼の屈折異常に対して、粗く位置合わせする方法でフレームのいずれかの(右又は左の)側部に取り付けられることができる。フレームのいずれかの側部に取り付けられる能力は、システムがどちらの眼も順番に測定することを可能にする。他の実施形態は、モジュールを動かすことなしに、被験者の眼の両方を測定することができる。
【0026】
代替実施形態では、OCTビームを被験者の眼の中に向ける転向ミラーは、網膜の特定の場所若しくは網膜の場所の選択されたセットに向けることを可能にするように又は眼の網膜の特定の領域を走査することを可能にするように角度調整可能である。
【0027】
代替実施形態では、OCTビームを被験者の眼の中に向ける転向ミラーは、1若しくは複数の場所に向けること又は網膜の特定の領域を走査することを容易にする固定技術を可能にするように角度調整可能である。固定技術は、OCTプローブビームを固定信号として使用すること又はOCTプローブビームの波長と異なる波長の可視ビームを使用することを含む。更なる実施形態では、システムはカメラを含む。
【図面の簡単な説明】
【0028】
図1A】2つの構成要素、多くの点でフレームを装着する特定の被験者に適合する従来の眼鏡と同様である第1の構成要素;及びフレームを装着している被験者の眼に光ビームを向ける2つの45度ミラーを含む第2の構成要素、を有するフレームの概略式の正面図である(90度回転で、図1Bに描かれている)。
図1B】2つの構成要素、多くの点でフレームを装着する特定の被験者に適合する従来の眼鏡と同様である第1の構成要素;及びフレームを装着している被験者の眼に光ビームを向ける2つの45度ミラーを含む第2の構成要素、を有するフレームの概略式の正面図である(90度回転で、図1Bに描かれている)。
図2】OCTフォトニックモジュールのプローブビームが補正された横方向位置合わせを伴ってターゲットの眼に入るようにフレームに取り付けられるOCTフォトニックモジュールを描く。
図3】スウェプトソースを使用する、図2のOCTフォトニックモジュールの代替実施形態を描く。
図4】フォトニックモジュールがプローブビームを片方の(すなわち)第2の眼に位置合わせするフレームに取り付けられている、図2のフレーム及びOCTフォトニックモジュールを描く。
図5A】両方の眼のターゲットがOCTフォトニックモジュールをフレーム上で再位置決めすることなしに測定されることができる代替実施形態を描く。
図5B】両方の眼のターゲットがOCTフォトニックモジュールをフレーム上で再位置決めすることなしに測定されることができる代替実施形態を描く。
図5C】両方の眼のターゲットがOCTフォトニックモジュールをフレーム上で再位置決めすることなしに測定されることができる代替実施形態を描く。
図6A】OCTフォトニックモジュール及びフレームを結合するための磁気コネクタを提供する、及びコネクタの配置により粗い軸方向位置合わせを提供する実施形態を描く。
図6B】OCTフォトニックモジュール及びフレームを結合するための磁気コネクタを提供する、及びコネクタの配置により粗い軸方向位置合わせを提供する実施形態を描く。
図7】角度走査ミラーが所望の固定を提供する配向に向けられるとき、断続的にオンにされるLED、又は他の可視光源によって生成される追加の可視固定ビームを提供する実施形態を描く。
図8A】調整可能なミラーによる角度走査を提供する実施形態を描く。
図8B】ビームを実質的に瞳孔の中心に保つ直線移動能力を含むことによる拡張走査能力を有する、調整可能なミラーによる角度走査を提供する実施形態を描く。
図8C】補正レンズのための代替の場所を描く。
図9A】フォトニックモジュールが外部ファイバ結合OCTシステムを使用する実施形態及びフォトニックモジュールが外部光学スウェプトソースを使用する実施形態を描く。
図9B】フォトニックモジュールが外部ファイバ結合OCTシステムを使用する実施形態及びフォトニックモジュールが外部光学スウェプトソースを使用する実施形態を描く。
【発明を実施するための形態】
【0029】
本明細書に教示される本発明は、眼の構成要素の様相を非侵襲的に測定する装置及び方法を含む。このような構成要素は、限定されるものではないが、眼の網膜を含む。このような様相は、限定されるものではないが:特定の場所における網膜の厚さ;場所のセットにおける網膜の厚さ;1又は複数の場所における網膜の深さ走査;1つの次元が深さである網膜の領域の3次元走査;を含む。
【0030】
