特許第6798537号(P6798537)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 味の素株式会社の特許一覧

<>
  • 特許6798537-回路基板及びその製造方法 図000005
  • 特許6798537-回路基板及びその製造方法 図000006
  • 特許6798537-回路基板及びその製造方法 図000007
  • 特許6798537-回路基板及びその製造方法 図000008
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6798537
(24)【登録日】2020年11月24日
(45)【発行日】2020年12月9日
(54)【発明の名称】回路基板及びその製造方法
(51)【国際特許分類】
   H05K 1/11 20060101AFI20201130BHJP
   H05K 3/42 20060101ALI20201130BHJP
【FI】
   H05K1/11 N
   H05K3/42 610A
【請求項の数】9
【全頁数】37
(21)【出願番号】特願2018-203542(P2018-203542)
(22)【出願日】2018年10月30日
(62)【分割の表示】特願2014-158210(P2014-158210)の分割
【原出願日】2014年8月1日
(65)【公開番号】特開2019-12865(P2019-12865A)
(43)【公開日】2019年1月24日
【審査請求日】2018年11月29日
(73)【特許権者】
【識別番号】000000066
【氏名又は名称】味の素株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】特許業務法人酒井国際特許事務所
(72)【発明者】
【氏名】中村 茂雄
(72)【発明者】
【氏名】宮本 亮
【審査官】 ゆずりは 広行
(56)【参考文献】
【文献】 特開2010−129723(JP,A)
【文献】 特開2001−284821(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H05K 1/11
H05K 3/42
(57)【特許請求の範囲】
【請求項1】
導体層と該導体層を覆う絶縁層とを備え、該絶縁層から前記導体層の一部分を露出させるビアホールを備える回路基板であって、
前記絶縁層が、エポキシ樹脂、硬化剤及び無機充填材を含む樹脂組成物の硬化物であり、
前記導体層の表面の算術平均粗さが350nm以下であり、
前記ビアホールの深さが25μm以下であり、
前記ビアホールのトップ径(Z)が50μm以下であり、
前記ビアホールのトップ径(Z)と前記ビアホールの最小径(Y)と前記ビアホールの底部径(X)との関係が、Y/Z=0.7〜0.99及びY/X=0.7〜1(Z>Y)を満たしている、回路基板。
【請求項2】
前記硬化剤が、フェノール系硬化剤、ナフトール系硬化剤、活性エステル系硬化剤及びシアネートエステル系硬化剤からなる群から選択される1種以上である、請求項に記載の回路基板。
【請求項3】
前記硬化剤が、活性エステル系硬化剤を含む、請求項1又は2に記載の回路基板。
【請求項4】
前記最小径の位置が、前記ビアホールの深さを基準としたときに前記導体層寄りに位置している、請求項1〜のいずれか1項に記載の回路基板。
【請求項5】
前記導体層の表面の算術平均粗さが300nm以下である、請求項1〜のいずれか1項に記載の回路基板。
【請求項6】
前記導体層と前記絶縁層との密着強度が0.15kgf/cm以上である、請求項1〜のいずれか1項に記載の回路基板。
【請求項7】
前記導体層と前記絶縁層との密着強度が0.2kgf/cm以上である、請求項1〜のいずれか1項に記載の回路基板。
【請求項8】
前記ビアホールのトップ径(Z)が40μm以下である、請求項1〜のいずれか1項に記載の回路基板。
【請求項9】
請求項1〜のいずれか1項に記載の回路基板を備える半導体装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、回路基板及びその製造方法に関する。
【背景技術】
【0002】
電子機器に広く使用されている回路基板は、電子機器の小型化、高機能化のために、配線の微細化、高密度化が求められている。回路基板の製造方法としては、内層基板に絶縁層と導体層とを交互に積み重ねて多層配線構造を形成するビルドアップ方式による製造方法が知られている。
