特許第6795816号(P6795816)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ベステル エレクトロニク サナイー ベ ティカレト エー.エス.の特許一覧 ▶ オジェイン ユニヴェルシテシの特許一覧

<>
  • 特許6795816-音響光学変換器、アレイおよび方法 図000002
  • 特許6795816-音響光学変換器、アレイおよび方法 図000003
  • 特許6795816-音響光学変換器、アレイおよび方法 図000004
  • 特許6795816-音響光学変換器、アレイおよび方法 図000005
  • 特許6795816-音響光学変換器、アレイおよび方法 図000006
  • 特許6795816-音響光学変換器、アレイおよび方法 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6795816
(24)【登録日】2020年11月17日
(45)【発行日】2020年12月2日
(54)【発明の名称】音響光学変換器、アレイおよび方法
(51)【国際特許分類】
   G01H 9/00 20060101AFI20201119BHJP
【FI】
   G01H9/00 Z
【請求項の数】15
【全頁数】12
(21)【出願番号】特願2019-545294(P2019-545294)
(86)(22)【出願日】2017年2月24日
(65)【公表番号】特表2020-510192(P2020-510192A)
(43)【公表日】2020年4月2日
(86)【国際出願番号】EP2017054408
(87)【国際公開番号】WO2018153484
(87)【国際公開日】20180830
【審査請求日】2020年1月27日
(73)【特許権者】
【識別番号】513121384
【氏名又は名称】ベステル エレクトロニク サナイー ベ ティカレト エー.エス.
(73)【特許権者】
【識別番号】519217777
【氏名又は名称】オジェイン ユニヴェルシテシ
(74)【代理人】
【識別番号】110000408
【氏名又は名称】特許業務法人高橋・林アンドパートナーズ
(72)【発明者】
【氏名】ギュルバハール,バルハン
(72)【発明者】
【氏名】メミソグル,ゴルケン
【審査官】 山口 剛
(56)【参考文献】
【文献】 特表2008−531104(JP,A)
【文献】 国際公開第2016/148860(WO,A1)
【文献】 特開2010−245797(JP,A)
【文献】 国際公開第2016/054723(WO,A1)
【文献】 国際公開第2016/026863(WO,A1)
【文献】 特表2010−536958(JP,A)
【文献】 国際公開第2015/180976(WO,A1)
【文献】 Qin Zhou、Jinglin Zheng、Seita Onishi、M. F. Crommie、Alex K. Zettl,“Graphene electrostatic microphone and ultrasonic radio”,Proceedings National Academy of Sciences [PNAS],The National Academy of Sciences,2015年 7月 6日,Vol.112,No.29,pp.8942-8946,DOI:10.1073/pnas.1505800112
(58)【調査した分野】(Int.Cl.,DB名)
G01H 1/00 − 17/00
(57)【特許請求の範囲】
【請求項1】
音響光学変換器であって、
少なくとも一つのドナー分子から少なくとも一つのアクセプター分子へのフェルスター共鳴エネルギー移動(FRET)のための少なくとも1つのドナー分子(202)および少なくとも1つのアクセプター分子(204)と、
入射光(207)が前記少なくとも1つのドナー分子に当たる(208)ことを可能にするように設けられた入射窓(206)と、
前記少なくとも1つのアクセプター分子によって放射された光(210)が前記音響光学変換器を出ることを可能にするように設けられた出射窓(209)と、を含み、
前記少なくとも1つのドナー分子(202)を有するグラフェン共振器(201)と、
前記少なくとも1つのアクセプター分子(204)を有する基板と、を含み、