好適な実施形態では、OCTフォトニックモジュールは、プローブビームと称される、光ビームを眼の中に向け、OCTフォトニックモジュールに向かって後方に散乱される光の少なくとも一部を捕える。この後方散乱光は、網膜の深さ走査をもたらすように処理されることができる1又は複数の干渉信号を形成するように参照光と結合される。
【0031】
好適な実施形態では、フレームは、その人の眼が測定されることになるターゲットの眼である特定の被験者(又は被験者のセット)に、眼鏡が人に装着される方法で、非常に合うように構成される。フレームはさらに、OCTフォトニックモジュールのプローブビームが瞳孔を通ってターゲットの眼の中に向けられるようターゲットの眼に横方向に位置合わせされるように構成される。本明細書で使用されるとき、「横方向に位置合わせされる」は、眼に入るプローブビームに直交する方向の位置合わせを示し、横方向に位置合せるとも称される。
【0032】
図の番号付けに関して、ある図から他の図に不変のままである構成要素は、可能であれば、先行する図と同じ番号を与えられることに留意されたい。唯一の違いが構成要素の追加又は置き換えである場合、以前に現れていない構成要素だけが番号を付けられるとともに論じられる。OCTフォトニックモジュールの構成の場合、OCTが十分理解されていることを考慮して、当業者が図を例証であること、及び本発明を理解する補助であることを見い出すことが考えられる。
【0033】
図1は、本発明によるフレーム100を描き、第1の構成要素101は、特定の被験者に合う従来の眼鏡と多くの点で同様である。第1の構成要素101は、経路105及び107を進む光ビームフレーム100を装着している被験者(すなわち、本明細書では、フレーム装着車、ユーザ、被験者、検査下の被験者と様々に称される)に向ける2つ(第1及び第2)の45度ミラー111、113を収容する。これらの45度ミラーは、一般的に転向ミラーと呼ばれ、ある実施形態では45度で固定され、他の実施形態では指向又は走査のために角度調整可能である。
【0034】
図1Bは、90度回転された表示109で第2の構成要素103を描く。図1Bは、第1及び第2の45度ミラー111及び113をそれぞれ示す。2つの45度ミラー111と113との間の離隔距離115は、被験者の眼の瞳孔の間の基準横方向距離であるように構成される。図1Bはまた、光の経路−第1のプローブ経路105及び第2のプローブ経路107、それぞれ45度ミラー(111及び113)の一方に向かって進み次に検査下の眼に向けられる光線(OCTフォトニックモジュールからのプローブビーム、以下に図2で論じられる)を示す。
【0035】
第2の構成要素103は、代替実施形態において、第1及び第2の曲面117及び119として描かれている、1又は複数のレンズを含む(本明細書では「補正」レンズとも呼ばれる)。このようなオプションのレンズは、凸又は凹であり得るとともに、例えば、補正レンズが遠方視力を矯正する方法と同様に、ターゲットの眼の収差エラーを補償するように選択され得る。本発明が特定の被験者又は眼の患者のために「カスタマイズ」される場合、補正レンズを含めることはこのようなカスタマイズの態様であることが理解されることができる。
【0036】
第2の構成要素103は、2つの45度ミラー111及び113が被験者の左及び右目の瞳孔の前に及び同瞳孔に中心を合わせられるように、第1の構成要素101の上で配向される、又は、幾つかの実施形態では、第1の構成要素101に付けられる。したがって、第1の構成要素101及び第2の構成要素103は、合わせて、被験者の眼の前に配置されるとともに被験者の眼と位置合わせされるフレーム100を形成し、眼の少なくとも一方は、測定されることになる又は走査されることになるターゲットの眼である。好適な実施形態は眼鏡様フレームであるが、ヘッドマウント式の多くのバージョンが想定され、第2の構成要素の位置決めがOCTビームの被験者の眼又は両眼のターゲット領域への方向付けのために提供されることが理解されることができる。例えば、重量が懸念事項である場合、ヘルメットのような装置が代替実施形態である。
【0037】
図2は、本発明によるヘッドマウント可能なOCT装置200を描き;図1のフレーム100は、図1の経路105に沿って進むOCTフォトニックモジュール201のプローブビーム205が第2の45度ミラー113に当たるとともに補正横方向位置合わせを伴ってターゲットの眼(図示せず)に入るようにフレームに取り付けられたOCTフォトニックモジュール201とともに、第1の構成要素101及び第2の構成要素103を有する。
【0038】
