(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0012】
次に、本発明を実施するための形態(「実施形態」という)について、適宜図面を参照しながら詳細に説明する。なお、各図において、同様の構成については同一の符号を付して説明を省略する。
【0013】
[第1実施形態]
<処理概要>
図1は、本実施形態で行われる画像補正処理の概要を示す図である。
まず、カメ
ラ105により顔画像12が撮像される。その後、顔画像12のうちの瞳孔画像11から瞳孔サイズPが抽出される。
そして、その瞳孔サイズPを基に、カメラ105で撮像された顔画像12の濃度が補正される。そして、補正された顔画像12のうち、肌画像13の部分を基に、血圧や、脈拍等の生体情報が抽出される。なお、濃度とは色の濃淡を示すものである。濃度の代わりに、輝度や、明度等が使用されてもよい。
なお、カメラ105は、一般的な可視光カメラとしてもよいが、赤外線カメ
ラ106とすることで、夜間や、サングラス装着時にも瞳孔サイズPを取得できる。
なお、黒目サイズK1、目頭から目尻までの距離K2については後記する。
【0014】
<画像補正>
次に、
図2〜
図5を参照して、瞳孔サイズPを用いた画像補正について説明する。
(濃度変換マップ)
図2は、第1実施形態で用いられる濃度変換マップの例を示す図である。
図2では、横軸が入力濃度を示し、縦軸が出力濃度を示している。それぞれの濃度は256諧調である。
濃度は、値が小さければ小さいほど暗く、大きければ大きいほど明るくなる。
図2に示すような濃度変換マップにより、瞳孔サイズ比P/Prによって濃度が変換される。なお、Pは瞳孔サイズの現在値、Prは基準となる瞳孔サイズ(基準瞳孔サイズ)である。基準瞳孔サイズとは、所定の明るさにおける瞳孔のサイズである。なお、瞳孔サイズは、瞳孔の直径でもよいし、瞳孔の面積でもよい。
【0015】
そして、
図2に示すように瞳孔サイズ比P/Pr=1である場合、濃度変換マップの対角線上に変換線(変換情報)21が配置されている。これは、ある濃度が同じ濃度に変換され、出力されることを意味している。
【0016】
次に、瞳孔サイズ比P/Pr>1の場合について説明する。瞳孔サイズ比P/Pr>1の場合とは、現在の瞳孔サイズPが基準瞳孔サイズPrより大きい場合であり、外部環境が暗い場合である。
このような場合の変換線(変換情報)22は、変換線21より下に配置される。この変換線22は、濃度63〜255が、濃度0〜255に変換されることを意味している。すなわち、画像のうち、明るい部分だけが抽出される。これにより、画像全体が明るくなるよう変換される。
【0017】
また、瞳孔サイズ比P/Pr<1の場合について説明する。瞳孔サイズ比P/Pr<1の場合とは、現在の瞳孔サイズPが基準瞳孔サイズPrより小さい場合であり、外部環境が明るい場合である。
このような場合の変換線(変換情報)23は、変換線21より上に配置される。この変換線23は、濃度0〜157が、濃度0〜255に変換されることを意味している。すなわち、画像のうち、暗い部分だけが抽出される。これにより、画像全体が暗くなるよう変換される。
このような濃度変換マップは、予め作成され、設定されている。
【0018】
ちなみに、基準瞳孔サイズPrの代わりに、
図1に示す黒目サイズK1が用いられてもよい。この他にも、基準瞳孔サイズPrの代わりに、目頭から目尻までの距離K2を用いる等、大きさや、距離が一定のものを用いることが可能である。このようにすることで、顔が動くことによって顔画像12中における瞳孔サイズPに変化が生じても適切な補正を行うことができる。また、基準瞳孔サイズPrの代わりに、黒目サイズK1や、目頭から目尻までの距離K2を用いることにより、予め基準瞳孔サイズPrが設定される必要がなくなる。これにより、ユーザの負担を軽減することができる。
【0019】
瞳孔サイズ比P/Pr>1の状態で、瞳孔サイズ比P/Prが大きくなればなるほど、変換線21は変換線22の方向へ移動し、その傾きは大きくなる。
