(58)【調査した分野】(Int.Cl.,DB名)
前記地上車両(10)は、第1測位モジュール(19)をさらに含み、前記第1測位モジュール(19)は、前記走行制御装置(17)に接続され、前記第1測位モジュール(19)は、前記地上車両(10)の位置情報を取得するように構成され、前記地上車両(10)の位置情報は、前記第1通信モジュール(18)を介して前記サーバ(30)へ送信されることを特徴とする請求項1に記載の飛行車システム。
前記飛行車両(20)は、第2測位モジュール(29)をさらに含み、前記第2測位モジュール(29)は、前記飛行制御装置(27)に接続され、前記第2測位モジュール(29)は、前記飛行車両(20)の位置情報を取得するように構成され、前記飛行車両(20)の位置情報は、前記第2通信モジュール(28)を介して前記サーバ(30)に送信されることを特徴とする請求項1に記載の飛行車システム。
【発明を実施するための形態】
【0019】
本発明の目的、特徴、および利点をより明らかにするために、ここで、本発明の実施形態を、図面を参照してより詳細に説明する。
【0020】
(第1実施形態)
図1〜
図3を参照すると、本発明の第1実施形態では、モジュラー飛行車が提供されている。飛行車はモジュラー構造を有し、地上車両10と飛行車両20とを含む。
【0021】
地上車両10は、シャーシ11と、第1キャビン12と、着陸プラットフォーム13とを含む。着陸プラットフォーム13は、飛行車両20を着陸させるために使用される。地上車両10は、独立して運転できるように、パワーシステム、トランスミッションシステム、ステアリングシステム、ブレーキシステム、および制御システムなどを備える。好ましくは、地上車両10は、手動操作なしで自動的に運転することができる。すなわち、地上車両10は、道路および高速道路での自動運転能力を有する。
【0022】
飛行車両20は、第2キャビン21と飛行駆動装置22とを含む。飛行車両20は、動力装置、伝達装置、操舵装置、制御装置などをさらに含むので、独立して飛行できるようになっている。好ましくは、飛行車両20は、手動操作なしに自動的に飛行することができ、つまり飛行車両20は自動飛行能力を有する。
【0023】
地上車両10の着陸プラットフォーム13は、飛行車両20が着陸できるように設けられている。飛行車両20は、地上車両10の着陸プラットフォーム13にドッキングされており、具体的には、飛行車両20は、着陸プラットフォーム13に垂直に着陸することができ、インターロックによって地上車両10と接続されている。このように、飛行車両は、着陸プラットフォーム13から垂直に離陸できるようになっている。
【0024】
図1〜
図3に示す実施例では、第1キャビン12は、シャーシ11の前端に設けられ、着陸プラットフォーム13は、シャーシ11の後端に設けられる。地上車両10の着陸プラットフォーム13は、第1キャビン12の後方に位置する。飛行車両20が地上車両10の着陸プラットフォーム13に乗り上げられるとき、飛行車の全体構造をコンパクトにすることができ、第2キャビン21と第1キャビン12が互いに隣接している。ここで、地上車両10および飛行車両20はそれぞれ、単一列の座席のみを有してもよい。例えば、1人または2人の乗員のみを乗せることが必要な場合、単一列の座席を備えた地上車両10および単一列の座席を備えた飛行車両20は、設計可能である。
【0025】
図1に示すように、飛行車両20が着陸プラットフォーム13に着陸すると、飛行車両20の機首は地上車両10の後端に面する。すなわち、飛行車両20の機首は、地上車両10の頭部の反対側に配置される。第1キャビン12には、第2キャビン21に対向する第1キャビンドアが設けられ、第2キャビン21には、第1キャビン12に対向する第2キャビンドアが設けられる。第1キャビンドアおよび第2キャビンドアは、電気ドアであり、同時に開けることができる。これにより、乗員は、第1キャビンドアおよび第2キャビンドアを介して地上車両10と飛行車両20との間を便利に移動でき、わざわざ第1キャビンドアおよび第2キャビンドアから降りる必要がない。さらに、第1キャビン12および第2キャビン21の座席は回転可能であり、乗員の乗り換えが容易となるようにキャビンドアに向かって回転することができる。
【0026】
地上車両10は、飛行車両20の正確な着陸を可能な限り最大限にサポートすることが重要であり、これにより、ほとんどの気象条件で通常の動作を実行することが保証される。ここで、飛行車両20は、人々が歩くことがあり得る部分から回転プロペラを物理的に取り除くことにより、人々の安全を確保できる。これらの課題は、着陸プラットフォーム13を備えた地上車両10によって解決することができ、着陸プラットフォーム13は、飛行車両20を地面から離すのに十分に持ち上げることができ、これにより、人々は飛行車両に触れずに済み、飛行車両は、人々の出入りが容易となるよう低くなっている。
【0027】
例えば、
図4に示すように、着陸プラットフォーム13がシャーシ11の後端に設けられた場合、着陸プラットフォーム13の高さは、シャーシ11に対して上下に調節され得る。飛行車両20が離陸または着陸するとき、地上車両は、地上の人々を回転プロペラから遠ざけるために、着陸プラットフォーム13を安全な高さまで上昇させることができる。また、地上車両10は、着陸プラットフォーム13を適切な高さまで下げて、搭乗者が飛行車両20に乗り降りすること、または地上車両10と飛行車両20との間を乗り換えることが容易となる。
【0028】
具体的には、着陸プラットフォーム13は、支持フレーム101によって地上車両10のシャーシ11に支持されている。支持フレーム101は、駆動装置102を介してシャーシ11に接続されている。ここで、駆動装置102は、例えば油圧シリンダーまたは空気シリンダーである。駆動装置102が伸長または後退すると、支持フレーム101が駆動されて、着陸プラットフォーム13をシャーシ11に対して上下させることができる。駆動装置102が伸長すると、着陸プラットフォーム13が上昇し、駆動装置102が後退すると、着陸プラットフォーム13は支持フレーム101によって下降する。
【0029】
図5および
図6に示す他の実施形態では、第1キャビン12はシャーシ11上に形成され、第1キャビン12の上面は、着陸プラットフォーム13として機能する。飛行車両20が着陸プラットフォーム13に着陸すると、道路の高さ制限を満たしている限り、飛行車両20は着陸プラットフォーム13にドッキングされる。この場合、地上車両10は、より多くの乗員を乗せるために、2列の座席を有してもよい。しかし、飛行車両20は、全体重量を減らし、飛行車両20の設計の困難さを減らすために、1人または2人の乗員を乗せるための単一列の座席であってもよい。
【0030】
飛行車両20が地上車両10に垂直に着陸すると、地上車両10は、衝突荷重を飛行車両20から地上車両10に効果的に伝達することができる。
【0031】
着陸中、地上車両10は、飛行車両20を誘導して、垂直着陸およびドッキングを実現させることができる。例えば、地上車両10には、ライダー装置103(
図4に示す)が設けられている。ライダー装置103は、着陸エリア周辺の潜在的なリスクを検出することができ、搭載中のコンピューターは、着陸エリアが着陸の最小要件を満たしているかどうかを自動的に評価し、評価結果は暗号化されたデータリンクを介して飛行車両20に送信される。さらに、飛行車両20のパイロットは、着陸エリアの視覚的安全性評価を実施して、自動評価結果との一貫性を確保することもできる。
【0032】
ライダー装置103はさらに、飛行車両20が着陸プラットフォーム13に着陸しているときに、飛行車両20と着陸プラットフォーム13との間の位置合わせを行うために使用される。飛行車両20は着陸プラットフォーム13の上を飛行して地上車両10に着陸する準備ができている場合、飛行車両20および地上車両10は、近距離無線通信技術を介して互いに通信する。ライダー装置103を用いて飛行車両20と着陸プラットフォーム13との位置合わせを行った後、飛行車両20は着陸プラットフォーム13上に垂直に着陸する。
【0033】
地上車両10と飛行車両20との間の双方向暗号化データリンクを通じて、地上車両10は、飛行車両20の正確な着陸のためガイダンスを提供することができる。地上車両10と飛行車両20との間の双方向暗号化データリンクは、無線データ伝送能力、高帯域幅、高速および強力な反電磁干渉能力を有する。
【0034】