OCTフォトニックモジュール201は、レンズ、ミラー及びビームスプリッタの構成によってプローブ放射205に導かれ(図1の)経路105に沿ってターゲットから検出器223に戻る往復をする放射、又は参照ミラー237及び検出器223への経路206に沿った往復をする参照照射を生成するソース210を含む。ソース210からの放射は、第1のレンズ211(典型的にはコリメーティングレンズ)を通って次にビームスプリッタ212に進む。プローブ放射は、ビームスプリッタ212を出て、第2の転向ミラー215、第4の転向ミラー219に当たり、フォトニックモジュールのプローブビーム出力ポート(図示せず)を通って第1の45度転向ミラー111に出て、ターゲットの眼に入るように進む。
【0039】
参照放射は、ビームスプリッタ212から、第1の転向ミラー213に、分散補償器225を通過する参照経路206に沿って、第3のレンズ227から第5の転向ミラー、第6の転向ミラー233、部分反射ミラー235に、そして参照ミラー237に進む。図2に描かれた実施形態は、MRO、複数参照OCTであり、このMROでは、参照ミラー237はボイスコイル239に取り付けられている。振動参照ミラー237と部分反射ミラー235との間の複数の反射は、深さ走査範囲を広げる複数参照信号を生成する。スウェプトソースOCTシステムを使用する代替実施形態が図3に描かれている。
【0040】
図2に描かれるように、転向ミラー231及び233はステージ229の上にあり、このステージは、ボイスコイルモータ、スクィグルモータ(squiggle motor)などのような従来のモータ(図示せず)に応じて横方向240に動く。ステージ229を動かすことは、参照経路長さを効果的に変える。本明細書で以下にさらに論じられるように、この経路長調整は、ターゲットの深さ走査を軸方向に位置合わせするのに有用な、軸方向長さの微細位置合わせを可能にする。
【0041】
図2に見ることができるように、OCTフォトニックモジュール201は、OCTプローブビーム出力ポートと第1の45度ミラー111との間の距離が、OCTビームスプリッタ212からターゲットの眼(図示せず)の網膜までの光路長がOCTビームスプリッタ212からOCT参照ミラー237までの光路長と実質的に同等であるようになるような方法で、フレーム100に取り付けられている。この方法でフレーム100に取り付けられているフォトニックモジュール201は、OCTフォトニックモジュールがターゲットの眼の網膜と少なくとも粗い軸方向長さで位置合わせされることを確実にする。代替実施形態では、関心のあるターゲットが網膜でない眼の構成要素である場合、フォトニックモジュールの粗い軸方向長さ位置合わせは関心のあるターゲットに対してである。
【0042】
用語「軸方向長さが位置合わせされる」は、本出願の目的に対して、対象又は対象の一部−すなわち、関心のあるターゲット−が「軸方向長さに位置合わせされる」とき、OCTビームスプリッタからターゲットまでの光路長がOCTビームスプリッタからOCT参照ミラーまでの光路長と実質的に同等であることを意味する。これらの2つの光路長が実質的に同等であるとき、対象又は対象の一部は、OCTシステムによって深さ走査されることができる。本発明では、関心のあるターゲットは典型的には眼であり、対象の一部は典型的には眼の構成要素である。
【0043】
再び図2を参照すると、OCTプローブビーム出力ポートと第1の45度ミラー111との間の距離207は、光路が第1のターゲットの眼の網膜に粗く軸方向長さに位置合わせするように選択されるようになる。追加の微細軸方向位置合わせが、網膜又は関心のある他のターゲットの適切なOCT深さ走査が得られることを確実にするために典型的には必要とされる。
【0044】
微細な軸方向長さ位置合わせは、OCTフォトニックモジュール201の光路長を動的に調整することによって達成される。動的に調整される光路長は、OCTビームスプリッタ212からOCT参照ミラー237まで、又は、代替的に、OCTビームスプリッタ212から網膜(図示せず)までの光路長のいずれかである。ターゲットが網膜で無く眼の他の構成要素である場合、距離は、OCTビームスプリッタから関心のあるターゲットまでのものということになる。このような微細な位置合わせは、OCTフォトニックモジュールによって取得される干渉信号を処理することによって得られるフィードバックを使用して達成されるとともに、ステージ229の横方向位置を調整することによって達成される。OCT動作及びOCT信号処理における当業者は、ここのより多くの説明なしでこれを理解することができる。したがって、微細軸方向長さ位置合わせが達成された後、干渉信号がOCTフォトニックモジュールによって取得されるとともに取得された干渉信号が眼の様相を測定するために処理される。