前記グラフェン共振器(201)は、音(205)に反応し、前記少なくとも一つのドナー分子から前記少なくとも一つのアクセプター分子へのフェルスター共鳴エネルギー移動(FRET)が起こるために、前記少なくとも一つのドナー分子を前記少なくとも一つのアクセプター分子の範囲内に持ってくるために音によって前記基板(203)に向かって移動させることを特徴とする、
音響光学変換器。
【請求項2】
前記少なくとも1つのドナー分子(202)および前記少なくとも1つのアクセプター分子(204)のうちの少なくとも1つが量子ドットを含む、請求項1に記載の音響光学変換器。
【請求項3】
前記少なくとも1つのドナー分子および前記少なくとも1つのアクセプター分子(204)のうちの少なくとも1つが、第12族元素と第16族元素との無機化合物を含む、請求項1または2に記載の音響光学変換器。
【請求項4】
前記無機化合物が、硫化カドミウム、セレン化カドミウム、硫化亜鉛およびセレン化亜鉛からなる群から選択される、請求項4に記載の音響光学変換器。
【請求項5】
前記少なくとも1つのドナー分子(202)および前記少なくとも1つのアクセプター分子(204)の少なくとも1つが有機化合物を含む、請求項1乃至4のいずれか一項に記載の音響光学変換器。
【請求項6】
前記有機化合物が、蛍光タンパク質およびリレン染料からなる群から選択される、請求項5に記載の音響光学変換器。
【請求項7】
前記グラフェン共振器(201)がグラフェン膜を含む、請求項1乃至6のいずれか一項に記載の音響光学変換器。
【請求項8】
前記入射窓(206)および前記出射窓(208)のうちの少なくとも1つが、フィルタおよびレンズのうちの少なくとも1つを含む、請求項1乃至7のいずれか一項に記載の音響光学変換器。
【請求項9】
音響光学変換器(200)のアレイ(500)であって、前記音響光学変換器のそれぞれが、前記アレイの他の音響光学変換器から異なる波長の光を放射するように調整されている、請求項1乃至8のいずれか一項に記載の音響光学変換器(200)のアレイ(500)。
【請求項10】
二次元格子状に配置されている、請求項1乃至8のいずれか一項に記載の複数(600)の音響光学変換器(200)。
【請求項11】
請求項10に記載の音響光学変換器の複数のアレイを含む、請求項10に記載の複数(600)の音響光学変換器(200)。
【請求項12】
少なくとも1つのドナー分子から少なくとも1つのアクセプター分子へのフェルスター共鳴エネルギー移動(FRET)、
前記少なくとも1つのドナー分子を光で照らし、
前記少なくとも1つのアクセプター分子から発光することを含む、音を光に変換する方法であって、
グラフェン共振器(202)上に前記少なくとも1つのドナー分子(202)を配置し、
基板(203)上に前記少なくとも1つのアクセプター分子(204)を配置し、
前記少なくとも1つのドナー分子から前記少なくとも1つのアクセプター分子へのフェルスター共鳴エネルギー移動(FRET)が起こるために、前記少なくとも1つのドナー分子を前記少なくとも1つのアクセプター分子の範囲内に持ってくるために前記グラフェン共振器に音を加えることを特徴とする、
方法。
【請求項13】
前記少なくとも1つのドナー分子を周囲光で照明することを含む、請求項12に記載の方法。
【請求項14】
前記グラフェン共振器(201)の前記基板(203)からの距離、前記グラフェン共振器(201)の大きさ、前記グラフェン共振器(201)の少なくとも1つの機械的特性のうちの少なくとも1つを調整することによって、グラフェン共振器(201)の感度および共振周波数のうちの少なくとも1つを変更することを含む、請求項12または請求項13に記載の方法。
【請求項15】
前記少なくとも1つのドナー分子および前記少なくとも1つのアクセプター分子のうちの少なくとも1つは、それぞれ量子ドットを含み、
前記方法は、前記それぞれの量子ドットの少なくとも1つの大きさ、形状、および化学組成波長のうち少なくとも一つを変えることによって、放射光の波長を変える、
請求項12乃至14のいずれか一項に記載の方法。
【発明の詳細な説明】
【背景技術】
【0001】
本発明は、請求項1に記載の音響光学変換器、請求項9に記載の音響光学変換器のアレイ、請求項10に記載の複数の音響光学変換器、および請求項12に記載の方法に関する。
【0002】