同様に、瞳孔サイズ比P/Pr<1の状態で、瞳孔サイズ比P/Prが小さくなればなるほど、変換線21は変換線23の方向へ移動し、その傾きは大きくなる。
【0020】
(コントラスト変換マップ)
図3は、第1実施形態で用いられるコントラスト変換マップの例を示す図である。
図3では、横軸が入力濃度を示し、縦軸が出力濃度を示している。それぞれの濃度は256諧調である。
そして、コントラスト変換曲線31が
図3に示すように設定されている。このコントラスト変換曲線31は、画像のうち、暗い部分がより暗くよう、明るい部分がより明るくなるよう濃度を変換する。
これにより、画像のコントラストが高くなる。
なお、
図3のコントラスト変換マップによる画像変換は一般的な画像処理で行われているものである。
【0021】
(実際の画像変換:外部環境が暗い場合)
図4は、外部環境が暗い(P/Pr>1)場合における画像変換例を示す図である。
図4は、肌画像13(
図1参照)の濃度ヒストグラムを示しており、横軸が濃度、縦軸が画素数を示している。なお、
図4、
図5における濃度ヒストグラムは緑光の濃度ヒストグラムである。
そして、
図4の上段には変換前の濃度ヒストグラムを示し、下段には変換後の濃度ヒストグラムを示している。なお、変換とは、
図2の濃度変換マップによる変換、及び、
図3のコントラスト変換マップによる変換が含まれる。
特に、
図2の濃度変換マップにより、変換前(上段)の濃度範囲41が変換後(下段)の濃度0〜255まで広げられている。つまり、明るい部分が抽出されている。これにより、画像全体が明るくなる。
【0022】
(実際の画像変換:外部環境が明るい場合)
図5は、外部環境が明るい(P/Pr<1)場合における画像変換例を示す図である。
図5は、肌画像13の濃度ヒストグラムを示しており、横軸が濃度、縦軸が画素数を示している。
そして、
図5の上段には変換前の濃度ヒストグラムを示し、下段には変換後の濃度ヒストグラムを示している。なお、変換とは、
図2の濃度変換マップによる変換、及び、
図3のコントラスト変換マップによる変換が含まれる。
特に、
図2の濃度変換マップにより、変換前(上段)の濃度範囲42が変換後(下段)の濃度0〜255まで広げられている。つまり、暗い部分が抽出されている。これにより、画像全体が暗くなる。
【0023】
このように、
図2に示す濃度変換マップを用いることにより、外部環境が暗い場合、つまり、画像が暗い場合、画像全体を明るくする。また、外部環境が明るい場合、つまり、画像が明るい場合、画像全体を暗くする。
このようにして、画像の明るさを適切な明るさにすることができる。
【0024】
このように濃度変換マップを使用することで、顔画像12の濃度補正が容易となる。
【0025】
<画像処理装置1>
図6は、第1実施形態に係る画像処理装置1の構成例を示す図である。適宜、
図1を参照する。
図6に示すように、画像処理装置1はメモリ101、CPU(Central Processing Unit)102、送受信装置103を有している。また、画像処理装置1はカメラ105(赤外線カメラ106)及び記憶装置104のそれぞれを有している。
メモリ101は、ROM(Read Only Memory)等であり、記憶装置104はRAM(Random Access Memory)等である。
メモリ101には、プログラムが格納されており、このプログラムがCPU102によって実行される。これにより、処理部100及び処理部100を構成する各部100〜112,120〜122,131(
図8、
図9で後記)が具現化している。
【0026】
カメラ105は顔画像12を撮像するためのカメラである。また、前記したように、カメラ105として赤外線カメラ106が用いられることにより、夜や、トンネル等の暗い場所や、ユーザがサングラスを装着している場合でも瞳孔サイズPを取得することが可能となる。
なお、暗いところでは赤外線カメラ106によって瞳孔画像11が取得され、明るいところでは可視光カメラによって瞳孔画像11が取得されてもよい。
【0028】
<処理部100>