【0045】
図3は、図2に描かれたMRO構成ではなく、スウェプトソース310、及び固定参照ミラー337を使用する、本発明の代替実施形態300を描く。この実施形態は、可動部品が無い利点を提供するが、低コストであるために、低コストスウェプトソースが使用できることを必要とする。
【0046】
図4は、図2に描かれた実施形態の第2の位置を描く。OCTフォトニックモジュールは、そのプローブビームをターゲットの眼としてその個人の第2の眼に位置合わせする方法でフレームに取り付けられている。図2の描写が右眼に対する右向き構成として考えられる場合、図4の描写は左向きである。フォトニックモジュールは図2に描かれたものと同じであり、OCTフォトニックモジュールに対する構成要素数字の大部分は図4において省略されている。左向きの図4を参照すると、フォトニックモジュールのOCTプローブビーム出力ポートと第2の45度ミラー113との間の距離407は、光路が第1のターゲットの眼と異なる軸方向長さを有し得るこの第2のターゲットの眼の網膜と粗く軸方向に長さ位置合わせされるよう選択されるようになることが分かり得る。
【0047】
図4の距離407及び図2の距離207の適切な選択並びにOCTフォトニックモジュールがフレームに対する2つの場所及び配向の一方に繰り返し正確に配置されることを可能にする適切な配置機構は、OCTフォトニックモジュールが取り付けられるとともに被験者のいずれかの眼と位置合わせされることを可能にし、OCTフォトニックモジュールがいずれのかの眼の網膜と粗く軸上候に長さ位置合わせされることを可能にする。
【0048】
本発明の実施形態では、上述のように、OCTフォトニックモジュールは、第1の構成においてOCTフォトニックモジュールが第1の眼に位置合わせされ第2の構成においえて第2の眼、すなわち、第1の眼の対の眼に位置合わせされるように、少なくとも2つの構成でフレームと容易に着脱可能であることができる。
【0049】
オプションの補正レンズ(図1の117及び119)は、いずれかの眼の屈折異常(もしあれば)を補正することが理解される。補正レンズの位置は、描かれたもの以外に、レンズがターゲットの眼への経路の中にあるように設けられ得る。例えば、図8C参照。補正レンズは、固定又は可変のいずれかであることができ、可変である場合、手動又は電子的のいずれかで制御されることができる。代替実施形態では、可変補正レンズであり得る、単一の補正レンズは、フレームではなくOCTフォトニックモジュールに置かれることができる。これは、単一のユーザに対するフレーム及びモジュールの組み合わせをカスタマイズする。
【0050】
代替実施形態では、OCTフォトニックモジュールは、多数の異なるフレームに容易に取り付け可能である。この実施形態では、補正レンズの任意のユーザカスタマイズが、ユーザフレームの中であることができ、必ずしもOCTフォトニックモジュールの中ではない。さらなる実施形態では、OCTフォトニックモジュールはフレームに取り付けられ、スイッチが、モジュールを再び据え付けることなしに測定が第1及び第2の眼に行われることを可能にする。
【0051】
ここで図5Aを参照すると、代替実施形態が描かれ、フォトニックモジュールを再位置決めすることなしに切り替え可能なOCTフォトニックビームを提供する。ソース510を再位置決めし、転向ミラーA、B、C、及びDを追加し、並びに45度ミラー(図1の111及び113)を再配向することによって、OCTプローブビームは両眼に同時に向けられることができる。この実施形態では、ミラーAは、実質的に50%を反射するとともにOCTプローブ光の実質的に50%透過させる部分ミラー(partial mirror)である。電子的に制御されるビーム停止部511及び513が、プローブビームを一方又は他方の眼に向けることを可能にする。図5Aは、ミラーDへの光路がブロックされている一方、ミラーCへの光路がブロックされていないことを描いている。ビーム停止部511及び513はまた、両眼に入る光をブロックすることも可能であり、これは、安全のために使用されることができる。ビーム停止部511及び513は、光が両眼に同時に入ることを可能にするように制御可能であり、これは、他眼固定又は他の目的のために使用されることができる。このような実施形態では、図1の再配向ミラー111及び113は、一方が角度走査される一方他方が所望の固定を達成するように固定配向にあるように、制御される。