音響光学変換は、音響エネルギーの光エネルギーへの変換、およびその逆の変換である。音を光に変換するための装置は、19世紀にAlexander Graham Bellによって考案された。彼はそれをフォトフォンと呼んだ。音響エネルギーの電気エネルギーへの変換は、もちろん、従来技術において一般的でもあり、そしてマイクロホンによって実行することができる。例えば、Q.Zhou、Jinglin Zhenga, Seita Onishi, M.F.Chemtie,およびAlex K.Zettl“Graphene electrostatic microphone and ultrasonic radio,” Proceedings of the National Academy of Sciences,vol.112、No.29、pp.8942−8946,2015には、無線通信に使用することができるマイクロホンにおけるグラフェン膜の使用が記載されている。
【0003】
しかしながら、そのような従来技術の装置は、一般にそれらがナノスケールの寸法に拡張可能ではないという問題を抱えている。さらに、既存のフォトフォンは、一般に、人為的に照らされ、それらに当たる音波に応じて分散される可能性がある反射面を備える。それらは表面によって反射された光の強度の変調に依存しており、それはそれらの実用性を制限する。多色光の変調は考慮されておらず、ハイブリッド通信アーキテクチャはこれらの従来技術のシステムでは目標とされていない。
【0004】
フェルスター共鳴エネルギー移動は、それによってエネルギーが第一の感光性ドナー分子から第二の感光性アクセプター分子に移動するメカニズムである。そのような感光性分子は発色団として知られることがある。フェルスター共鳴エネルギー移動(FRET)では、ドナー分子はまず入射光によって励起されて励起状態になる。アクセプター分子に十分接近すると、励起されたドナー分子のエネルギーはアクセプター分子に伝達され、アクセプター分子はその結果として発光する。このエネルギー移動が起こるためにドナー分子がアクセプター分子に十分に近くなるようにもたらされなければならない典型的な範囲は、約1から10ナノメートルのオーダーである。エネルギー移動の効率はドナー分子とアクセプター分子との間の分離の6乗に比例するので、FRETはドナーおよびアクセプター発色団の分離に非常に敏感である。従って、アクセプター分子によって放出された光の強度は、ドナー分子とアクセプター分子との間の分離の高感度の尺度として使用され得る。
【発明の概要】
【0005】
したがって、本発明の目的は、音響光学変換器、音響光学変換器のアレイ、二次元格子状に配列された複数の音響光学変換器、および音を光に変換する方法を提供することである。
【0006】
本発明の目的は、請求項1に記載の音響光学変換器によって解決される。音響光学変換器は、グラフェン共振器と、基板と、入射窓と、出射窓とを少なくとも備える。グラフェン共振器は少なくとも1つのドナー分子を担持する。基板は少なくとも1つのアクセプター分子を担持する。グラフェン共振器は、少なくとも1つのドナー分子から少なくとも1つのアクセプター分子へのフェルスター共鳴エネルギー移動(FRET)のために少なくとも1つのアクセプター分子の範囲内に少なくとも1つのドナー分子をもたらすために音に反応する。入射窓は、入射光が少なくとも1つのドナー分子に当たることを可能にするように構成され、出射窓は、少なくとも1つのアクセプター分子によって放出される光が音響光学変換器を出射することを可能にするように構成される。
【0007】
この解決法は、音響光学変換器をナノスケールで製造すること、例えばドナー分子とアクセプター分子との間の間隔を変えることによって、異なる音量または音の振幅に対する感度を調整することを可能にするので有益である。以下にさらに詳細に説明するいくつかの異なる方法のうちの1つでドナー分子および/またはアクセプター分子の構成を調整することによって、異なる波長の光を放射するように調整されている。さらに、ドナー分子は周囲光で照射されてもよく、それによって音響光学変換器が受動素子として動作することを可能にし、それは動作に電力を必要としない。したがって、音響光学変換器は、従来技術のフォトフォンではこれまで不可能であった方法で、特定の用途、ならびにナノテクノロジーおよび生物医学用途でのエネルギー収集に使用することができる。
【0008】
本発明の有利な実施形態は、任意の請求項および/または以下の説明の一部に従って構成することができる。
【0009】