地上車両10は、飛行車両20の正確な着陸に関する以下の情報およびガイダンスを提供することができる。つまり、リアルタイムの風速および方向、気圧、温度、湿度、着陸の方位角(磁気方位)およびプラットフォーム13の仰角、ディファレンシャルGPS基地局(GPS位置)、近赤外線ビーコンライト、高コントラストの光学アライメントマーキング/ライト、障害物のLIDAR検出、地上車両10と飛行車両20との間の暗号化データ接続などである。
【0035】
飛行車両20が地上車両10の着陸プラットフォーム13にドッキングされると、地上車両10と飛行車両20は、互いにインターロックにより接続される。着陸プラットフォーム13には、第1ロック装置14が形成され、飛行車両20の底部には、第2ロック装置24が形成されている。飛行車両20が着陸プラットフォーム13に着陸すると、第1ロック装置14および第2ロック装置24は、互いにインターロックにより接続される。その結果、飛行車両20は、インターロックにより地上車両10にドッキングされる。
【0036】
図7〜
図9に示す例では、第1ロック装置14は、プラットフォーム13に形成された爪141を含み、第2ロック装置24は、溝241を含む。爪141は、溝241に挿入可能であり、具体的には、第2ロック装置24は、複数の溝241が形成された固定グリッドであってもよい。さらに、爪141は、着陸プラットフォーム13上で回転可能である。これにより、飛行車両20が地上車両10の着陸プラットフォーム13に着陸するときの接続精度要求を低減することができる。ここで、第1ロック装置14は、着陸プラットフォーム13に形成された支持ベース142をさらに含み、爪141は支持ベース142に形成されている。
【0037】
図10〜12に示す他の実施例では、第1ロック装置14は、第1吸盤143とフック144とを含み、第2ロック装置24は、第2吸盤243と係合部244とを含む。第1吸盤143と第2吸盤243は、相互の吸着により固定される。係合部244は、フック144と係合して、飛行車両20を地上車両10にロックする。第1吸盤143および第2吸盤243は、磁気吸盤または真空吸盤でもよい。第1吸盤143と第2吸盤243との間の吸着力により、飛行車両20と地上車両10とが自動的に位置合わせられる。
【0038】
図13〜15に示す更なる実施例では、第1ロック装置14は、第1吸盤145と、挿入溝146と、挿入溝146に形成されたロック部147とを含む。第2ロック装置24は、第2吸盤245と、挿入ポール246と、挿入ポール246に形成されているロック溝247とを含む。第1吸盤145と第2吸盤245は、相互の吸着により固定され、挿入ポール246は挿入溝146に挿入され、ロック部147は、ロック溝247にロックされて、挿入ポール246を挿入溝146に固定する。第1吸盤145および第2吸盤245は、磁気吸盤または真空吸盤でもよい。第1吸盤145と第2吸盤245との間の吸着力によって、飛行車両20と地上車両10は自動的に位置合わせられる。
【0039】
地上車両10の動力は、純粋な電気モードまたはハイブリッドモードを使用することができ、飛行車両20の動力も、純粋な電気モードまたはハイブリッドモードを使用することができる。
【0040】
飛行車両20が地上車両10にドッキングされると、飛行車両20は地上車両10によって充電されることが可能となる。具体的には、(
図7に示すように)第1ソケット15が着陸プラットフォーム13に形成され、第2ソケット25(
図9に示す)が、飛行車両20に対応して形成されている。飛行車両20が着陸プラットフォーム13に穏やかに着陸すると、第2ロック装置24と第1ロック装置14が互いにインターロックされ、第1ソケット15と第2ソケット25がプラグインによって接続され、飛行車両20と地上車両10は、互いに電気的に接続されて、地上車両10は飛行車両20を充電することができる。
【0041】
地上車両10は、バッテリーパックを有してもよい。バッテリーパックの供給電源による最小限の走行可能な距離は、2つの最も遠い充電ステーション間の距離の2倍でなければならない。地上車両10は飛行車両20を充電する必要があるため、地上車両10のバッテリーパックの容量は100キロワット時を超えなければならない。
【0042】
地上車両10が道路を走行する際に、飛行車両20の展開された飛行駆動装置22によって生じる路面への抵抗または干渉を回避するために、飛行車両20の飛行駆動装置22は、格納され、または折り畳まれることで、道路走行の要件を満たしている。飛行車両20が着陸プラットフォーム13に着陸した後、飛行車両20を地上車両内に収めるために、飛行駆動装置22が(
図1に示すように)飛行車両20に向かって格納され、または折り畳まれる。
【0043】
飛行車両20は着陸プラットフォーム13から離陸する必要があった場合、飛行駆動装置22は、飛行車両20に揚力を提供するように、飛行車両20から展開される(
図3を参照)。例えば、飛行車両20には、翼ごとに1つのリフトファンを備えたタンデム翼が設けられて、クアッドコプター構成の優れた制御性を可能にしており、駆動時に、翼を標準幅の車両内にとどまるように胴体に沿って前後に簡単に折り畳むことができる。
【0044】
具体的には、飛行駆動装置22は、駆動モーター221と、ローター222と、支持アーム223とを含む。駆動モーター221は、飛行車両20が垂直な離着陸を実現できるように、ローター222を回転駆動するために使用される。ローター222は、支持アーム223に取り付けられ、支持アーム223は第2キャビン21に接続されている。ここで、飛行駆動装置22は複数であってもよく、すなわち、飛行車両20は、例えば4つのローターを有するマルチローター飛行車両であってもよい。各ローター222には、駆動モーター221が装備されており、オプションとして、飛行駆動装置22は、複数のローターと複数の固定翼とを同時に有することができる。
【0045】
飛行車両20は、垂直離着陸(VTOL)を実現することができる。VTOLでは、飛行車両は空気を下方向に加速する必要があり、アクチュエータディスクの基本的な物理学モデルにより、特定のパワー要件を推定することが可能となる。
【0046】
ホバリングに必要とされる理想的な力(プロペラの非効率性、空気の流れに与えられる渦巻、または上昇するのに必要な追加の力は、考慮されていない)は、次のようである:
【数1】
【0047】
Tが飛行車両の推力(総離陸重量、GTOWに等しい)であった場合、Aはアクチュエータディスク領域(またはプロプロータにより掃引される領域)であり、ローは空気密度である。想定される空気密度とプロペラディスクの負荷を考えると、この関係を使用して、飛行車両システム全体で必要とされる最小の比出力を決定することができる。SI単位では、この関係は次のようになる。
【数2】
【0048】
または、逆に、所定の飛行車両比出力は、最大許容プロペラディスク負荷を決定することができる:
【数3】
【0049】
物理学の知識および今日のバッテリー技術により、この単純な関係を使用して、飛行車両の所定重量に対する最小プロペラサイズの推定値を決定することができる。これは単純ではあるが、これを使用して、特定飛行車両のエンベロープ/パッケージサイズが決められた場合、理論上の最大重量を決定することができる。これは、道路を走行する際の幾何学的な制約を考えた場合、特に便利である。
【0050】
車両の比出力を推定するために、バッテリーの比出力とバッテリー質量分率(バッテリー重量と車両総重量との比)の両方を把握する必要がある。A3 Vahanaチームの経験を考えると、バッテリーの質量分率(〜25%)を最初の推定として使用するのが妥当である。したがって、車両比出力を推定するには、バッテリーの比出力を4分の1に削減する必要がある。このため、SOALG化学電池では、車両の比出力338W/kgが可能になり、237kg/m
2の最大潜在プロペラディスク負荷が必要になる。次に、ペイロード/占有率を2倍にするためにVahanaのサイズを2倍にスケーリングすると、2箇所の候補車両の最大総離陸重量は1450kgになり、最小許容総リフトファンサイズは6.1m
2になる。この最小面積が1つのローターであった場合、直径は2.8メートルとなる。これは、トラックの許容幅よりも大きい。これは、次のことを意味する。つまり、出力とプロペラディスクサイズを増加させる実用的な効率を考慮した場合、VTOLフライトコンポーネントの折り畳みのいくつかのタイプが1つのレーン内に収める必要がある。バッテリーの選択を最大の比エネルギーを有するパナソニック製の電池に制限した場合、最大許容プロペラディスク負荷は僅か27kg/m