【0052】
多くの他の実施形態が可能である。例えば、図5B及び5Cは、ミラーA、B、C、及びDの他の配置を示す。この実施形態では、フルミラー“A”の位置合わせは切り替え可能である。図5Bは、プローブビームの経路の外に切り替えられた切り替え可能なミラー515を描き、プローブビームがミラーCに到達することを可能にする。図5Cは、プローブビームの経路の中に切り替えられた切り替え可能なミラー515を描き、プローブビームがミラーDに到達することを可能にする。フレーム及びフォトニックモジュールがユニットとして固定され、モジュールが容易に取り外し可能でない、単一の一体装置もまた本発明の実施形態であることを理解することができる。
【0053】
OCTフォトニックモジュールをフレームの上に据え付けることが、図6A及び6Bを含めて、図6に関して次に記載される。本発明の好適な実施形態では、非対称位置決めコネクタ602、604及び610が適切な位置決め機構を提供し、この位置決め機構は、OCTフォトニックモジュール(輪郭のみで示される)が、図6Aにおいて604を602に、及び図6Bにおいて604を610に磁気的に接続することによって、フレームに対する2つの場所及び配向の一方に繰り返し正確に位置決めされることを可能にする。磁気位置決めコネクタの1又は複数のセットは、迅速、容易且つ正確なOCTフォトニックモジュール201のフレーム100への少なくとも2つの配置での取り付けを可能にすることが理解されることができる。これらの磁気位置決めコネクタの特定の位置は、OCTフォトニックモジュールが、一方又は他方の眼と少なくとも粗く位置合わせされることを確実にする。図5に関して記載されているモジュールの場合、一方の眼との粗い横方向位置合わせが磁気位置決めコネクタにより達成される一方、他方の眼との位置合わせは、ミラーA及びミラーDの適切な左右位置によって達成される。
【0054】
好適な実施形態では、このような磁気位置決めコネクタはまた、OCTフォトニックモジュールとフレームとの間の電力、1又は複数のデータ及び制御信号経路を提供する。非対称である2つの磁気位置決めコネクタの使用は、OCTフォトニックモジュールの正しい配向を確実にする。追加の、安定化コネクタが(光路のための開口を備えて)606及び608として描かれている。要素103、すなわち、ライトガイド又は図1に描かれたような第2の構成要素は、図6に描かれるように構成されるとき、フレーム上でのOCTフォトニックモジュールの安定化させるための、並びに接続性を提供するための横方向表面提供することが留意されるべきである。
【0055】
フレームの接続性は、スマートフォン又はコンピュータのような制御装置に無線で接続するように構成可能であることが理解できる。制御装置は、例えば、ダウンロード可能なソフトウェアアプリケーションによって構成可能であり、被験者、彼又は彼女自身が網膜測定を行うことを可能にする。さらなるデータ及び走査結果は、アップロードされ、医療専門家又は医療ファイルに送信されることができる。
【0056】
本発明はまた、フレームでのミラーの角度調整を使用する、眼の網膜のような、ターゲットの走査を提供する。再び図1Bを参照すると、第2のフレーム構成要素103における45度ミラー111、113の角度配向の変更は、ターゲットのOCT走査を可能にする。例えば、眼の前から17mmの距離における+/−0.28の角度偏向は、眼の前での+/−0.5mmの走査距離及び後部、すなわち網膜における+/−1mmの走査範囲を達成する。
【0057】
加えて、角度調整可能なミラーを含む本発明の装置の実施形態は、有用な固定機能を提供する。眼科のための及び本明細書で使用されるような、固定は、固定ポイントに向かう眼の方向付けを意味する。固定は、OCTビームを網膜の選択された又はターゲットにされる位置又は領域に向けることを可能にするという点で有用である。この実施形態では、固定は、角度調整可能な転向ミラーを第1の期間所望の固定方向を達成するように第1の方向に配向させることによって達成されることができ、固定は、被験者がOCTプローブビームを見ることによってそして次に角度調整可能な転向ミラーを固定配向と異なる選択されたターゲット位置において少なくとも1つの深さ走査を達成するように第2の方向に配向されるように素早く切り替えることによって、達成される。
【0058】