好ましくは、少なくとも1つのドナー分子および少なくとも1つのアクセプター分子のうちの少なくとも1つは量子ドットを含む。量子ドットは量子特性を有するナノスケール粒子であり、それはそれらの光学的および/または電子的特性を含むことができ、これらは類似の材料からなる粒子の特性とは異なるが、量子効果の結果としてより大きいスケールで異なる。したがって、例えば、少なくとも1つのドナー分子および少なくとも1つのアクセプター分子のうちの少なくとも1つは、ナノスケール粒子上にコーティングされてもよく、または量子ドットとして具体化されてもよい。ドナー分子および/またはアクセプター分子の光学的特性は、それらのサイズおよび/または形状などのナノスケール粒子の1つまたは複数の特性を調整することによって、選択に応じて変えることができる。
【0010】
好ましくは、少なくとも1つのドナー分子および少なくとも1つのアクセプター分子のうちの少なくとも1つは、12族元素と16族元素との無機化合物(言い換えれば、旧IUPACグループ命名法の下でIIB族元素とVIB族元素との化合物)を含む。そのようなII−VI化合物は望ましい光学特性を有し、それは異なる用途に適するように設計することができる。
【0011】
もしそうであれば、無機化合物は、好ましくは、硫化カドミウム、セレン化カドミウム、硫化亜鉛およびセレン化亜鉛からなる群から選択される。
【0012】
あるいはまたはさらに、少なくとも1つのドナー分子および少なくとも1つのアクセプター分子の少なくとも1つは有機化合物を含むことが好ましい。これは、音響光学変換器を生化学的、生物医学的、遺伝的および他の生物工学的用途に使用することを可能にするという利点を有する。
【0013】
もしそうであれば、有機化合物は、好ましくは、蛍光タンパク質およびリレン染料からなる群から選択される。
【0014】
好ましくは、グラフェン共振器はグラフェン膜を含む。もしそうであれば、グラフェン膜は単層または多層グラフェン膜であってもよい。しかしながら、他の可能な実施形態では、グラフェン共振器は、ウィスカーなどの膜とは異なる物理的構成を有してもよい。
【0015】
さらに好ましくは、入射窓および出射窓の少なくとも一方は、フィルタおよびレンズの少なくとも一方を含む。これは、それがドナー分子に入射する入射光の性質およびアクセプター分子によって放出されるかもしれない性質を異なる用途に適するように所望通りに調節することを可能にするので有益である。
【0016】
本発明は、また、本明細書に記載の音響光学変換器のアレイにも関連し、ここで各音響光学変換器は、アレイの他の音響光学変換器とは異なる波長の光を放射するように調整される。これは音響光学変換器に入射する音に従って多色光の変調を可能にするので有益である。
【0017】
本発明はさらに、二次元格子状に配置された、本明細書に記載の複数の音響光学変換器に関係する。これは、格子内の音響光学変換器の数を増やすことによって所望の通りに増加されるように所与の波長の音響光学変換器によって放射される光の強度を増加させるために使用できるので有益である。しかしながら、それはまた、格子内の音響光学変換器の位置に応じて音を光にデジタル変換することも可能にする。
【0018】
1つの可能な好ましい実施形態では、複数の音響光学変換器は複数の変換器アレイを含んでもよく、各アレイ内の音響光学変換器のそれぞれは、同じアレイの他の音響光学変換器とは異なる波長の光を放射するように調整される。これは、多色光を変調するという利点と、放出される光の強度を高めるという利点、および音量または振幅のデジタル解像度を組み合わせるという利点がある。
【0019】
本発明はさらに、音を光に変換する方法に関する。この方法は、少なくとも1つのドナー分子をグラフェン共振器上に配置すること、少なくとも1つのアクセプター分子を基板上に配置すること、少なくとも1つのドナー分子から少なくとも1つのアクセプター分子へのフェルスター共鳴エネルギー移動(FRET)のための1つのアクセプター分子の範囲内で音を十分な体積のグラフェン共振器に印加すること、少なくとも1つのドナー分子を光で照射すること、および少なくとも1つのアクセプター分子から光を放射することを少なくとも含む。
【0020】
好ましくは、この方法は、少なくとも1つのドナー分子を周囲光で照らすことを含む。音響光学変換は、いかなる外部電源も必要とせず、受動的な装置によって実行することができ、そしてエネルギー収集に使用することができるので、これは有利である。
【0021】
1つの可能な好ましい実施形態では、方法は、以下のうちの少なくとも1つを調整することによって、グラフェン共振器の感度および共振周波数のうちの少なくとも1つを変更することを含む。例えば高さまたは半径のような基板からグラフェン共鳴器までの距離、グラフェン共鳴器の大きさ、および剛性などのようなグラフェン共振器の少なくとも1つの機械的性質。