【0003】
ビルドアップ方式による回路基板の製造方法において、絶縁層は、例えば支持体と樹脂組成物層とを含む支持体付き樹脂シート等を用いて樹脂組成物層を内層基板に積層し、樹脂組成物層を熱硬化させることにより形成される。次いで、形成された絶縁層に穴あけ加工してビアホールが形成される(例えば、特許文献1参照。)。
【0004】
回路基板における電気信号の減衰の要因の一つとして、配線を含む導体層の表面粗度が大きいことが知られており、導体層の表面粗度が大きいことに起因する電気信号の減衰を抑制するためには、導体層の表面粗度をより小さくすることが望まれる。特に高周波の電気信号が用いられる場合においては導体層の表面粗度が大きいことによる伝送損失が顕著であり、サーバー向けなどの電気信号の高速伝送が求められるいわゆる高周波回路基板においては、特に導体層の表面粗度をより小さくすることが望まれる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2008−37957号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明者らは、上記の点に鑑みて導体層の表面粗度をより小さくし、この導体層を覆う絶縁層の厚さがより薄くされた回路基板の絶縁層に対し、レーザー照射によりビアホールを形成した場合、導体層の表面でレーザー光が反射、拡散することにより導体層の近傍の絶縁層が抉られて不可避的に抉れ部が形成されてしまい、特によりトップ径が小さいビアホールを形成した場合において顕著に、かかる抉れ部に起因して導体層、絶縁層にクラックが発生するなどの不具合が使用によって経時的に生じ得ることを見出した。
【0007】
従って、本発明の課題は、より薄い絶縁層を備える薄型の回路基板において、導体層の表面粗度をより小さくした場合であって、レーザーの照射により小径のビアホールを絶縁層に形成した場合であっても、クラックの発生等の使用による経時的な不具合が生じにくい回路基板を提供することにある。
【課題を解決するための手段】
【0008】
本発明者らは、上記課題につき鋭意検討した結果、上記課題が、回路基板の導体層と絶縁層との密着強度を0.15kgf/cm以上とし、ビアホールのトップ径(Z)とビアホールの最小径(Y)とビアホールの底部径(X)との関係が、Y/Z=0.7〜0.99、Y/X=0.7〜1(Z>Y)を満たすことで、上記課題を解決できることを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明は下記[1]〜[20]を提供する。
[1] 導体層と該導体層を覆う絶縁層とを備え、該絶縁層から前記導体層の一部分を露出させるビアホールを備える回路基板であって、
前記導体層の表面の算術平均粗さが350nm以下であり、
前記ビアホールの深さが30μm以下であり、
前記ビアホールのトップ径(Z)が50μm以下であり、
前記ビアホールのトップ径(Z)と前記ビアホールの最小径(Y)と前記ビアホールの底部径(X)との関係が、Y/Z=0.7〜0.99及びY/X=0.7〜1(Z>Y)を満たしている、回路基板。
[2] 前記最小径の位置が、前記ビアホールの深さを基準としたときに前記導体層寄りに位置している、[1]に記載の回路基板。
[3] 前記導体層の表面の算術平均粗さが300nm以下である、[1]又は[2]に記載の回路基板。
[4] 前記ビアホールの深さが25μm以下である、[1]〜[3]のいずれか1つに記載の回路基板。
[5] 前記導体層と前記絶縁層との密着強度が0.15kgf/cm以上である、[1]〜[4]のいずれか1つに記載の回路基板。
[6] 前記導体層と前記絶縁層との密着強度が0.2kgf/cm以上である、[1]〜[4]のいずれか1つに記載の回路基板。
[7] 前記ビアホールのトップ径(Z)が40μm以下である、[1]〜[6]のいずれか1つに記載の回路基板。
[8] 前記絶縁層が樹脂組成物の硬化物である、[1]〜[5]のいずれか1つに記載の回路基板。
[9] 前記ビアホールがレーザーを照射することにより形成されたビアホールである、[1]〜[8]のいずれか1つに記載の回路基板。
[10] [1]〜[9]のいずれか1つに記載の回路基板を備える半導体装置。