図8は、第1実施形態で用いられる処理部100の詳細な構成を示す図である。適宜、
図1を参照する。
処理部100は、瞳孔サイズ関連処理部(瞳孔情報取得部)120、画像処理部110、生体情報抽出処理部131を有している。
瞳孔サイズ関連処理部120は、瞳孔サイズPに関する処理を行い、有効判定処理部121及び瞳孔サイズ比算出処理部122を有している。
有効判定処理部121は、カメラ105で撮像された顔画像12が瞳孔サイズ比P/Prを算出するのに適しているか(有効であるか)否かを判定する。有効判定処理部121による判定の詳細は後記する。
瞳孔サイズ比算出処理部122は、カメラ105で撮像された顔画像12中の瞳孔画像11から瞳孔サイズ比P/Prを算出する。
【0029】
画像処理部110は、瞳孔サイズ比算出処理部122で算出された瞳孔サイズ比P/Prを基に、
図2〜
図5で説明した手法によりカメラ105で撮像された顔画像12の濃度が補正される。画像処理部110の詳細は後記する。
生体情報抽出処理部131は、補正された顔画像12の中の肌画像13から脈拍値や、血圧値等の生体情報を抽出する。
【0030】
<画像処理部110>
図9は、第1実施形態で用いられる画像処理部110の詳細な構成を示す図である。適宜、
図1、
図8を参照する。
画像処理部110は、濃度ヒストグラム生成部111及び画像補正部112を有している。
濃度ヒストグラム生成部111は、カメラ105で撮像された顔画像12の濃度ヒストグラムを生成する。
画像補正部112は、瞳孔サイズ関連処理部120(瞳孔サイズ比算出処理部122(
図8参照))で算出された瞳孔サイズ比P/Prを基に、
図2、
図4、
図5に示す手法を用いて濃度ヒストグラムを変換する。その後、画像補正部112は、変換した濃度ヒストグラムに基づいて顔画像12の濃度を補正する。また、画像補正部112は、コントラストや、シャープネス等の補正を適宜行う。
【0031】
(フローチャート)
図10は、第1実施形態で行われる画像補正処理の手順を示すフローチャートである。適宜、
図1、
図6、
図8、
図9を参照する。
図10の処理は、画像処理装置1の電源がONされると開始され、OFFになるまで繰り返される。
まず、カメラ105がユーザの顔画像12を撮像する。
そして、画像処理部110は、撮像された顔画像12を基に、サングラスが装着されているか否かを判定する(S101)。サングラスが装着されているか否かは、一般的な画像認識処理で可能である。
ステップS101の結果、サングラスが装着されている場合(S101→Yes)、瞳孔サイズ関連処理部120はステップS101の前撮像された瞳孔画像11から瞳孔サイズを取得する。そして、瞳孔サイズ関連処理部120は、この瞳孔サイズを基準瞳孔サイズPrとする(S102)。
その後、処理部100は、ステップS111へ処理を進める。
【0032】
ステップS101の結果、サングラスが装着されていない場合(S101→No)、カメラ105がユーザの顔画像12を撮像する(S111)。
その後、有効判定処理部121が、撮像した顔画像12から有効判定情報を抽出する(S112)。有効判定情報は、顔画像12における影部分の場所の情報、まぶた状態の情報、光量変化の情報である。なお、光量変化は、前回の顔画像12と比較した光量変化である。従って、
図10の処理が開始されて最初の処理では光量変化の抽出は行われない。
【0033】
そして、有効判定処理部121は、ステップS112で抽出された有効判定情報を基にステップS111で撮像された顔画像12が有効であるか否かを判定する(S113)。
有効判定処理部121は、以下の(A1)〜(A3)の条件のうち、少なくとも1つが成立している場合、顔画像12が有効でない(S113→No)と判定する。
(A1)
図7に示すように影が目にかかっており、かつ、その他の部分に影がかかっていない。これは、影が目にかかっていると瞳孔サイズPが正確に測定できないためである。すなわち、影が目にかかっていると、肌にあたっている光の量と、瞳孔サイズPとが対応付けられないためである。影が目にかかっている場合、処理が行われないようにすることで、瞳孔サイズPの測定の精度を向上させることができる。