【0022】
代替的に又は付加的に、少なくとも1つのドナー分子及び少なくとも1つのアクセプター分子の少なくとも1つはそれぞれ量子ドットを含み、方法はそれぞれの量子ドットのサイズ、形状および化学組成の少なくとも1つを変えることによって放射光の波長を変えることを含むことが好ましい。
【0023】
本発明はさらに、本明細書に記載の方法のうちの1つまたは複数を実行するためのコンピュータプログラム製品またはプログラムコードもしくはシステムに関する。
【0024】
本発明のさらなる特徴、目的および利点を、本発明の例示的な構成要素が示されている添付の図面と関連して説明する。それらの機能に関して互いに本質的に少なくとも同等である本発明に係る装置および方法の構成要素は、同じ参照番号によって示すことができ、そのような構成要素は、すべての図面において示されるまたは説明される必要はない。
【0025】
以下の説明において、本発明は、添付の図面に関して単なる例として説明される。
【図面の簡単な説明】
【0026】
図1】グラフェン膜を含む音響電気変換器の構成における連続した段階を表す一連の概略図である。
図2】音響光学変換器の一実施形態の概略図である。
図3】音響光学変換器内のグラフェン共振器の動作における異なる位相を概略的に表す。
図4】音響光学変換器の動作における異なる段階を概略的に表す。
図5】異なる音響レベルに対する音響光学変換器のアレイの異なる応答を概略的に表すグラフである。
図6】二次元格子状に配列された音響光学変換器の複数のアレイの概略図である。
【発明を実施するための形態】
【0027】
図1A図1B、および図1Cは、音響電気変換器またはマイクロホン100の構成における連続した段階を概略的に示す。図1Aに示すように、音響電気変換器100は、支持フレーム102の開口部を横切って懸架されているグラフェン膜101を含む。図1Bの分解図に示すように、グラフェン膜101は金配線103と電気的に接触しており、支持フレーム102は一対のスペーサ104a、104bの間に取り付けられている。図1Cの分解図に示されるように、得られたサブアセンブリは、次に一対の金で被覆された固定電極105a、105bの間に挟まれ、それらの各々に金配線106が取り付けられて電気的接触をなす。音波がグラフェン膜101に当たると、それによってグラフェン膜101が動かされ、それに応じて2つの固定電極105a、105bに対するグラフェン膜101の電気的特性が変化する。そのような動作中、音響電気変換器100は電流源としてモデル化されてもよい。
【0028】
図2は、音響光学変換器200の一実施形態を示す。音響光学変換器200は、グラフェン共振器201、基板203、入射窓206、および出射窓209を含む。グラフェン共振器は、薄膜としてその表面にコーティングされている複数のドナー分子202を含む。基板203は、ドナー分子202の薄膜に対向する薄膜として基板203の表面にコーティングされた複数のアクセプター分子204を含む。グラフェン共振器201は、音波205に応答し、音響光学変換器200の動作中、図2に破線201aで示されている静止位置から図示のように変位位置まで移動する。グラフェン共振器201のこの移動は、ドナー分子202からアクセプター分子204へのフェルスター共鳴エネルギー移動(FRET)が起こるのに十分に近いアクセプター分子204の範囲内のドナー分子202をもたらす。入射窓206は、入射周囲光207がドナー分子202に当たること(208)を可能にし、それによってそれらを励起状態に刺激する。入射窓206は、ドナー分子202を励起するのに必要とされるもの以外の周囲光207の波長を除去するためにバンドパスフィルタを含む。出射窓209は、ドナー分子202からアクセプター分子204へのFRETの結果としてアクセプター分子204によって放出された光210が音響光学変換器200を出ることを可能にするように構成される。出射窓208は、放射光210を集束させるためのコリメートレンズを含む。
【0029】