2となり、1450kgの飛行車両にとって54m
2(直径8.3m)のローターが必要となってくる。これにより、ヘリコプターのような構成が強制的に必要となり、L/D(揚抗比)が低く、低周波ブレードノイズは空気の中で不利な減衰が生じるため、飛行可能な距離が大幅に制限される。この例は、飛行車両にとってバッテリーの比出力が非常に重要である理由を示している。
【0051】
最良の特定出力電池が利用可能であっても、今日のバッテリー技術では、飛行車両のプロペラディスク面積は普通の車両寸法に比較して大きい。今日のバッテリー技術によると、1人あたりの単位ペイロードに必要なプロペラディスク面積は、3m
2である。このように、単位ペイロードあたりのプロペラディスク面積の増加により、ホバリングに必要なパワーが削減可能となるので、非常に望ましいことである。
【0052】
上記の式1は、ホバリングに必要な理想(最小)パワーを表している。実際には、プロップ/ローターに空力損失があり、実際のシャフト出力を理論上の出力よりも大きくする必要がある。これらの損失は、無次元の効率であるホバー性能指数(FM)によって要約することができる。さらに、必要な上昇、操縦、および余剰なパワーマージンを確保することが必要であり、これは通常15%である。
【0054】
典型的なホバー性能指数FMは、VTOL飛行車両にとって0.6〜0.8の範囲にある。これらのローター損失により、必要なシャフト出力が著しく増加する。
【0055】
空気力学的損失に加えて、最大電気パワーを推定するために、バッテリー、モーター、ワイヤ、およびインバーターの電気損失が含まれなければならない。これらの損失は一般に、通常0.9の範囲の電気効率で示される。
【0057】
全ての飛行車両の飛行可能な距離は、以下の式で計算することができる:
【数6】
【0058】
式6において、η
pは、前進飛行に使用されるプロペラの推進効率であり(異なる動作状況のために同じプロペラであってもホバーFMとは異なる)、η
eは、プロペラシャフトを回す際の電気システムの効率である(式5で説明されているバッテリーからシャフト動力までのすべての損失を含む)。(L/D)は、クルーズ飛行中の車両の揚抗比(飛行車両プラットフォーム効率の最も関連する尺度)であり、Usable Cruise Energy(使用可能な巡行エネルギー)は、巡行飛行に確実に使用できるバッテリーに蓄積されたエネルギーの部分である。
【数7】
【0061】
バッテリーの潜在的な損傷を避けるために、放電の典型的な許容深度は90%である。(m
batt/m
GTOW)は、約25%と想定され、SOAバッテリー技術(例えば、上記のLG化学電池)の比エネルギーは約200W−hr/kgである。
【0062】
ホバー時間に影響を与える可能性のある多くの変数があるが、我々は、上昇段階と移行段階および下降段階と着陸段階の両方がそれぞれ45秒のホバーパワーを必要とすることを想定している。車両は、着陸中断後に着陸成功を達成しなければならないことから、合計4×45=180秒のホバー時間が必要となっている。
【数10】
【0063】
エネルギーのこの量は、GTOWの3/2電力に比例するため、余分な重量は、必要なVTOLバッテリーエネルギーにとって非常に不利であることに留意されたい。
【0064】
予備バッテリーエネルギーは、20分間のVTOL VFR(視覚的飛行規則)飛行のためのFAAによって義務付けられた最小予備によって決定される。この時間にクルーズの消費電力が乗算される。
【数11】
【数12】
【0065】
ここで、P
e cruiseは、巡航飛行中に消費される電力であり、V
cは飛行車両の巡航速度である。ここで、航続距離方程式において3つの効率が再び現れることに注意されたい。これらの効率を最大化することは、飛行車両を実用的な航続距離にするための鍵である。
【0066】
この第1原理の分析は、飛行車両の概念設計を正しく導くために使用される。上記の式を使用して、VTOL飛行車両の航続距離に対するパラメーター変化の影響を評価することができる。特に、適切なプロペラディスク負荷と揚抗比は、今日のバッテリー技術による飛行車両のコンセプトの実現可能性を評価するのに役立つ重要なパラメーターである。
【0067】
L/Dおよびプロペラディスク面積などのパラメーターは、飛行車両の基本的な幾何学形状およびサイズを決定する。つまり、プロペラディスク面積は、VTOLプロポータのサイズを決定し、揚抗比は、翼幅をウェット面積の平方根で除算した計算結果に比例している。どちらも基本的な幾何学形状およびサイズを決めるための鍵である。
【0068】
しかしながら、少なくとも2つの理由により、(高いL/D、 VTOL、折り畳み)飛行車両の開発を進める良い事例がある。つまり、バッテリー技術への最初の改良は、将来のL/Dに対する要求を劇的に下げることができ、さらに、電気VTOL機の場合、20分間のVFRリザーブを大幅に下げることができる。これは、必要なL/Dを劇的に下げるのにも役立つ。
【0069】
なお、突風と不安定な空気を伴う実世界の条件で正確な着陸を実行することは非常に難しい。車両の動的制御システムは、自然界の摂動に十分な制御マージンで応答して、最も極端な状況を除くすべての状況で飛行車両が地上車両に着陸できなければならない。確かに、飛行車両は、非名義運用では常に車両から(地上に)着陸する能力を備える必要があるが、これらの運用は非常にまれでる。われわれは、飛行車両が30ktから45ktまでの突風で地上車両に正確に着陸できることを推奨している。これより悪い状況はほとんどの場所でまれであり、そのため、ほとんどの場合は、地上着陸を避けるべきである。地上への着陸が必要な場合は、地上車両に飛行車両を搭載する能力が必要である(フラットベッドレッカー車のように)。
【0070】
地上車両は、潜在的なVTOL運用場所の評価を実施する必要がある。この評価は、VTOLの運用に危険性をもたらす可能性のある周囲の障害物や配線をマッピングするために、地上車両のLIDARシステムを使用して行うことができる。さらに、飛行車両の操縦者は、着陸エリアの視覚的評価を実施して、彼/彼女が自動化の評価に同意することを確保しなければならない。地上車両のAIは、このオペレーターの指導から継続的に学習する必要があり、時間の経過とともにサイトの評価をより良く行うことができるようになる。
【0071】
一実施形態では、飛行車両20は、185km/時(100kts)を超える巡航速度、93km(50海里)の最小航続距離、250フィートの高度で67dB未満の騒音レベル、100kg(1人の乗員)の最小積載量、できれば200kg(2人の乗員)の最小積載量を有する。飛行車両20は、30ktから45ktまでの突風を伴う風で、地上車両10に着陸する能力を有する。ここで、飛行車両20は、25m
2のプロペラディスク面積と16のL/Dを有する。
【0072】
図16に示すように、飛行車両20は、パワー喪失などの緊急の場合に安全な着陸が可能なパラシュートシステムをさらに含む。パラシュートシステムは、パラシュート231と、パラシュートハウジング232と、緊急ボタン233とを含む。パラシュートハウジング232は、飛行車両20に形成され、パラシュート231は、パラシュートハウジング232に収容される。緊急ボタン233は、パラシュート231を開くように緊急制御に使用される。飛行車両20が落下などの緊急事態の際、乗員は緊急ボタン233を押してパラシュートハウジング232を開き、パラシュート231を解放して、飛行車両20の落下を防ぎ、飛行の安全性を向上させることができる。
【0073】
また、飛行車両20は、緊急時に地面に直接に着陸することができる。そして、飛行車両20は、地上車両10によって着陸プラットフォーム13までピックアップされることも可能である。すなわち、地上車両10は、車両20を地上から着陸プラットフォーム13に持ち上げることができる。
【0074】
(第2実施形態)
図17〜20を参照すると、本発明の第2実施形態において、飛行車システムが提供されている。飛行車システムは、地上車両10と、飛行車両20と、サーバ30とを含む。地上車両10および飛行車両20の構造は、第1実施形態を参照すればよく、明細書の明確性を確保するために、ここでの重複な説明を省略する。
【0075】