(A2)まぶたが閉じている。これは、まぶたが閉じていると瞳孔サイズPを計測することができないためである。
(A3)光量変化が所定値以上である。これは、光量変化が大きいと、光量の瞳孔の縮小・拡大が光量の変化に追いつかず、適切な瞳孔サイズを取得することができないためである。
【0034】
ステップS113の結果、顔画像12が有効ではない場合(S113→No)、処理部100はステップS111へ処理を戻す。
ステップS113の結果、顔画像12が有効である場合(S113→Yes)、瞳孔サイズ関連処理部120は顔画像12から瞳孔サイズPを抽出する(S121)。このとき、瞳孔サイズ比算出処理部122は、一方(例えば、左目等)の瞳孔サイズPを抽出してもよいし、両目の瞳孔サイズを平均したものを瞳孔サイズPとしてもよい。
【0035】
次に、瞳孔サイズ比算出処理部122が、瞳孔サイズ比P/Prを算出する(S122)。
続いて、濃度ヒストグラム生成部111が、顔画像12の濃度ヒストグラムを生成する(S123)。
そして、画像補正部112は、算出された瞳孔サイズ比P/Prを基に、
図2〜
図5で説明した手法で濃度ヒストグラムの補正を行う(S124)。
そして、画像補正部112は、ステップS124で補正された濃度ヒストグラムを基に顔画像12の補正を行う(S125)。
【0036】
生体情報抽出処理部131は、補正された顔画像12を基に血圧、脈拍数等の生体情報を取得する(S131)。生体情報抽出処理部131は、生体情報の抽出を、特許文献1に記載の手法によって行ってもよい。なお、特許文献1に記載の手法では、肌画像13における特定の波長域(緑等)の時間変動等から血圧、脈拍等の生体情報が抽出されている。その他、波長スペクトルの変動から脈波等を検出するもので生体情報が取得されてもよい。
カメラ105が赤外線カメラである場合、肌画像13における赤外領域での時間変動等から血圧、脈拍等の生体情報が抽出可能である。
また、カメラ105として、赤外線カメラと、可視光カメラとが使用されている場合、他の車のライト等で照らしだされた可視光の肌画像13から前記した手法で生体情報が抽出されてもよい。
そして、生体情報抽出処理部131は、抽出した生体情報を記憶装置104に保存し(S132)、処理部100はステップS301へ処理を戻す。
【0037】
第1実施形態によれば、画像処理装置1は瞳孔のサイズに関する情報を基にカメラ105で撮像された顔画像12(肌画像13)を補正する。これにより、精度の高い画像補正を行うことが可能となる。特に、周囲が暗い場合や、ユーザがサングラスをかけている場合でも画像補正を行うことが可能となる。この結果、生体情報の抽出精度を向上させることができる。
なお、周囲が暗い場合や、サングラスがかけられている場合でも、瞳孔は周囲の明暗に反応する。
特許文献1に記載の技術は、瞳孔の色を用いているので、周囲が暗い場合や、サングラスがかけられている場合では使用することができない。
【0038】
また、第1実施形態では、肌の色の濃度が補正されることで、生体情報の抽出精度を向上させることができる。
そして、第1実施形態では、補正された画像を基に脈拍、血圧が抽出されることで、精度よく脈拍、血圧を取得することができる。
【0039】
また、本実施形態では、濃度ヒストグラムが平坦化されている(
図4、
図5参照)。画像補正部112は、濃度が平坦化された顔画像12に対してアンシャープマスク処理を行うことで、顔画像12を鮮鋭化することができる。
【0040】
また、過去における環境の明るさと、瞳孔の大きさとを保管しておき、環境の明るさの割に瞳孔が大きい場合、交感神経が働いていると判定されてもよい。逆に、環境の明るさの割に瞳孔が小さい場合、副交感神経が働いていると判定されてもよい。
また、瞳孔の収縮速度が、これまでの平均値よりも所定値以上大きいである場合、副交感神経が働いている判定されてもよい。逆に、瞳孔の散大速度が、これまでの平均値よりも所定値以上大きいである場合、交感神経が働いている判定されてもよい。