角度調整可能な転向ミラーは、所望の固定方向と、所望の位置における測定を達成するための少なくとも1つのターゲット測定位置との間で繰り返し切り替えられることができる。角度調整可能な転向ミラーは、パターンを形成する方向のセットに繰り返し配向されることができ、固定は、被験者をパターンの中心を見させることによって達成されることができる。
【0059】
代替実施形態では、眼の選択された領域が、角度調整可能な転向ミラーを走査モードで動作させることによって、走査される。この実施形態では、固定は、追加の可視ビームの使用によって及び転向ミラーが第1の期間所望の固定方向に配向されるように転向ミラーの角度を断続的に調整するとともに可視ビームをオンにすることによって達成され、固定は被験者が可視ビームをみることによって達成される。図7は、本発明によるOCTプローブモジュールを描き、LED710、又は他の可視光源によって生成される追加可視固定ビーム712をさらに備え、このLED又は他の可視光源は、角度走査ミラーが、所望の固定を提供する配向に向けられるとき、断続的にオンにされる。緑色LEDのような、LED710は、ダイクロイックミラー708によりコリメートされOCTプローブビームと組み合わされ且つコリニア(collinear)にされる。
【0060】
緑色固定LEDは、図1Bの動的に制御される転向ミラー111又は113が予め選択された固定方向を向くとき、短期間オンにされ、検査下の被験者にターゲットの眼をその方向に固定させる。共伝播しているコリニア固定ビーム及びOCTプローブビームは、714として描かれている。概して、「固定ビーム」は、「可視固定ビーム」と呼ばれる。
【0061】
固定が達成されているときの第1の期間以外の時間において、走査することは、OCTフォトニックモジュールに網膜の選択された領域を走査させるように図1Bの転向ミラー111又は113の一方を系統的に角度調整することによって達成される。a)OCTフォトニックモジュールが眼の網膜と正確に軸方向に長さ位置合わせされている間及びb)プローブビームが転向ミラーを角度調整することによって系統的に動かされている間にOCTフォトニックモジュールによって取得される干渉信号は、眼の網膜の領域の走査を示すデータを出力するように処理される。同じことが網膜以外のターゲットにも当てはまる。
【0062】
他の実施形態では、眼の網膜領域からの干渉信号を取得するのではなく、眼の他の構成要素の様相が分析される。分析されることになるターゲット構成要素は、角膜、前眼房又は水晶体のような関心のある眼の構成要素を含む。典型的な眼科応用では、測定されることになるターゲット構成要素の様相は、ターゲット構成要素の厚さである。
【0063】
角度走査アプローチは、図1の第2のフレーム構成要素103の一部を描く図8Aにさらに示されている。図8Aでは、45度ミラーは1又は2次元角度走査ミラーであり、これは、第1の走査位置811において、45度の角度にあるとともに入射プローブビーム813を角膜817の公称中心及び瞳孔を通って眼819の網膜817の中心の領域にある場所815に向ける。角度走査ミラーはまた第2の走査位置821で描かれており、破線として描かれている。この位置では、プローブビーム813は、角膜817上の中心から外れたポイントに、瞳孔825を通って中心領域815からある横方向オフセットを有する網膜上の場所827に向けられる。
【0064】
より大きい走査角度を可能にする代替実施形態が図8Bに描かれており、そこには、角度調整可能なミラー829の直線並進移動能力もある。これは破線831によって描かれ、角度調整され且つ右に並進移動されているときのミラー829の位置を示す。角度走査と併せた直線並進移動の組み合わせは、瞳孔を拡大する必要なしに網膜のより大きい領域を走査する間にビームを実質的に瞳孔の中心に維持することを可能にする。走査及び並進移動機構は、MEMS又は(ボイスコイルのような)電気−機械機構を使用して実装される。本明細書では、用語「位置調整すること」は、角度調整によって位置合わせすること又は直線並進移動によって位置合わせすること又は角度調整と直線並進移動の組み合わせによって位置合わせすることを含む。
【0065】