地上車両10は、走行制御装置17および第1通信モジュール18をさらに含む。第1通信モジュール18は、走行制御装置17に接続されている。飛行車両20は、飛行制御装置27および第2通信モジュール28をさらに含む。第2通信モジュール28は、飛行制御装置27と接続されている。サーバ30は、プロセッサ31と、第3通信モジュール32とを含む。第3通信モジュール32は、プロセッサ31と接続されている。
【0076】
地上車両10とサーバ30とは、第1通信モジュール18と第3通信モジュール32を介して、無線で互いに通信可能となっている。飛行車両20とサーバ30は、第2通信モジュール28を介して無線で互いに通信可能である。特に、第1通信モジュール18と第3通信モジュール32との間、および第2通信モジュール28と第3通信モジュール32との間の無線通信接続は、2G、3G、4G、5G、GPRS、およびその他のワイヤレスネットワークを介して実現されている。
【0077】
地上車両10は、第1測位モジュール19をさらに含み、この第1測位モジュール19は、走行制御装置17に接続されている。ここで、第1測位モジュール19は、地上車両10の位置情報を取得するために使用され、地上車両10の位置情報は、第1通信モジュール18を介してサーバ30に送信される。地上車両10の位置情報を受信した後、サーバ30は、第3通信モジュール32を介して、地上車両10の位置情報を飛行車両20および/または端末40に送信する。
【0078】
飛行車両20は、第2測位モジュール29をさらに含み、この第2測位モジュール29は、飛行制御装置27に接続されている。ここで第2測位モジュール29は、飛行車両20の位置情報を取得するために使用される。飛行車両20の位置情報は、第2通信モジュール28を介してサーバ30に送信され、飛行車両20の位置情報を受信した後、サーバ30は、第3通信モジュール32を介して、飛行車両20の位置情報を地上車両10および/または端末40に送信する。
【0079】
地上車両10および飛行車両20は、支払いを前提として共有することができる。ユーザーは、端末40を使用してサーバ30と通信し、地上車両10および飛行車両20の呼び出しを実現することができる。使用中、ユーザーは、地上車両10と飛行車両20との間で乗り換えることができ、使用後、ユーザーは、使用料を支払い、地上車両10と飛行車両20を返却する。以下、いくつかの使用シナリオを例に挙げる。
【0080】
シナリオ1:開始点Aで、ユーザーは、端末40を介して、地上車両10を呼び出すための呼び出し要求をサーバ30に送信する。サーバ30は、呼び出し要求に基づいて地上車両10をユーザーに割り当てる。これにより、ユーザーは、地上車両10で移動できる。目的地Cに到着した後、ユーザーは、地上車両の使用料を支払い、端末40を介して、地上車両10を返却するための返却要求をサーバ30に送信する。したがって、地上車両10が貸車人に返却される。
【0081】
シナリオ2:開始点Aで、ユーザーは、端末40を介して、地上車両10を呼び出すための呼び出し要求をサーバ30に送信する。サーバ30は、呼び出し要求に基づいて、ユーザーに地上車両10を割り当てる。これにより、ユーザーは地上車両10で移動できる。中間地点Bに到着したとき、交通渋滞または悪路状態があった場合、ユーザーは、端末40を介して、飛行車両20を呼び出すための呼び出し要求をサーバ30に送信する。サーバ30は、呼び出し要求に基づいて、飛行車両20をユーザーに割り当てる。その後、飛行車両20は、地上車両10の着陸プラットフォーム13上を飛行し、地上車両10の着陸プラットフォーム13に着陸する。したがって、ユーザーは地上車両10から飛行車両20に乗り換えることができ、飛行車両20によって走行を続行する。飛行車両20に乗り換えた後、ユーザーは、地上車両10の使用料を支払い、端末40を介して、地上車両10を返却するための返却要求をサーバ30に送信する。これにより、地上車両10が貸車者に返却される。目的地Cに到着した後、ユーザーは、飛行車両20の使用料を支払い、端末40を介して、飛行車両20を返却するための返却要求をサーバ30に送信して、飛行車両20は貸車者に返却される。
【0082】
シナリオ3:開始点Aで、ユーザーは、端末40を介して、飛行車両20を呼び出すための呼び出し要求をサーバ30に送信し、サーバ30は、呼び出し要求に基づいて、ユーザーに飛行車両20を割り当てる。目的地Cに到着した後、ユーザーは、飛行車両の使用料を支払い、端末40を介して、飛行車両20を返却するための返却要求をサーバ30に送信する。これにより、飛行車両20が貸車者に返却される。
【0083】
シナリオ4:開始点Aで、ユーザーは端末40を介して、飛行車両20を呼び出すための呼び出し要求をサーバ30に送信する。サーバ30は、呼び出し要求に基づいて、ユーザーに飛行車両20を割り当てる。中間地点Bに到着したときに、道路状況が良くなり、渋滞がなければ、端末を介して、地上車両10を呼び出すための呼び出し要求をサーバ30に送信する。サーバ30は、呼び出し要求に基づいて地上車両10をユーザーに割り当て、飛行車両20は、地上車両10の着陸プラットフォーム13に着陸する。これにより、ユーザーは飛行車両20から地上車両10に乗り換えることができ、地上車両10で走行を続行する。地上車両10に乗り換えた後、ユーザーは、飛行車両20の使用料を支払い、端末40を介して、飛行車両20を返却するための返却要求をサーバ30に送信し、飛行車両20は貸車者に返却される。目的地Cに到着した後、ユーザーは、地上車両10の使用料を支払い、端末40を介して、地上車両10を返却するための返却要求をサーバ30に送信し、地上車両10は貸車者に返却される。
【0084】
シナリオ5:開始点Aで、ユーザーは、地上車両10を貸車人から直接リースし、地上車両10で走行する。中間地点Bに到着したときに、交通渋滞または悪路状態があった場合、ユーザーは、端末40を介して、飛行車両20を呼び出すための呼び出し要求をサーバ30に送信し、サーバ30は呼び出し要求に基づいて、飛行車両20をユーザーに割り当てる。その後、飛行車両20は上空を飛行して、地上車両10の着陸プラットフォーム13に着陸する。これにより、ユーザーは、地上車両10から飛行車両20に乗り換えられ、飛行車両20によって走行を続行する。飛行車両20に乗り換えた後、ユーザーは、地上車両10の使用料を支払い、端末40を介して、地上車両10を返却するための返却要求をサーバ30に送信して、地上車両10が貸車者に返却される。目的地Cに到着した後、ユーザーは、飛行車両20の使用料を支払い、端末40を介して、飛行車両20を返却するための返却要求をサーバ30に送信して、飛行車両20が貸車者に返却される。
【0085】
シナリオ6:開始点Aで、ユーザーは、飛行車両20を貸車人から直接リースし、飛行車両20によって走行する。中間地点Bに到着したとき、道路状況が良くなり、交通渋滞がなければ、ユーザーは、端末40を介して、地上車両10を呼び出すための呼び出し要求をサーバ30に送信する。サーバ30は、呼び出し要求に基づいて地上車両10をユーザーに割り当て、飛行車両20は、地上車両10の着陸プラットフォーム13に着陸する。これにより、ユーザーは、飛行車両20から地上車両10に乗り換えられて、地上車両10で走行を続行する。地上車両10に乗り換えた後、ユーザーは、飛行車両20の使用料金を支払い、端末40を介して、飛行車両20を返却するための返却要求をサーバ30に送信し、飛行車両20は貸車者に返却される。目的地Cに到着した後、ユーザーは、地上車両10の使用料を支払い、端末40を介して地上車両10を返却するための返却要求をサーバ30に送信して、地上車両10は貸車者に返却される。
【0086】
このように、ユーザーは、実際のニーズに応じて、地上車両10または飛行車両20による走行モードを柔軟に選択することができる。例えば、ユーザーは、まず地上車両10で走行し、次に飛行車両20に乗り換え、後に再び地上車両10に戻り、最終的に飛行車両20に乗り換えて目的地に到着する。
【0087】
(第3実施形態)
本発明の第3実施形態では、飛行車の共有方法が提供される。本発明の方法には、以下のステップが含まれている。
【0088】
S101:端末40は、地上車両10を呼び出すための第1呼び出し要求をサーバ30に送信する。また、端末40は、第1位置情報をサーバ30に送信する。
【0089】
具体的には、端末40は、スマートフォン、タブレットコンピュータ、ウェアラブルデバイス、または他の電子デバイスであり得る。端末40には、地上車両10および飛行車両20をリースするためのクライアント端末(すなわち、応用プログラム)を事前にインストールすることができ、これにより、ユーザーは、クライアント端末を使用して、地上車両10または飛行車両20を呼び出すための呼び出し要求をサーバ30に送ることができる。