[11] 工程(A)プラスチックフィルム支持体と、該プラスチックフィルム支持体と接合している樹脂組成物層とを含むプラスチックフィルム支持体付き樹脂シートを、表面の算術平均粗さが350nm以下である導体パターンを含む導体層が設けられた配線基板の該導体層に接合する工程と、
工程(B)前記樹脂組成物層を熱硬化して、前記導体層上の厚さが30μm以下である絶縁層であって該絶縁層と前記導体層との密着強度が0.15kgf/cm以上である絶縁層を形成する工程と、
工程(C)前記プラスチックフィルム支持体側からレーザーを照射して、前記絶縁層にトップ径(Z)が50μm以下のビアホールであって、該ビアホールのトップ径(Z)と該ビアホールの最小径(Y)と該ビアホールの底部径(X)との関係が、Y/Z=0.7〜0.99及びY/X=0.7〜1(Z>Y)を満たす前記ビアホールを形成する工程と、
工程(D)デスミア処理を行う工程と、
工程(E)前記プラスチックフィルム支持体を前記絶縁層から剥離する工程と、
工程(F)前記絶縁層にさらなる導体層を形成する工程と
を含む、回路基板の製造方法。
[12] 前記工程(C)において、前記ビアホールが該ビアホールの深さを基準としたときに最小径(Y)の位置が前記導体層寄りに位置するように形成される、[11]に記載の回路基板の製造方法。
[13] 前記工程(D)のデスミア処理が、湿式デスミア処理である、[11]又は[12]に記載の回路基板の製造方法。
[14] 前記工程(F)が、前記絶縁層の表面に乾式めっきにより金属層を形成し、該金属層の表面に湿式めっきにより前記導体層を形成する工程である、[11]〜[13]のいずれか1つに記載の回路基板の製造方法。
[15] 前記プラスチックフィルム支持体が、離型層付きプラスチックフィルム支持体である、[11]〜[14]のいずれか1つに記載の回路基板の製造方法。
[16] 前記樹脂組成物層が、エポキシ樹脂、硬化剤及び無機充填材を含む、[11]〜[15]のいずれか1つに記載の回路基板の製造方法。
[17] 前記無機充填材の平均粒径が、0.01μm〜3μmである、[16]に記載の回路基板の製造方法。
[18] 前記無機充填材の平均粒径が、0.01μm〜0.4μmである、[16]に記載の回路基板の製造方法。
[19] 前記樹脂組成物層中の前記無機充填材の含有量が、前記樹脂組成物層中の不揮発成分を100質量%としたとき、40質量%〜95質量%である、[16]〜[18]のいずれか1つに記載の回路基板の製造方法。
[20] 前記無機充填材が、表面処理剤で表面処理されている、[16]〜[19]のいずれか1つに記載の回路基板の製造方法。
【発明の効果】
【0010】
本発明によれば、表面粗度の小さい導体層を覆う厚さがより薄い絶縁層を備える回路基板において、レーザーの照射により小径のビアホールを形成した場合でも、導体層、絶縁層にクラックが発生するなどの使用による経時的な不具合が生じにくい回路基板を提供することができる。
【図面の簡単な説明】
【0011】
図1図1は、回路基板を平面的に示す概略的な図である。
図2図2は、図1中のII-II一点鎖線で切断した端面を示す概略的な図である。
図3図3は、回路基板の製造方法を説明するための概略的な図である。
図4図4は、回路基板の製造方法を説明するための概略的な図である。
【発明を実施するための形態】
【0012】
以下、図面を参照して本発明の実施形態について説明する。なお、各図面は発明が理解できる程度に、構成要素の形状、大きさ及び配置が概略的に示されているに過ぎない。本発明は以下の記述によって限定されるものではなく、各構成要素は本発明の要旨を逸脱しない範囲において適宜変更可能である。以下の説明に用いる図面において、同様の構成要素については同一の符号を付して示し、重複する説明については省略する場合がある。また、本発明の実施形態にかかる構成は、必ずしも図示された配置、形状で製造されたり、使用されたりするわけではない。
【0013】
[導体層と該導体層を覆う絶縁層とを備える回路基板]
本発明の回路基板は、導体層と該導体層を覆う絶縁層とを備え、該絶縁層から導体層の一部分を露出させるビアホールを備える回路基板であって、導体層の表面の算術平均粗さが350nm以下であり、ビアホールの深さが30μm以下であり、ビアホールのトップ径(Z)が50μm以下であり、ビアホールのトップ径(Z)とビアホールの最小径(Y)とビアホールの底部径(X)との関係において、Y/Z=0.7〜0.99及びY/X=0.7〜1(Z>Y)を満たしている。