再び図8Bを参照すると、幾つかの実施形態では、1又は複数のカメラが、装置に取り付けられるとともに眼の画像を取得する。幾つかの実施形態では、1又は複数のカメラは、角膜で散乱した光を用いたプローブビームの画像を含む眼の画像を取得する。この画像データは、角度調整可能なミラーを用いた及びオプションで直線並進移動も用いた眼に対するプローブビームの手動又は自動位置合わせを可能にする。幾つかの実施形態では、1又は複数のプレノプティックカメラ(場合によって、ライトフィールドカメラ又はフィールドオブライトカメラとも呼ばれる)が眼からより多くの画像データを取得するために使用される。図8Cはまた、第2のフレーム構成要素103の一部を描くとともに、図8A及び8Bに描かれたものと異なる場所の補正レンズ837を描く。図5に描かれた実施形態では、補正レンズに対する他の場所はミラーD及びCより上である(黒い曲げられた領域として描かれている)。
【0066】
示されたOCTシステムは複数参照タイムドメインOCTシステム及びスウェプトソースOCTシステムであるが、代替実施形態は、従来のタイムドメインOCTシステム及びスペクトラルフーリエドメインOCTシステムのような他のOCTシステムを使用することが理解され得る。幾つかの実施形態では、フォトニックモジュールの外部のOCTシステムがフォトニックモジュールに結合されたファイバであることができる。この構成は、高価で非常に高性能のOCTシステムを使用しながら低コストカスタムフレームの利点を利用することを可能にする。
【0067】
図9Aは、外部OCTシステムがファイバカプラ903を用いてフォトニックモジュール901にファイバ結合されているこのような構成を描いている。図9Aに描かれた例では、モジュール901は、OCTプローブビームを、(前述のように)一方、他方、又は両方の眼に送る。返ってくるOCT信号は、取得されるとともに同じファイバに沿ってOCTシステムに送り返される。
【0068】
代替実施形態が、図9Bに描かれ、ここでは外部スウェプトソースがファイバカプラ907を用いてフォトニックモジュール905にファイバ結合されている。この例では、フォトニックモジュール905は、スウェプトソースのための参照ミラー909を含むOCT干渉計を含んでいる。
【0069】
図示されたフォトニックモジュールは、単一のOCTビームを使用する。代替実施形態では、本発明は、SLD(スーパールミネセントダイオード)のアレイを含む、又は、代替的に、単一の高出力SLDが使用されるとともにホログラフィック光学素子を用いて複数のビームに分けられる。結果として生じる複数のビームは、網膜の異なる場所を調べるために異なる角度に操向可能である。結果として生じる複数の干渉信号は、レンズアレイを用いて検出器アレイの上にフォーカス可能であり、深さ走査のセットをアレイの場所において同時に提供する。これは、測定がより少ない時間で行われることを効果的に可能にする。
【0070】
他の例は、当業者に明らかであろう。本発明の範囲は、そこに適用される均等の全範囲とともに、明細書、図面及び添付の請求項を参照することにより、決定される。
【0071】
次の付記を記す。
(付記1)検査下の眼のターゲットを測定するためのヘッドマウント式装置であって:
第1の眼のターゲットと位置合わせされるようにヘッドマウント可能であり、OCTプローブビームを前記ターゲットに案内するように構成される、フレームと、
OCTフォトニックモジュールであって、前記OCTフォトニックモジュールの前記プローブビームが前記第1の眼の前記ターゲットに粗く軸方向に長さ位置合わせされるように、前記フレームに位置合わせ可能に結合され、取得された干渉信号を処理することからのフィードバックを使用することによって、前記OCTフォトニックモジュールの選択された光路長の調整が前記プローブビームを前記ターゲットと微細に軸方向に長さ位置合わせする、OCTフォトニックモジュールと、から構成され、
前記OCTフォトニックモジュールは、前記干渉信号を取得し、前記干渉信号はターゲット測定を提供するために処理される、
装置。
(付記2) 前記OCTフォトニックモジュールのOCTは、前記OCTのグループから選択され、前記OCTのグループは、複数参照OCT、スウェプトソースOCT、タイムドメインOCT、スペクトラルドメインOCTから成る、
付記1に記載の装置。
(付記3) 前記OCTフォトニックモジュールは、少なくとも1つの内部OCTソースを収容する、
付記1に記載の装置。
(付記4) 前記OCTフォトニックモジュールは、少なくとも1つの外部OCTソースからのソース放射を受信する、
付記1に記載の装置。
(付記5) 前記フレームは、第1及び第2の眼を持つ検査下の被験者に対して、前記OCTフォトニックモジュールを前記フレームに、前記フォトニックモジュールプローブビームが前記第1の眼のターゲットと粗く軸方向に長さ位置合わせされるように、位置合わせ可能に結合すること、及び前記OCTフォトニックモジュールを前記第2の眼に位置合わせ可能に結合すること、を可能にし、前記OCTフォトニックモジュールプローブビームは前記第2の眼のターゲットと粗く軸方向に長さ位置合わせされる、