【0090】
ユーザーは走行する必要があるとき、道路状況が良好であれば、走行コストを削減するために、地上車両10による走行を優先すべきである。これにより、ユーザーは、端末40を介して、地上車両10を呼び出すための第1呼び出し要求をサーバ30に送信する。この際、第1位置情報も端末40によってサーバ30に送信される。ここで、第1位置情報は、端末40がサーバ30に最初の呼び出し要求を送信するときのユーザーの場所、または、端末40がサーバ30に最初の呼び出し要求を送信するときにユーザーに指定される特定の場所である。
【0091】
S103:サーバ30は、第1呼要求に基づいて、利用可能な地上車両10をユーザーに割り当てる。
【0092】
具体的には、サーバ30は、第1呼び出し要求を受信した後、第1呼び出し要求に基づいて、利用可能な地上車両10をユーザーに割り当てる。第1呼び出し要求では、ユーザーは、呼び出される地上車両10の性能要件を指定することができ、例えば、放電容量、1列の座席または2列の座席などである。これにより、ユーザーは、最初の呼び出し要求に基づいて、ユーザーに適した地上車両10を割り当てることができる。
【0093】
さらに、ユーザーに地上車両10を割り当てる際に、サーバ30は、受信した第1位置情報に基づいて、第1位置に最も近い地上車両駐車場からユーザーに利用可能な地上車両10を割り当てることができる。これにより、操作効率を改善するとともに、運営コストを削減し、ユーザーの待ち時間を短縮することができる。
【0094】
S105:サーバ30は、割り当てられた地上車両10に第1位置情報を送信する。
【0095】
S107:割り当てられた地上車両10は、第1位置情報に基づいて第1位置に移動するので、ユーザーは地上車両10によって走行することができる。
【0096】
具体的には、サーバ30は、利用可能な地上車両10をユーザーに割り当てた後、割り当てられた地上車両10に、受信した第1位置情報を送信する。これにより、割り当てられた地上車両10は、第1位置情報に基づいて第1位置に移動できる。
【0097】
好ましくは、割り当てられた地上車両10は、自動的に運転することができ、または任意に、自動的におよび手動的に運転することもできる。割り当てられた地上車両10が第1位置情報を受信した後、走行制御装置17は、第1位置情報に基づいてナビゲーション経路を自動的に生成し、ナビゲーション経路に沿って自動的に第1位置に運転するように地上車両10を制御することができる。さらに、ユーザーが地上車両10で走行するとき、ユーザーは所望の目的地を入力するだけでよく、地上車両10は自動的に運転でき、ユーザーは地上車両10を手動で制御する必要がないので、運転は非常に便利である。
【0098】
地上車両10は第1測位モジュール19を有するので、第1測位モジュール19は、リアルタイムで地上車両10の位置情報を取得することができる。その後、地上車両10の位置情報は、リアルタイムでサーバ30に送信される。これにより、地上車両10が第1位置に移動する過程で、地上車両10は、第1通信モジュール18を介してその位置情報をサーバ30に送信することができる。サーバ30は、地上車両10の位置情報を受信した後、地上車両10の位置情報を端末40に送信する。地上車両10を呼び出した後、ユーザーは、常に端末40を介して、割り当てられた地上車両10の現在位置を把握することができる。
【0099】
ユーザーは、地上車両10に乗ることにより目的地に到着した後、地上車両10を返却することができる。したがって、この方法はさらに以下のステップを含む。
【0100】
S109:端末40は、地上車両10を返却するための返却要求をサーバ30に送信する。
【0101】
S111:サーバ30は、車両の返却要求および地上車両10の現在位置情報に基づいて、地上車両10を返却するための地上車両駐車場を選択する。その後、サーバ30は、地上車両駐車場の位置情報を地上車両10に送信する。
【0102】
S113:地上車両10は、地上車両駐車場の位置情報に基づいて、選択された地上車両駐車場に戻る。
【0103】
具体的には、ユーザーは、地上車両10で目的地に到着した後、端末40を介して、地上車両10を返却するための返却要求をサーバ30に送信する。ここで、地上車両10は、第1測位モジュール19を有するので、第1測位モジュール19は、地上車両10の位置情報をリアルタイムで取得することができる。その後、地上車両10の位置情報は、第1通信モジュール18を介してリアルタイムでサーバ30に送信される。したがって、サーバ30は、車両の返却要求および地上車両10の現在位置情報に基づいて、地上車両10を返却するための地上車両駐車場を選択することができる。例えば、サーバ30は、地上車両10を返却するために、地上車両10に最も近い地上車両駐車場を選択し、地上車両駐車場の位置情報を地上車両10に送信することができる。これにより、地上車両10は、地上車両駐車場の位置情報に基づいて、選択された地上車両駐車場に戻る。
【0104】
一般に、地上車両10のリース事業を運営する貸車者は、全国の様々な異なる場所に複数の地上車両駐車場を設置している。地上車両10で長距離を走行した後、ユーザーが目的地に到着すると、地上車両10をユーザーに最も近い地上車両駐車場に返却することができる。このように、地上車両10を近くの地上車両駐車場に返却することが可能となり、地上車両10は、元の地上車両駐車場に返却する必要がないので、作業効率が向上される。
【0105】
(第4実施形態)
本発明の第4実施形態では、飛行車の共有方法が提供されている。この方法は、次のステップを含む。
S201:端末40は、地上車両10を呼び出すための第1呼び出し要求をサーバ30に送信し、第1位置情報もサーバ30に送信する。
S203:サーバ30は、第1呼要求に基づいて、利用可能な地上車両10をユーザーに割り当てる。
S205:サーバ30は、割り当てられた地上車両10に第1位置情報を送信する。
S207:割り当てられた地上車両10は、第1位置情報に基づいて、第1位置に移動することで、ユーザーは地上車両10によって走行できる。
【0106】
上記ステップS201、S203、S205、S207は、それぞれの詳細については、ステップS101、S103、S105、およびS107を参照すればよく、明細書の明確性を確保するために、ここでの重複な説明を省略する。
【0107】
S209:端末40は、飛行車両20を呼び出すための第2呼び出し要求をサーバ30に送信し、第2位置情報もサーバ30に送信する。
【0108】
具体的には、地上車両10によりユーザーが中間地点に到着したとき、交通渋滞または悪路状態があった場合、ユーザーは、端末40を介して、飛行車両20を呼び出すための第2呼び出し要求をサーバ30に送信する。この際、第2位置情報も端末40によってサーバ30に送信される。この第2位置情報は、端末40がサーバ30に第2呼び出し要求を送信するときのユーザー位置、または、端末40がサーバ30に第2呼び出し要求を送信するときにユーザーによって指定される特定の位置である。
【0109】
S211:サーバ30は、第2呼び出し要求に基づいて、利用可能な飛行車両20をユーザーに割り当てる。
【0110】
具体的には、サーバ30は、第2呼び出し要求を受信した後、第2呼び出し要求に基づいて、利用可能な飛行車両20をユーザーに割り当てる。第2呼び出し要求では、ユーザーは、飛行速度、一列の座席または二列の座席など、呼び出された飛行車両20の性能要件を指定できる。これにより、サーバ30は、第2呼び出し要求に基づいて、ユーザーに適した飛行車両20を割り当てることができる。
【0111】
さらに、サーバ30は、受信した第2位置情報に基づいてユーザーに飛行車両20を割り当てる際に、第2位置に最も近い飛行車両駐車場からユーザーに利用可能な飛行車両20を割り当てることができる。これにより、操作効率を改善するとともに、運営コストを削減し、ユーザーの待ち時間を短縮することができる。
【0112】
S213:サーバ30は、割り当てられた飛行車両20に第2位置情報を送信する。
【0113】
S215:割り当てられた飛行車両20は、第2位置情報に基づいて第2位置に飛行し、地上車両10の着陸プラットフォーム13に着地する。このように、ユーザーは、地上車両10から飛行車両20に乗り換えて、飛行車両20によって走行を続行する。
【0114】