【0041】
[第2実施形態]
<処理部100a>
図11は、第2実施形態で用いられる処理部100aの詳細な構成を示す図である。
図11において、
図8と同様の構成については同一の符号を付して説明を省略する。
図11に示す処理部100aが
図8に示す処理部100と異なる点は、肌情報処理部132を有している点である。
肌情報処理部132は、予め記憶装置104(
図6参照)に格納されている肌情報のベース値と、撮像された肌画像13における肌情報の差(ベース差分値)を算出する。そして、肌情報処理部132は、算出したベース差分値を画像処理部110にわたす。
【0042】
<フローチャート>
図12は、第2実施形態で行われる画像補正処理の手順を示すフローチャートである。
なお、
図12において、
図10と同様の処理については同一のステップ番号を付して説明を省略する。
ステップS122で瞳孔サイズ比P/Prが算出された後、肌情報処理部132が肌情報を抽出する(S201)。肌情報とは、肌の色に関する情報である。具体的には、肌のRGB各値が抽出される。
【0043】
次に、肌情報処理部132は、予め取得されている肌情報のベース値と、ステップS111で撮像された顔画像12における肌情報の差(ベース差分値)を算出する(S202)。
そして、画像補正部112は、瞳孔サイズ比P/Prと、ステップS102で算出された肌情報のベース差分値とを基に、濃度ヒストグラムを補正する(S124a)。
以下のような処理が行われることによって、肌情報のベース値との差を基に濃度ヒストグラムが補正される。
例えば、R(Red)値が少なくなっている場合、肌情報処理部132は、R値についてベース差分値を算出する。そして、画像補正部112は、ベース差分値分濃度を顔画像12(肌画像13)のR値分多くする。
ステップS125以降は、
図10の処理と同様の処理が行われる。
【0044】
第2実施形態によれば、貧血等を起こして肌が白くなっている場合でも、顔画像12(肌画像13)の濃度を適切にすることができる。
また、第2実施形態によれば、個人差による肌の色の違いによる影響を抑制することができる。
【0045】
[第3実施形態]
<システム概略>
図13は、第3実施形態で用いられる異常検知システムZaの構成例を示す図である。
第3実施形態に示す異常検知システム(画像処理システム)Zaは、以下の処理を行う。すなわち、車両52に搭載された異常検知装置51がドライバの異常を検知すると、クラウドサービス55を介して、管理会社サーバ53や、保険会社サーバ54へ異常を検知した旨を通知する。
なお、管理会社サーバ53は管理会社に設置されているサーバである。管理会社とは、ドライバの異常検知が通知されると、オペレータ等が該ドライバに対して呼びかけを行ったり、救急車の手配等をサービスしたりする会社である。
また、保険会社サーバ54は保険会社に設置されているサーバである。
【0046】
<異常検知装置51>
図14は、第3実施形態で用いられる異常検知装置51の構成例を示す図である。
図14において、
図6と同様の構成については
図6と同一の符号を付して説明を省略する。
異常検知装置51は、画像処理装置1bと、車両機器2とで構成される。ここでは、画像処理装置1bと車両機器2が互いに接続されている関係となっているが、画像処理装置1bが車両機器2に搭載される形式となっていてもよい。
【0047】
(画像処理装置1b)
画像処理装置1bは、処理部100で抽出された生体情報を基に、ドライバの異常を検知する異常検知処理部141がCPU102によって実行されている点が
図6と異なっている。異常検知処理部141が行う処理については後記する。なお、異常検知処理部141が車両機器2に搭載されてもよい。
【0048】
(車両機器2)
車両機器2は車両52(
図13参照)に標準的に搭載されている機器である。車両機器2は、CPU201、スピーカ202、表示装置203を有している。また、車両機器2は、時計204、GPS(Global Positioning System)信号受信装置205、ジャイロセンサ206及び車両制御装置207及び送受信装置208を有している。