付記1に記載の装置。
(付記6) 検査下の前記眼の屈折異常を補正するように前記OCTプローブビームと前記ターゲットとの間の前記光路に位置する少なくとも1つのレンズをさらに含む、
付記1に記載の装置。
(付記7) 前記補正レンズは動的に設定変更可能である、
付記6に記載の装置。
(付記8) 前記OCTフォトニックモジュールは、複数のフレームと位置合わせ可能に結合可能である、
付記1に記載の装置。
(付記9) 前記フレームはさらに、少なくとも1つの非対称磁気位置決めコネクタを含み、前記コネクタは、電力、データ及び信号制御を可能にする、
付記1に記載の装置。
(付記10) 前フレーム上の前記OCTフォトニックモジュールの第1の位置は、前記フォトニックモジュールの前記プローブビームの前記第1の眼の第1のターゲット及び第2の眼の第2のターゲットとの粗い軸方向長さ位置合わせを提供する、
付記1に記載の装置。
(付記11) 前記第1の眼及び第2の眼の第1及び第2のターゲットを実質的に同時に測定するように構成される、
付記1に記載の装置。
(付記12) 前記ターゲットは、角膜、角膜の厚さ、前眼房、前記前眼房の厚さ、水晶体レンズ、水晶体レンズの厚さ、から成るグループから選択される、
付記1に記載の装置。
(付記13) 前記フレームは、予め選択されたターゲット領域の角度走査を可能にするように構成される、
付記1に記載の装置。
(付記14) 検査下の前記眼の固定を可能にする固定ビームを更に提供する、
付記1に記載の装置。
(付記15) 生体内で眼のターゲットを分析する方法であって:
プローブビームを前記ターゲットに向ける転向ミラーを含み、前記プローブビームを前記ターゲットに粗く軸方向に長さ位置合わせするように構成される、ヘッドマウント可能なフレームを構成するステップ、
OCTフォトニックモジュールを前記フレームに、前記OCTフォトニックモジュールの前記プローブビームが前記眼に横方向に位置合わせされるとともに前記転向ミラーを用いて前記眼の中に向けられるように、結合するステップ、
前記プローブビームが前記眼の前記ターゲットに微細に軸方向に長さ位置合わせされるように前記OCTフォトニックモジュールの選択される光路長を動的に調整するステップ、
干渉信号を取得するステップ、及び
前記取得した干渉信号を処理し、前記ターゲットの分析を出力するステップ、を含む、
方法。
(付記16) 前記OCTフォトニックモジュールの前記プローブビームを少なくとも1つの選択されたターゲット領域に向けるように前記転向ミラーを位置調整するステップをさらに含み、前記位置調整は、角度調整及び並進移動調整の少なくとも1つを含む、
付記15に記載の方法。
(付記17) 前記転向ミラーを位置調整するステップはさらに、第1に、第1の期間所望の固定方向を達成するように第1の方向に前記ミラーを配向するステップであって、固定は被験者が前記OCTプローブビームを見ることによって達成される、ステップ、及び、第2に、ターゲットのOCT深さ走査を達成するのに十分な速度で第2の方向に前記ミラーの配向を切り替えるステップ、を含む、
付記16に記載の方法。
(付記18) 前記転向ミラーを位置調整するステップはさらに、第1に、第1の期間所望の固定方向を達成するように第1の方向に前記ミラーを配向するステップであって、固定は被験者が可視固定ビームを見ることによって達成される、ステップ、及び、第2に、ターゲットのOCT深さ走査を達成するのに十分な速度で第2の方向に前記ミラーの配向を切り替えるステップ、を含む、
付記16に記載の方法。
(付記19) 前記転向ミラーの配向を切り替えるステップは繰り返される、
付記17に記載の方法。
(付記20) 前記転向ミラーの配向を切り替えるステップはさらに、パターンを形成する方向のセットに前記ミラーの前記配向を繰り返し変更することを含み、前記固定は、前記被験者が前記パターンの中心を見ることによって達成される、
付記17に記載の方法。
(付記21) 前記位置合わせするステップはさらに、前記プローブビームの前記眼の関心のある構成要素との軸方向長さ位置合わせを含み、前記関心のある構成要素は、網膜、網膜の厚さ、角膜、角膜の厚さ、前眼房、前眼房の厚さ、水晶体レンズ、水晶体レンズの厚さから成るグループから選択される、
付記15に記載の方法。
図1A
図1B
図2
図3
図4
図5A
図5B
図5C
図6A
図6B
図7
図8A
図8B
図8C
図9A
図9B