具体的には、サーバ30は、利用可能な飛行車両20をユーザーに割り当てた後、割り当てられた飛行車両20に、受信した第2位置情報を送信する。これにより、割り当てられた飛行車両20は、第2位置情報に基づいて第2位置に飛行できる。飛行車両20が地上車両10の上を飛行した後、飛行車両20は地上車両10の着陸プラットフォーム13に着陸するので、ユーザーは地上車両10から飛行車両20に乗り換えて、飛行車両20によって走行を続行する。
【0115】
地上車両10は、第1測位モジュール19を有するので、第1測位モジュール19は、リアルタイムで地上車両10の位置情報を取得することができる。そして、地上車両10の位置情報は、第1通信モジュールを介してリアルタイムでサーバ30へ送信される。ここで、飛行車両20が地上車両10を正確に見つけることを保証するために、地上車両10の位置情報は、サーバ30を介してリアルタイムで連続的に飛行車両20へ送信される。このように、端末40がサーバ30に第2呼び出し要求を送信した後、地上車両10が第2位置と異なる新しい位置に移動した場合でも、飛行車両20は、地上車両の位置10の現在位置に基づいて、地上車両10を正確に見つけることができる。
【0116】
好ましくは、割り当てられた飛行車両20は、自動的に運転することができ、若しくは任意的に、自動的におよび手動的に運転することができる。飛行車両20が第2位置情報を受信した後、飛行制御装置27は、第2位置情報に基づいて誘導経路を自動的に生成し、飛行車両20を制御して誘導経路に沿って第2位置に自動運転することができる。さらに、ユーザーが飛行車両20で走行するとき、ユーザーは所望の目的地を入力するだけでよく、飛行車両20は自動的に飛行でき、ユーザーは、飛行車両20を手動で制御する必要がないので、操縦は非常に便利である。
【0117】
飛行車両20は、第2測位モジュール29を有するので、第2測位モジュール29は、リアルタイムで飛行車両20の位置情報を取得することができる。ここで、飛行車両20の位置情報は、第2通信モジュール28によりリアルタイムでサーバ30へ送信される。これにより、飛行車両20が第2位置に飛行する過程で、飛行車両20は、第2通信モジュール28を介して、その位置情報をサーバ30に送信することができる。サーバ30は、飛行車両20の位置情報を受信した後、この飛行車両20の位置情報を端末40に送信する。したがって、飛行車両20を呼び出した後、ユーザーは常に、端末40を介して、割り当てられた飛行車両20の現在位置を把握することができる。
【0118】
ユーザーが地上車両10から飛行車両20に乗り換えた後、地上車両10はアイドリング状態にあり、ユーザーは、まず地上車両10を返却することを選択できる。したがって、この方法はさらに以下のステップを含む。
【0119】
S217:端末40は、地上車両10を返却するための返却要求をサーバ30に送信する。
【0120】
S219:サーバ30は、返却要求および地上車両10の現在位置情報に基づいて、地上車両10を返却するための地上車両駐車場を選択する。サーバ30は、地上車両駐車場の位置情報を地上車両10に送信する。
【0121】
S221:地上車両10は、地上車両駐車場の位置情報に基づいて、選択された地上車両駐車場に戻る。
【0122】
上記ステップS217、S219、およびS221は、それぞれの詳細については、上記ステップS109、S111、およびS113を参照すればよく、明細書の明確性を確保するためにここでの重複な説明を省略する。
【0123】
ユーザーが飛行車両20に乗って目的地に到着した後、ユーザーは飛行車両20を返却することができる。したがって、この方法はさらに以下のステップを含む。
【0124】
S223:端末40は、飛行車両20を返却するための返却要求をサーバ30に送信する。
【0125】
S225:サーバ30は、返却要求および飛行車両20の現在位置情報に基づいて、飛行車両20を返却するための飛行車両駐車場を選択する。サーバ30は、飛行車両駐車場の位置情報を飛行車両20に送信する。
【0126】
S227:飛行車両20は、飛行車両駐車場の位置情報に基づいて、選択された飛行車両駐車場に戻る。
【0127】
具体的には、ユーザーは、飛行車両20で目的地に到着した後、端末40を介して、飛行車両20を返却するための返却要求をサーバ30に送信する。飛行車両20は、第2測位モジュール29を有するので、この第2測位モジュール29は、飛行車両20の位置情報をリアルタイムで取得することができる。飛行車両20の位置情報は、第2通信モジュール28を介してリアルタイムでサーバ30へ送信される。したがって、サーバ30は、返却要求および飛行車両20の現在位置情報に基づいて、飛行車両20を返却するための飛行車両駐車場を選択する。例えば、サーバ30は、飛行車両20を返却するため、飛行車両20に最も近い飛行車両駐車場を選択し、飛行車両駐車場の位置情報を飛行車両20に送信する。これにより、飛行車両20は、飛行車両駐車場の位置情報に基づいて、選択された飛行車両駐車場に戻る。
【0128】
一般に、飛行車両20のリース事業を運営する貸車者は、全国の様々な異なる場所に複数の飛行車両駐車場を設置している。飛行車両20で長距離を走行した後、ユーザーが目的地に到着すると、飛行車両20は、返却の際にユーザーに最も近い飛行車両駐車場に返却することができる。これにより、飛行車両20を近くの飛行車両駐車場に返却ことが容易にでき、また、飛行車両20は、元の飛行車両駐車場に戻る必要がないので、作業効率が向上される。
【0129】
(第5実施形態)
本発明の第5の実施形態では、飛行車の共有方法が提供されている。この方法は、次のステップを含む。
【0130】
S301:端末40は、飛行車両20を呼び出すための第1呼び出し要求をサーバ30に送信し、第1位置情報もサーバ30に送信する。
【0131】
具体的には、端末40は、スマートフォン、タブレットコンピュータ、ウェアラブルデバイス、または他の電子デバイスであり得る。端末40には、地上車両10および飛行車両20をリースするためのクライアント端末(すなわち、応用プログラム)を事前にインストールすることができる。これにより、ユーザーは、クライアント端末を使用して、飛行車両20または地上車両10を呼び出すための呼び出し要求をサーバ30に送信することができる。
【0132】
ユーザーは旅する必要があり、道路状況が良好ではない場合、飛行車両20での旅を優先すべきである。これにより、ユーザーは、端末40を介して、飛行車両20を呼び出すための第1呼び出し要求をサーバ30に送信する。同時に、第1位置情報も、端末40によってサーバ30へ送信される。ここで、第1位置情報は、端末40がサーバ30に第1呼び出し要求を送信するときのユーザー位置であり、或いは、端末40がサーバ30に第1呼び出し要求を送信するときにユーザーによって指定される特定の場所である。
【0133】
S303:サーバ30は、第1呼び出し要求に基づいて、利用可能な飛行車両20をユーザーに割り当てる。
【0134】
具体的には、サーバ30は、第1呼び出し要求を受信した後、この第1呼び出し要求に基づいて、利用可能な飛行車両20をユーザーに割り当てる。第1呼び出し要求では、呼び出された飛行車両20の性能、例えば飛行速度、座席の単一列または座席の二列などを指定することができる。これにより、サーバ30は、第1呼び出し要求に基づいて、ユーザーに適した飛行車両20を割り当てることができる。
【0135】
S305:サーバ30は、割り当てられた飛行車両20に第1位置情報を送信する。
【0136】
S307:割り当てられた飛行車両20は、第1位置情報に基づいて、第1位置に飛行するので、ユーザーは飛行車両20によって走行する。
【0137】
具体的には、利用可能な飛行車両20をユーザーに割り当てた後、サーバ30は、受信した第1位置情報を、割り当てられた飛行車両20に送信する。これにより、割り当てられた地上車両10は、第1位置情報に基づいて、第1位置に飛行する。
【0138】
好ましくは、割り当てられた飛行車両20は、自動的に運転することができ、或いは任意的に、自動的におよび手動的に運転することができる。飛行車両20が第1位置情報を受信した後、飛行制御装置27は、第1位置情報に基づいて、ナビゲーション経路を自動的に生成し、ナビゲーション経路に沿って自動的に第1位置に運転するように飛行車両20を制御することができる。さらに、ユーザーが飛行車両20で走行するとき、ユーザーは所望の目的地を入力するだけでよく、飛行車両20は自動的に飛行でき、ユーザーは飛行車両20を手動で制御する必要がないので、運転は非常に便利である。