このうちGPS信号受信装置205はGPS用人工衛星(不図示)から発信されるGPS信号を受信する。
ジャイロセンサ206は車両52の姿勢を検知する。
車両制御装置207は、画像処理装置1bがドライバの異常を検知すると、自律運転によって車両52を安全な場所に停車させる。
【0049】
<フローチャート>
図15は、第3実施形態で行われる異常検知処理の手順を示すフローチャートである。適宜、
図13及び
図14を参照する。
異常検知処理部141は、過去N回の生体値の平均値を算出する(S301)。生体値とは、生体情報に含まれる血圧値、脈拍値等である。
次に、処理部100が
図10又は
図12の処理を行い、生体情報を取得する(S302)。
そして、異常検知処理部141は生体値が正常であるか否かを判定する(S303)。生体値が正常であるか否かは、ステップS302で取得した生体値がステップS301に対して所定値以上離れているか否か等である。所定値とは、例えば、2σ(σは標準偏差)等である。
【0050】
ステップS303の結果、正常である場合(S303→Yes)、異常検知処理部141はステップS301へ処理を戻す。
ステップS303の結果、正常ではない場合(S303→No)、異常検知処理部141はステップS302で所得された生体をNG値として記憶装置104に保存する(S311)。
そして、異常検知処理部141は、ステップS303で正常ではないと判定されたのがN回連続であるか否かを判定する(S312)。
ステップS312の結果、ステップS303で正常ではないと判定されたのがN回連続ではない場合(S312→No)、異常検知処理部141はステップS301へ処理を戻す。
【0051】
ステップS312の結果、ステップS303で正常ではないと判定されたのがN回連続である場合(S312→Yes)、異常検知処理部141は車両機器2にドライバの状態が異常である旨を通知する。
車両機器2のCPU201は、ドライバの状態が異常である旨を表示装置203に出力(警告出力)させる(S321)。出力は、スピーカ202からの呼びかけ等としてもよい。
さらに、CPU201は車両制御装置207に車両52に対して緊急停止処理を行わせる(S322)。緊急停止処理は、路肩等へ移動後停止する処理等である。
そして、CPU201は、送受信装置208を介してクラウド経由で管理会社サーバ53や、保険会社サーバ54へ異常発生情報を送信する(S323)。
その後、管理会社のオペレータによる状態確認が行われる(S324)。オペレータによる状態確認とは、テレビ電話等を介してオペレータがドライバに話しかけることである。
【0052】
また、保険会社は、異常発生情報を基に保険の設定見直し等を行う。
【0053】
第3実施形態によれば、画像処理装置1bが用いられることにより、異常検知の精度を向上させることができる。また、ステップS312で、画像処理装置1bはN回連続した場合、異常検知を出力することによって、生体情報が偶然異常となったときに異常検知の出力を行うことを防止することができる。
また、画像処理装置1bが車両52に搭載されることにより、ドライバの健康状態を監視することが可能となる。
【0054】
[第4実施形態]
<ストレス環境管理システムZb>
図16は、第4実施形態で用いられるストレス環境管理システムZbの構成を示す図である。
ストレス環境管理システム(画像処理システム)Zbは、複数の車両52それぞれに搭載されている異常検知装置51aが検知したストレス情報がクラウドサービス55を介して管理会社サーバ53や、保険会社サーバ54に集められる。
ここで、ストレス情報は、位置情報と対応付けられており、管理会社や、保険会社は、どこで多くの人がストレスを感じているかを把握することができる。このような情報は、警告区間の設定や、保険料の設定に利用される。
【0055】
<異常検知装置51a>
図17は、第4実施形態で用いられる異常検知装置51aの構成例を示す図である。
図17において、
図14と同様の構成については