図3A、3Bおよび3Cは、その動作中の音響光学変換器200内のグラフェン共振器201の移動における異なる段階を示す。グラフェン共振器201はドナー分子202の粒子を担持し、これは例えばグラフェン共振器201の表面上に被覆された青緑色光のエミッタになるように調整されたセレン化カドミウムまたは硫化亜鉛の量子ドットであってもよい。アクセプター分子204は、例えば、基材上にコーティングされたペリリンの薄膜のようなリレン染料であり得る。図3Aにおいて、グラフェン共振器201は最初静止しており、グラフェン共振器201によって担持されたドナー分子202の粒子はアクセプター分子204から遠すぎて前者から後者へのフォルスター共鳴エネルギー移動が起こることができない。図3Bでは、グラフェン共振器201は音波によってアクセプター分子204に向かって変位し、ドナー分子202は周囲光を吸収し、それによって励起状態に刺激される。ドナー分子202の粒子は今やFRETが起こるのに十分にアクセプター分子204の薄膜に接近しているので、ドナー分子202はそれらのエネルギーをアクセプター分子204に与え、その結果として発光する。図3Cでは、グラフェン共振器201はその逆位相位置に跳ね返る。ドナー分子202は周囲光を吸収し続け、したがって励起状態に刺激され続ける。しかしながら、前者から後者へのFRETが起こるには、それらはアクセプター分子204から再び遠すぎるので、アクセプター分子204は、グラフェン共振器201が図3Bに示されるその位置にもう一度戻るまで発光しなくなる。したがって、アクセプター分子204によって放出された光は、グラフェン共振器201の共振周波数で振幅変調を受ける。
【0030】
図4A図4Bおよび図4Cは、その動作中の音響光学変換器200の動作における異なる段階を示しており、これらはそれぞれ、図3A図3Bおよび図3Cに示される異なる段階に対応する。図4Aに見られるように、グラフェン共振器201がその静止位置にあるとき、ドナー分子202は、ドナー分子202からアクセプター分子204へのFRETが起こることができる最大距離よりも大きい距離dADだけアクセプター分子204から離れている。図4Bに見られるように、グラフェン共振器201が音波によって変位させられると、その変位dは、ドナー分子202が前者から後者までFRETが起こるためにアクセプター分子204の範囲内に入るのに十分大きい。グラフェン共振器201の共振周波数および異なるボリュームの音波に対する感度の一方または両方を変化させるために、グラフェン共振器201は、高さhおよび半直径aを有し、これらの一方または両方は変化してもよい。例えば、その剛性のようなグラフェン共振器201の機械的特性のように、グラフェン共振器201の共振周波数または感度を変えるために、アクセプター分子204からのドナー分子202の分離距離dADも変化してもよい。これは、例えばグラフェン共振器201を構成する層の数を調整することによって変更してもよい。
【0031】
一方、ドナー分子202およびアクセプター分子204のいずれかまたは両方の化学組成を変えることによって、アクセプター分子204によって放射される光の波長が変えられてもよい。ドナー分子202およびアクセプター分子204のいずれかまたは両方は量子ドットとして具体化されるなら、アクセプター分子204によって放出される光の波長もまた、量子ドットのサイズおよび/または形状を変えることによって変えることができる。
【0032】
図5は、音響光学変換器のアレイ500、およびそれが異なる音レベルにどのように応答するかを示す。アレイ500は、上述のように複数の音響光学変換器200を含み、各音響光学変換器は、アレイ内の他の音響光学変換器とは異なる波長の光を放射するように調整されている。図5に示す例では、アレイ500は4つの音響光学変換器200を含み、そのうちの1つは赤色光を放射するように調整され(ラベル「R」)、そのうちの1つは黄色光を放射するように調整され(ラベル「Y」)、そのうちの1つは緑色の光を放射するように調整され(「G」と表示)、もう1つは青色の光を放射するように調整される(「B」と表示)。しかしながら、この例は純粋に例示的なものであり、他の代替の実施形態では、そのような音響光学変換器のアレイは、2、3、5、6など、任意の数の音響光学変換器を含むことができる。オレンジ、シアン、紫などの他の色を発光するように調整される。
【0033】
図5に示す例示的な実施形態では、赤色発光音響光学変換器は低音レベルに最も敏感であり、黄色発光音響光学変換器は低音レベルに次に敏感であり、緑色発光音響変換器はそれほど敏感ではなく、青色発光音響光学変換器はアレイ500内の全ての音響光学変換器の中で最も感度が低い。すなわち、アレイ500において衝突する音量または音の振幅が増加すると、最初に赤色発光音響光学変換器が点灯し、次に黄色発光音響光学変換器が発光し始め、次に入射音の音量が増大するにつれて緑色発光音響光学変換器も発光し始める。そして最後に、音量がさらに大きくなるにつれて、青色発光音響光学変換器が点灯する。これは、図5のグラフにおいて、増大する音響レベルで示されている同じアレイ500の5つの異なる表現によって概略的に示されている。