【0139】
飛行車両20は、第2測位モジュール29を有するので、この第2測位モジュール29は、リアルタイムで飛行車両20の位置情報を取得する。そして、飛行車両20の位置情報は、第2通信モジュール28を介してリアルタイムでサーバ30へ送信される。これにより、飛行車両20が第1位置に飛行する過程で、飛行車両20は、第2通信モジュール28を介してその位置情報をサーバ30に送信することができる。サーバ30は、飛行車両20の位置情報を受信した後、飛行車両20の位置情報を端末40に送信する。したがって、飛行車両20を呼び出した後、ユーザーは常に、端末40を介して、割り当てられた飛行車両20の現在位置を把握することができる。
【0140】
ユーザーは、飛行車両20に乗って目的地に到着した後、飛行車両20を返却することができる。したがって、この方法はさらに以下のステップを含む。
【0141】
S309:端末40は、飛行車両20を返却するための返却要求をサーバ30に送信する。
【0142】
S311:サーバ30は、返却要求および飛行車両20の現在位置情報に基づいて、飛行車両20を返却するための飛行車両駐車場を選択し、さらにサーバ30は、飛行車両駐車場の位置情報を飛行車両20に送信する。
【0143】
S313:飛行車両20は、飛行車両駐車場の位置情報に基づいて、選択された飛行車両駐車場に戻る。
【0144】
上記ステップS309、S311、S313は、それぞれの詳細について、上記ステップS223、S225、S227を参照すればよく、明細書の明確性を確保するために、ここでの重複な説明を省略する。
【0145】
(第6実施形態)
本発明における第6の実施形態では、飛行車の共有方法が提供されている。この方法は、次のステップを含む。
【0146】
S401:端末40は、飛行車両20を呼び出すための第1呼び出し要求をサーバ30に送信し、さらに端末40は、第1位置情報をサーバ30に送信する。
【0147】
S403:サーバ30は、第1呼び出し要求に基づいて、利用可能な飛行車両20をユーザーに割り当てる。
【0148】
S405:サーバ30は、割り当てられた飛行車両20に第1位置情報を送信する。
【0149】
S407:割り当てられた飛行車両20は、第1位置情報に基づいて第1位置に飛行する。これにより、ユーザーは、飛行車両20によって走行できる。
【0150】
上記ステップS401、S403、S405、S407は、それぞれの詳細については、上記ステップS301、S303、S305、S307を参照すればよく、明細書の明確性を確保するために、ここでの重複な説明を省略する。
【0151】
S409:端末40は、地上車両10を呼び出すための第2呼び出し要求をサーバ30に送信する。そして、端末40は、第2位置情報をサーバ30に送信する。
【0152】
具体的には、ユーザーが飛行車両20によって一定時間にわたり飛行した後、道路状態が良好になり渋滞がない場合、ユーザーは端末40を介して、地上車両10を呼び出すための第2呼び出し要求をサーバに送信する。一方、第2位置情報は、端末40によってサーバ30へ送信される。ここで、第2位置情報は、端末40がサーバ30に第2呼び出し要求を送信するときのユーザー位置であり、或いは端末40が第2呼び出し要求をサーバ30に送信するときにユーザーによって指定される特定の場所である。
【0153】
S411:サーバ30は、第2呼び出し要求に基づいて、利用可能な地上車両10をユーザーに割り当てる。
【0154】
具体的には、サーバ30は、第2呼要求を受信した後、第2呼要求に基づいて、利用可能な地上車両10をユーザーに割り当てる。第2呼び出し要求では、ユーザーは、放電容量、一列の座席または二列の座席など、呼び出された地上車両10の性能要件を指定することができ、その結果、サーバ30は地上車両10を割り当てることができる。割り当てられた地上車両10は、第2呼び出し要求に基づいてユーザーに適している。
【0155】
S413:サーバ30は、割り当てられた地上車両10に第2位置情報を送信する。
【0156】
S415:割り当てられた地上車両10は、第2位置情報に基づいて、第2位置に移動し、飛行車両20は、地上車両10の着陸プラットフォーム13に着地するので、ユーザーは飛行車両20から地上車両10に乗り換えて、地上車両10で走行を続行できる。
【0157】
具体的には、サーバ30は、利用可能な地上車両10をユーザーに割り当てた後、割り当てられた地上車両10に、受信した第2位置情報を送信する。これにより、割り当てられた地上車両10は、第2位置情報に基づいて、第2位置に移動する。地上車両10が第2位置に移動した後、飛行車両20は地上車両10の着陸プラットフォーム13に着陸するので、ユーザーは飛行車両20から地上車両10に乗り換えて、地上車両10での走行を続行する。
【0158】
飛行車両20は、第2測位モジュール29を有するので、第2測位モジュール29は、リアルタイムで飛行車両20の位置情報を取得できる。そして、飛行車両20の位置情報は、第2通信モジュール28を介してリアルタイムでサーバ30に送信される。ここで、地上車両10が飛行車両20を正確に見つけることを確保するために、飛行車両20の位置情報は、サーバ30を介してリアルタイムで継続的に地上車両10に送信される。このように、端末40がサーバ30に第2呼び出し要求を送信した後、飛行車両20が第2位置とは異なる新しい位置に移動した場合でも、地上車両10は飛行車両20の現在位置に基づいて飛行車両20を正確に見つけることができる。
【0159】
ユーザーが飛行車両20から地上車両10に移動した後、飛行車両20はアイドリング状態にあり、ユーザーはまず飛行車両20を返却することを選択できる。したがって、この方法にはさらに以下のステップが含まれている。
【0160】
S417:端末40は、飛行車両20を返却するための返却要求をサーバ30に送信する。
【0161】
S419:サーバ30は、返却要求および飛行車両20の現在位置情報に基づいて、飛行車両20を返却するための飛行車両駐車場を選択し、サーバ30は、飛行車両駐車場の位置情報を飛行車両20に送信する。
【0162】
S421:飛行車両20は、飛行車両駐車場の位置情報に基づいて、選択された飛行車両駐車場に返却される。
【0163】
上記ステップS417、S419、S421は、それぞれの詳細については、上記ステップS223、S225、S227を参照すればよく、明細書の明確性を確保するために、ここでの重複な説明を省略する。
【0164】
ユーザーが地上車両10に乗って目的地に到着した後、ユーザーは地上車両10を返却することができる。したがって、この方法はさらに以下のステップを含む。
【0165】
S423:端末40は、地上車両10を返却するための返却要求をサーバ30に送信する。
【0166】
S425:サーバ30は、返却要求と地上車両10の現在位置情報に基づいて、地上車両10を返却するための地上車両駐車場を選択し、さらにサーバ30は、地上車両駐車場の位置情報を地上車両10に送信する。
【0167】
S427:地上車両10は、地上車両駐車場の位置情報に基づいて、選択された地上車両駐車場に戻る。
【0168】
上記ステップS423、S425、S427は、それぞれの詳細については、上記ステップS109、S111、S113を参照すればよく、明細書の明確性を確保するために、ここでの重複な説明を省略する。
【0169】
(第7実施形態)
本発明の第7実施形態では、飛行車の共有方法が提供されている。この方法には以下のステップが含まれる。
【0170】
S501:ユーザーは、地上車両10に乗って第1位置から移動する。
【0171】
具体的には、ユーザーが地上車両10を所有している場合、ユーザーは自分の地上車両10で走行することができる。第1位置は、ユーザーの地上車両10の駐車場である。
【0172】
あるいは、地上車両10は、支払いの前提の下で共有されてもよい。これにより、ユーザーは、最も近い地上車両駐車場に直接に行き、地上車両10を賃貸人からリースすることができる。ここで、第1位置は、地上車両10を駐車するための地上車両駐車場である。
【0173】
S503:端末40は、飛行車両20を呼び出すための呼び出し要求をサーバ30に送信し、さらに端末40は、第2位置情報をサーバ30に送信する。
【0174】