【0014】
図1及び図2を参照して、回路基板の構成例について説明する。
図1は、回路基板を平面的に示す概略的な図である。回路基板のうち1個のビアホールが設けられた領域を拡大して示してある。図2は、図1中のII−II一点鎖線で切断した端面を示す概略的な図である。
【0015】
図1及び図2に示されるように、本実施形態の回路基板10は、配線基板(内層基板)20を含んでいる。配線基板20は、基板22と、基板22の主面に設けられた導体層24を含んでいる。導体層24が設けられている側には、該導体層24と導体層24から露出している基板22の主面とを覆う絶縁層30が設けられている。
【0016】
図示例では基板22の一方の主面側のみに導体層24及び絶縁層30が設けられている。しかしながら、本実施形態にかかる回路基板10の構成は図示例に限定されず、基板22の両面側に導体層24及び絶縁層30を設け、さらに基板22の両面側にビルドアップ層が設けられる構成であってもよい。この場合には配線基板20は、いわゆる内層回路基板に相当する。
【0017】
以下の説明においては、説明を簡略にして理解をより容易にするために、基板22の一方の主面側のみに導体層24及び絶縁層30が設けられている構成について説明する。
【0018】
ここで導体層24の表面24aの表面粗度、すなわち平均粗さ(算術平均粗さRa)は350nm以下、好ましくは300nm以下とされる。よって導体層24は表面粗度が従来の導体層よりも小さくされている。
【0019】
本実施形態にかかる絶縁層30の導体層24上の厚さは30μm以下、好ましくは25μm以下とされる。よって絶縁層30は従来の回路基板の絶縁層よりも薄くされている。すなわち本発明にかかる回路基板10は全体としてより薄型とされる点に特徴を有している。
【0020】
絶縁層30の製造方法の詳細については後述するが、絶縁層30は、樹脂組成物の硬化物として構成される。この硬化物は樹脂組成物とシート状繊維基材とを含むプリプレグを用いて形成されていてもよい。
【0021】
回路基板10には、絶縁層30の表面30aから導体層24の表面24aに至ってその一部分を露出させる1個以上のビアホール40が設けられている。本実施形態においてビアホール40は、絶縁層30の表面30aに画成される略円形の輪郭の径(開口径)であるトップ径(Z)が50μm以下、好ましくは40μm以下とされる。換言すると本発明の回路基板10に設けられるビアホール40は、回路基板10の厚さ方向で見たときの最大径であるトップ径(Z)が従来のビアホールよりも小径のビアホールとして設けられる。
【0022】
ビアホール40の形成方法の詳細については後述するが、ビアホール40はレーザーを照射することにより形成することが好ましい。
【0023】
本実施形態のビアホール40は、そのトップ径(Z)と最小径(Y)とビアホールの底部径(X)との関係において、Y/Zが0.7〜0.99の範囲(Y/Z=0.7〜0.99)であり、及びY/Xが0.7〜1の範囲であってZ>Y(Y/X=0.7〜1(Z>Y))である。
【0024】
本実施形態のビアホール40において、深さdは、ビアホール40内を絶縁層30の表面30a及び/又は導体層24の表面24aに直交する方向に延伸し、一方の端部が表面24aにあり他方の端部が表面30aの高さと等しい位置にある線分の長さに相当する。ビアホール40において、最小径(Y)は、ビアホール40の深さdを基準としたときにその位置が導体層24寄りに位置している。換言すると最小径(Y)の位置は、ビアホール40の深さdを基準としてトップ径(Z)の位置又は底部径(X)の位置からの距離が等しい位置、すなわちd/2の位置よりも導体層24寄り、すなわちビアホール40の深さdを基準としたときに底部径(X)側であるビアホール40の底部44(0d)からd/2の範囲内の位置、さらに換言するとトップ径(Z)側から0.5d〜1.0dの範囲内の位置に位置する。
【0025】
ここで絶縁層30がプリプレグ由来であってシート状繊維基材を含む場合には、通常、ビアホール40内に絶縁層30(ビアホール40の側壁)からシート状繊維基材の一部が突出する位置が最小径(Y)に相当することになる。
【0026】