【0034】
図6は、二次元グリッド600に配列された音響光学変換器200の複数のそのようなアレイ500を示す。したがって、図示の実施形態では、アレイ500のそれぞれは、互いに同じ4つの音響光学変換器200の組み合わせを含む。そのうちの一つは赤色光を発し、そのうちの一つは黄色光を発し、そのうちの一つは緑色光を発し、およびそのうちの一つは青色光を発する。複数のアレイ500は、例えば電荷結合素子(CCD)の画素がどのように配置されているかと同様に、行および列に配置されて二次元グリッド600を形成する。音響光学変換器200の各々はマイクロスケールまたはナノスケールデバイスとしてさえ製造することができるので、グリッド600全体は各行または列を横切って数ミリメートルより大きいサイズである必要はない。他方、音響光学変換器200は代わりにマクロスケールデバイスとして製造することができ、各次元において数十センチメートルまたはさらには数メートルのグリッド600を構築することを可能にする。そのような二次元グリッドは、もちろん、同様に三次元音−光変換装置を製造するために様々な異なる構成で互いに組み合わせることもできる。
【0035】
図6に示す実施形態では、アレイ500はそれぞれ図5に示すものと同じタイプであるが、これは純粋に例示のためのものである。その代わりに、アレイは、異なる波長および異なる感度に調整された異なる数の音響光学変換器200を含むことができ、そのため、それらの任意の可能な組み合わせを達成することができる。したがって、グリッド600は、例えば、代わりに、複数の音響光学変換器200を含むことができ、それらのすべてが互いに同じ波長の光を放射するように調整されているが、互いに感度が異なり、そのため、グリッドによって全体として放射される光の強度は、グリッド内の音響光学変換器200に衝突する音量に比例して変化する。
【0036】
したがって、要約すると、本発明は音響光学変換器200を提供し、それは少なくともグラフェン共振器201、基板203、入射窓206および出射窓209を含む。グラフェン共振器201は少なくとも1つのドナー分子202を含む。グラフェン共振器201は音205に応答して、少なくとも1つのドナー分子から少なくとも1つのアクセプター分子へのフェルスター共鳴エネルギー移動(FRET)が生じるために、少なくとも1つのドナー分子202を少なくとも1つのアクセプター分子204の範囲内にもたらす。
【0037】
入射窓206は、好ましくは周囲光である入射光207が、少なくとも1つのドナー分子202に入射することを可能にするように配置される。出射窓209は、少なくとも1つのアクセプター分子204によって放射される光210が音響光学変換器から出ることを可能にするように配置される。したがって、音響光学変換器200は、周囲光から得られたエネルギーのみを使用して音を光に変換する受動装置として機能することができ、共振器201の機械的性質および基板203からの共振器の距離のいずれかまたは両方を調節することにより音の異なる周波数および振幅に調整することができる。
【0038】
放射光の周波数は、また、例えばそれらが量子ドットである場合、ドナーまたはアクセプター分子の粒子のサイズ、形状、および化学組成のうちの少なくとも1つを変化させることによって変化させることもできる。音響光学変換器は、ナノスケールデバイスとしても実現され得る。他の側面では、本発明は、そのような音響光学変換器のいずれかを動作させる方法、およびそのような音響光学変換器のアレイも提供し、各音響光学変換器はアレイ内の他の電気光学変換器とは異なる波長の光を放射するように調整される。
【符号の説明】
【0039】
100音響電気変換器
101グラフェン膜
102支持フレーム
103グラフェン膜への電気配線
104a、104bスペーサ
105a、105b電極
106電極への電気配線
200電気音響変換器
201グラフェン膜
201aグラフェン膜の静止位置
202ドナー分子
203基板
204アクセプター分子
205音波
206入力窓
207入射する周辺光
208ドナー分子に当たる光
209出射窓
210放射光
500電気音響変換器の多色アレイ
600電気音響アレイのグリッド
図1
図2
図3
図4
図5
図6