図14と同一の符号を付して説明を省略する。
異常検知装置51aは、画像処理装置1cと、車両機器2とで構成される。ここでは、画像処理装置1cと車両機器2が互いに接続されている関係となっているが、画像処理装置1cが車両機器2に搭載される形式となっていてもよい。
【0056】
(画像処理装置1c)
画像処理装置1cは、ストレス度処理部142及び外部環境処理部143がCPU102によって実行されている点が
図6と異なっている。また、画像処理装置1cは、異常検知処理部141(
図14参照)の代わりにストレス度処理部142及び外部環境処理部143がCPU102が備わっている点が
図14と異なっている。
ストレス度処理部142は、処理部100で抽出された生体情報を基に、ドライバの疲労度や、緊張度といったストレス度を算出する。
外部環境処理部143は、ストレス度処理部142がストレス度を算出したときの車両52の位置等を検出する。
ストレス度処理部142及び外部環境処理部143が行う処理については後記する。
また、車両機器2は
図14に示すものと同じであるので、ここでの説明を省略する。
なお、ストレス度処理部142及び外部環境処理部143が車両機器2に搭載されてもよい。
【0057】
<フローチャート>
図18は、第4実施形態で行われる異常処理の手順を示すフローチャートである。
まず、
図10又は
図12の処理が行われることで生体情報が取得される(S401)。
次に、外部環境処理部143が、GPS信号受信装置205が受信したGPS信号や、ジャイロセンサ206から受信したジャイロ信号等を共に、車両52の現在情報を特定する(S402)。現在情報は、現在時刻、車両52の現在位置、車両52の向き等を含む情報である。なお、車両52の現在位置及び向きは、すなわちカメラ105で撮像される人物の現在位置及び向きである。
そして、ストレス度処理部142は、ステップS401及びステップS402の処理がM回以上実施されたか否かを判定する(S403)。
ステップS403の結果、ステップS401及びステップS402の処理がM回以上行われていない場合(S403→No)、ストレス度処理部142はステップS401へ処理を戻す。
【0058】
ステップS403の結果、ステップS401及びステップS402の処理がM回以上行われている場合(S403→Yes)、ストレス度処理部142はストレス度を算出する(S411)。ストレス度は蓄積された生体値から疲労度、緊張度等から算出される。ストレス度の算出は、脈拍及び/又は血圧が所定値以上となった場合にドライバが強いストレスを感じているとする。
そして、外部環境処理部143は、ステップS402で特定した現在位置と、地図データとのマッチングを行うことで、疲労、緊張の高い外部環境を特定する(S412)。
その後、ストレス度処理部142はステップS412で特定した外部環境に関する情報(外部環境情報)と、ストレス度をクラウド経由で管理会社サーバ53や、保険会社サーバ54へ送信する(S413)。この送信は、画像処理装置1cの送受信装置103が行ってもよいし、車両機器2の送受信装置208が行ってもよい。
そして、管理会社サーバ53は、他の車両52から収集した疲労、緊張の高い外部環境等を基に、疲労、緊張が高い傾向にある外部環境を情報共有レポートとして出力する(S414)。
【0059】
例えば、管理会社は、複数の車両52に搭載されている異常検知装置51aから収集する。そして、管理会社は、収集したストレス度と、ストレスを感じた位置情報とを基に、多くのドライバがストレスを強く感じる区間等を特定する。そして、管理会社は、この区間をドライバに配布することで、ストレスを強く感じる区間に対する警戒を促すことができる。
また、保険会社は、ストレスを強く感じる区間を多く走るドライバの保険料を高く設定する。
このように、第4実施形態によれば、ストレスを感じる区間を特定することができる。
【0060】
[第5実施形態]
<在宅監視装置61>
図19は第5実施形態で用いられる在宅監視装置61の構成を示す図である。
図19において、