具体的には、ユーザーが地上車両10によって中間地点に到着したときに、交通渋滞または悪路状況があった場合、ユーザーは、端末40を介して、飛行車両20を呼び出すための呼び出し要求をサーバ30に送信する。一方、第2位置情報も端末40によってサーバ30に送信される。ここで、第2位置情報は、端末40がサーバ30に呼び出し要求を送信するときのユーザー位置であり、或いは、端末40がサーバ30に呼び出し要求を送信するときにユーザーによって指定される特定の位置である。
【0175】
S505:サーバ30は、呼び出し要求に基づいて、ユーザーに利用可能な飛行車両20を割り当てる。
【0176】
S507:サーバ30は、割り当てられた飛行車両20に第2位置情報を送信する。
【0177】
S509:割り当てられた飛行車両20は、第2位置情報に基づいて、第2位置に飛行する。そして、飛行車両20は、地上車両10の着陸プラットフォーム13に着陸し、ユーザーは地上車両10から飛行車両20に乗り換えて、飛行車両20によって走行を続行する。
【0178】
上記ステップS505、S507、S509は、それぞれの詳細については、上記ステップS211、S213、S215を参照すればよく、明細書の明確性を確保するために、ここでの重複な説明を省略する。
【0179】
ユーザーが地上車両10から飛行車両20に乗り換えた後、地上車両10はアイドリング状態にある。地上車両10が支払いにより共有された場合、ユーザーは、まず地上車両10を返却することを選択する。したがって、この方法にはさらに以下のステップが含まれる。
【0180】
S511:端末40は、地上車両10を返却するための返却要求をサーバ30に送信する。
【0181】
S513:サーバ30は、返却要求および地上車両10の現在位置情報に基づいて、地上車両10を返却するための地上車両駐車場を選択し、さらにサーバ30は、地上車両駐車場の位置情報を地上車両10に送信する。
【0182】
S515:地上車両10は、地上車両駐車場の位置情報に基づいて、選択された地上車両駐車場に戻る。
【0183】
上記ステップS511、S513、S515は、それぞれの詳細については、上記ステップS109、S111、S113を参照すればよく、明細書の明確性を確保するために、ここでの重複な説明を省略する。
【0184】
ユーザーが飛行車両20で目的地に到着した後、ユーザーは飛行車両20を返却することができる。したがって、この方法はさらに以下のステップを含む。
【0185】
S517:端末40は、飛行車両20を返却するための返却要求をサーバ30に送信する。
【0186】
S519:サーバ30は、返送要求および飛行車両20の現在位置情報に基づいて、飛行車両20を返却するための飛行車両駐車場を選択する。さらに、サーバ30は、飛行車両駐車場の位置情報を飛行車両20に送信する。
【0187】
S521:飛行車両20は、飛行車両駐車場の位置情報に基づいて、選択された飛行車両駐車場に戻る。
【0188】
上記ステップS517、S519、S521は、それぞれの詳細については、上記ステップS223、S225、S227を参照すればよく、明細書の明確性を確保するために、ここでの重複な説明を省略する。
【0189】
(第8実施形態)
本発明における第8の実施形態では、飛行車の共有方法が提供されている。この方法には、以下のステップが含まれる。
【0190】
S601:ユーザーは、飛行車両20に乗って第1位置から移動する。
【0191】
具体的には、ユーザーが飛行車両20を所有している場合、ユーザーは自分の飛行車両20で走行する。ここで、第1位置は、ユーザーの飛行車両20の駐車場である。
【0192】
あるいは、飛行車両20は支払いの前提の下で共有され得る。これにより、ユーザーは、最も近い飛行車両の駐車場に直接に行って、貸車人から飛行車両20をリースすることができる。ここで、第1位置は、飛行車両20を駐車するための飛行車両駐車場である。
【0193】
S603:端末40は、地上車両10を呼び出すための呼び出し要求をサーバ30に送信し、さらに端末40は、第2位置情報をサーバ30に送信する。
【0194】
具体的には、ユーザーが飛行車両20で一定時間飛行した後、道路状況が良好になり渋滞がなければ、ユーザーは、端末40を介して、地上車両10を呼び出すための呼び出し要求をサーバ30に送信する。一方、第2位置情報は、端末40によってサーバ30に送信される。ここで、第2位置情報は、端末40がサーバ30に呼び出し要求を送信するときのユーザー位置であり、或いは端末40が呼び出し要求をサーバ30に送信するときにユーザーに指定される特定の場所である。
【0195】
S605:サーバ30は、呼び出し要求に基づいて、利用可能な地上車両10をユーザーに割り当てる。
【0196】
S607:サーバ30は、割り当てられた地上車両10に第2位置情報を送信する。
【0197】
S609:第2位置情報に基づいて、割り当てられた地上車両10が第2位置に移動し、飛行車両20が地上車両10の着陸プラットフォーム13に着陸する。その後、ユーザーは飛行車両20から地上車両10に乗り換えて、地上車両10で走行を続行する。
【0198】
上記ステップS605、S607、S609は、それぞれの詳細については、上記ステップS411、S413、S415を参照すればよく、明細書の明確性を確保するために、ここでの重複な説明を省略する。
【0199】
ユーザーが飛行車両20から地上車両10に乗り換えた後、飛行車両20はアイドリング状態にある。飛行車両20が支払いにより共有された場合、ユーザーは、まず飛行車両20を返却することを選択する。したがって、この方法にはさらに以下のステップが含まれる。
【0200】
S611:端末40は、飛行車両20を返却するための返却要求をサーバ30に送信する。
【0201】
S613:サーバ30は、返却要求および飛行車両20の現在位置情報に基づいて、飛行車両20を返却するための飛行車両駐車場を選択し、さらにサーバ30は、飛行車両駐車場の位置情報を飛行車両20に送信する。
【0202】
S615:飛行車両20は、飛行車両駐車場の位置情報に基づいて、選択された飛行車両駐車場に戻る。
【0203】
上記ステップS611、S613、S615は、それぞれの詳細については、上記ステップS223、S225、S227を参照すればよく、明細書の明確性を確保するために、ここでの重複な説明を省略する。
【0204】
ユーザーは、地上車両10に乗って目的地に到着した後、地上車両10を返却することができる。したがって、この方法はさらに以下のステップを含む。
【0205】
S617:端末40は、地上車両10を返却するための返却要求をサーバ30に送信する。
【0206】
S619:サーバ30は、返却要求および地上車両10の現在位置情報に基づいて、地上車両10を返却するための地上車両駐車場を選択し、さらにサーバ30は、地上車両駐車場の位置情報を地上車両10に送信する。
【0207】
S621:地上車両10は、地上車両駐車場の位置情報に基づいて、選択された地上車両駐車場に戻る。
【0208】
上記ステップS617、S619、S621は、それぞれの詳細については、上記ステップS109、S111、S113を参照すればよく、明細書の明確性を確保するために、ここでの重複な説明を省略する。
【0209】
上記説明から判るように、本発明は、モジュラー飛行車、飛行車システム、および飛行車両の共有方法を提供している。交通が妨げられておらず、道路状況が良好な場合、ユーザーは地上車両で移動することを選択できる。交通渋滞があった場合、または道路の状態が良くない場合、ユーザーは飛行車両で移動することを選択できる。さらに、ユーザーは地上車両と飛行車両との間を移動できるようになっている。地上車両に着陸プラットフォームが形成されていることから、飛行車両は地上車両の着陸プラットフォームに着陸することができ、ユーザーは、地上車両と飛行車両との間を移動しやすくなっている。そのため、交通渋滞の場合でも、ユーザーは目的地にすばやく到着できる。また、飛行車両は独立して飛行できるので、飛行車両はシャーシを設計する必要がなく、また、地上車両は飛行中の空力要件を設計時に考慮する必要もないので、飛行車両の実現可能性がより高くなる。さらに、地上車両と飛行車両を共有することにより、ユーザーに新しい旅の方法を提供し、ユーザーエクスペリエンスを向上させることができる。
【0210】
上記は、本発明の実施形態に過ぎず、本発明に対する制限と見なされるべきではない。本発明は、上記の実施形態で開示されたが、これは、本発明を限定するわけではない。本発明と関連のある当業者にとって、変形および改良が容易であることに留意されたい。したがって、本発明の範囲は、添付の特許請求の範囲によって定義される。