通常、ビアホール40の輪郭の形状は、そのトップ径(Z)が底部径(X)よりも大きい逆円錐台状の形状を有するが、図示例のビアホール40には、導体層24の表面24aから導体層24の近傍の領域に抉れ部42が形成されている。なお、本実施形態のビアホール40は抉れ部40を有さず、最小径(Y)と底部径(X)とが一致しており、トップ径(Z)が底部径(X)よりも大きい逆円錐台状の形状である場合もあり得る。
【0027】
抉れ部42は、ビアホール40の形成に用いられるレーザー光が導体層24の表面24aで反射、拡散されることにより形成される。
【0028】
抉れ部42は、図示例ではその輪郭の形状がその底面の径が上面の径よりも大きい円錐台状である。しかしながら、抉れ部42の形状はこれに限定されない。抉れ部42の最大径は、図示例ではビアホール40の底部44の底部径(X)に一致している。
【0029】
回路基板10においては、抉れ部42はその輪郭の径(円錐台の底面及び上面の径)、サイズがより小さいことが好ましく、抉れ部42が存在しない、すなわちY/Xが1となって、ビアホール40の輪郭の形状が逆円錐台状の形状となることがより好ましい。
【0030】
本実施形態にかかる導体層24と絶縁層30との密着強度は0.15kgf/cm以上、好ましくは0.18kgf/cm以上、より好ましくは0.20kgf/cm以上とされる。このように導体層24と絶縁層30との密着強度を0.15kgf/cm以上とすることにより、ビアホール40の輪郭の形状は上記の関係を満たす。これにより抉れ部42を有しないか、又は不可避的に有するとしても抉れ部42の径、抉れ部42のサイズがより小さいビアホール40を形成することができる。結果として、絶縁層30、導体層24におけるクラックの発生等の使用による経時的な不具合が生じにくいため長寿命であり、例えば高周波信号で動作させたとしても信頼性の高い回路基板10を提供することができる。
他方、導体層24と絶縁層30との密着強度が0.15kgf/cmより小さい場合にはビアホール40の輪郭の形状は上記の関係を満たすことができず、抉れ部42の径、サイズが大きくなってしまい絶縁層30、導体層24におけるクラックの発生等の使用による経時的な不具合が生じやすくなってしまうため、経時的に特性が劣化してしまったり、装置の寿命が短くなってしまうおそれがある。
【0031】
図示例では絶縁層30の表面30aに配線層70が設けられている。配線層70は複数の配線を含む配線パターンとして構成される。ここでは配線層70の材料がビアホール40内を充填するように、例えばフィルドビアとして、構成されており、これにより配線層70は導体層24の表面24aに至って、配線層70と導体層24とは電気的に接続される。
【0032】
[回路基板の製造方法]
本実施形態にかかる回路基板の製造方法は、工程(A)プラスチックフィルム支持体と、該プラスチックフィルム支持体と接合している樹脂組成物層とを含むプラスチックフィルム支持体付き樹脂シートを、表面の算術平均粗さが350nm以下である導体パターンを含む導体層が設けられた配線基板の該導体層に接合する工程と、工程(B)樹脂組成物層を熱硬化して、導体層上の厚さが30μm以下である絶縁層であって絶縁層と導体層との密着強度が0.15kgf/cm以上である絶縁層を形成する工程と、工程(C)プラスチックフィルム支持体側からレーザーを照射して、絶縁層にトップ径(Z)が50μm以下のビアホールであって、ビアホールのトップ径(Z)とビアホールの最小径(Y)とビアホールの底部径(X)との関係が、Y/Z=0.7〜0.99及びY/X=0.7〜1(Z>Y)を満たすビアホールを形成する工程と、工程(D)デスミア処理を行う工程と、工程(E)プラスチックフィルム支持体を絶縁層から剥離する工程と、工程(F)絶縁層にさらなる導体層を形成する工程とを含む。
【0033】
図3及び図4を参照して、本実施形態にかかる回路基板の製造方法について説明する。図3及び図4は、図2と同様にして示す回路基板の製造方法を説明するための概略的な図である。
【0034】
<工程(A)>
工程(A)は、プラスチックフィルム支持体と、該プラスチックフィルム支持体と接合している樹脂組成物層とを含むプラスチックフィルム支持体付き樹脂シートを、表面の算術平均粗さが350nm以下である導体パターンを含む導体層が設けられた配線基板の該導体層に接合する工程である。
【0035】