図14と同様の構成については同一の符号を付して説明を省略する。
在宅監視装置(画像処理システム)61は、画像処理装置1b及び家電機器3を有する。ここでは、画像処理装置1bと家電機器3とが接続されているが、家電機器3に画像処理装置1bが搭載されている形式としてもよい。
ここで、画像処理装置1bは
図14に示すものと同じであるので、ここでの説明を省略する。
【0061】
(家電機器3)
家電機器3は、エアコンや、インタフォン等といった家電製品である。
家電機器3は、メモリ301、CPU302、カメラ303、時計304、スピーカ305、表示装置306、機器制御装置307及び送受信装置308を有する。なお、家電機器3は、カメラ303、時計304、スピーカ305、表示装置306のすべてを備えたものでなくてもよい。また、家電機器3にカメラ303が備えられている場合、画像処理装置1bのカメラ105(赤外線カメラ106)が省略されてもよい。
【0062】
なお、第5実施形態の在宅監視装置61の処理は、
図15の処理において、ステップS322の処理が省略され、車両機器2(
図14参照)の処理が家電機器3に置き換わったものであるので、ここでの説明を省略する。
画像処理装置1bが異常を検知すると、家電機器3は管理会社への通知等を行う。
【0063】
第5実施形態によれば、家電機器3を利用した居住者の健康監視が可能となる。また、例えば、家電機器3が空調であれば、画像処理装置1bが異常を検知すると機器制御装置307が温度調節を行う等といった処理を行ってもよい。
【0064】
生体情報は、呼吸状態等が含まれてもよい。
なお、補正は所定時間毎に行われるのが望ましい。例えば、
図10のステップS125において補正情報が得られると、画像補正部112は、それ以降取得される顔画像12に対して、得られた補正情報を適用し続ける。そして、所定時間経過後、新たな補正情報が得られると、画像補正部112は、それ以降取得される顔画像12に対して、得られた補正情報を適用し続ける。
【0065】
また、本実施形態では、瞳孔の大きさに関する情報として、瞳孔サイズ比P/Prが用いられているが、これに限らない。例えば、Pr/Pが用いられてもよいし、現在の瞳孔サイズPが用いられてもよい。また、P(t)−P(t−1)が瞳孔の大きさに関する情報として用いられてもよい。ここで、P(t)は時刻tにおける瞳孔の大きさである。
【0066】
また、
図10や、
図12のステップS113で有効判定処理部121は「まぶたが閉じているか否か」で取得された顔画像12が有効か否かを判定しているが、これに加えて、以下の判定が行われてもよい。すなわち、有効判定処理部121は「所定時間まぶたが閉じたままか否か」を判定することによって、ドライバ(ユーザ)が眠気を催しているか否かを判定してもよい。ドライバ(ユーザ)が眠気を催していると判定した場合、スピーカ202等の音量を大きくする等の処理が行われてもよい。
【0067】
本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を有するものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
【0068】
また、前記した各構成、機能、各部1〜3、記憶部5等は、それらの一部又はすべてを、例えば集積回路で設計すること等によりハードウェアで実現してもよい。また、
図4に示すように、前記した各構成、機能等は、CPU102等のプロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、HD(Hard Disk)に格納すること以外に、メモリ101や、SSD(Solid State Drive)等の記録装置、又は、IC(Integrated Circuit)カードや、SD(Secure Digital)カード、DVD(Digital Versatile Disc)等の記録媒体に格納することができる。
また、各実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えてよい。