図3に示されるように、工程(A)において、プラスチックフィルム支持体50と、このプラスチックフィルム支持体50と接合している樹脂組成物層30Xとを含むプラスチックフィルム支持体付き樹脂シート60を用意し、プラスチックフィルム支持体付き樹脂シート60の樹脂組成物層30Xが配線基板20の導体層24の表面24aに接合するように積層する。
【0036】
配線基板20に含まれる基板22としては、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等が挙げられる。基板22の片面(又は両面)には、既に説明したとおり、パターニングされた1以上の配線パターンを含む導体層(回路)24が形成されている。
【0037】
配線基板20の導体層24の表面24aの表面粗度は、電気信号の導体損の低減の観点から、平均表面粗さ(Ra)が350nm以下とされ、好ましくは300nm以下とされる。導体層24の表面粗度は、導体層24の表面処理により調整することができる。
【0038】
導体層24の表面24aの低粗度と、導体層24及び絶縁層30の密着性を両立させる観点から好ましい導体層24の表面24aの表面処理の例としては、有機酸系マイクロエッチング剤である「メックエッチボンドCZ8100」、「メックエッチボンドCZ8101」(メック(株)製)を用いる粗化処理、スズ系処理剤である「Secure HFz」(Atotech社製)、「フラットボンド」(メック(株)製)を用いるスズ系処理による表面処理などが挙げられる。ここでスズ系処理とは、少なくとも金属スズ又はスズ酸化物を含む層を導体層24の表面24aに形成することを意味する。具体的には、配線基板20に対し、置換スズめっきやスズ塩、有機及び/又は無機酸、還元剤等を含む処理液等を用いた浸漬等の処理を行うことにより表面処理が行われる。
【0039】
工程(A)において用いられるプラスチックフィルム支持体付き樹脂シート60の構成、製造方法の詳細については後述する。
【0040】
プラスチックフィルム支持体付き樹脂シート60と配線基板20との接合(積層)は、例えば、プラスチックフィルム支持体50側から、プラスチックフィルム支持体付き樹脂シート60を配線基板20に加熱圧着する加熱圧着工程により行うことができる。プラスチックフィルム支持体付き樹脂シート60を配線基板20に加熱圧着する部材(以下、「加熱圧着部材」ともいう。)としては、例えば、加熱された金属板(SUS鏡板等)又は金属ロール(SUSロール)等が挙げられる。なお、加熱圧着部材をプラスチックフィルム支持体付き樹脂シート60に直接的にプレスするのではなく、回路基板20の表面の凹凸に樹脂組成物層30Xが十分に追随するよう、耐熱ゴム等を材料とする弾性材を介してプレスすることが好ましい。
【0041】
加熱圧着工程の温度は、好ましくは80℃〜160℃の範囲であり、より好ましくは90℃〜140℃の範囲であり、さらに好ましくは100℃〜120℃の範囲である。加熱圧着工程の圧力は、好ましくは0.098MPa〜1.77MPaの範囲であり、より好ましくは0.29MPa〜1.47MPaの範囲である。加熱圧着工程の処理時間は、好ましくは20秒間〜400秒間の範囲であり、より好ましくは30秒間〜300秒間の範囲である。積層は、圧力を26.7hPa以下とする減圧条件下で実施することが好ましい。
【0042】
積層は、市販の真空ラミネーターによって行うことができる。市販の真空ラミネーターとしては、例えば、(株)名機製作所製の真空加圧式ラミネーター、ニチゴー・モートン(株)製のバキュームアプリケーター等が挙げられる。
【0043】
工程(A)において、プラスチックフィルム支持体付き樹脂シート60は、配線基板20両主面のうちの片面のみに積層してもよく、両面に積層してもよい。
【0044】
積層の後に、常圧下(大気圧下)、例えば、加熱圧着部材をプラスチックフィルム支持体50側からプレスすることにより、積層されたプラスチックフィルム支持体付き樹脂シート60の平滑化処理を行ってもよい。平滑化処理のプレス条件は、上記加熱圧着工程における各条件と同様の条件とすることができる。平滑化処理は、市販のラミネーターによって行うことができる。なお、積層と平滑化処理とは、上記の市販の真空ラミネーターを用いて連続的に行ってもよい。
【0045】
<工程(B)>
工程(B)は、樹脂組成物層30Xを熱硬化して、導体層24上の厚さが30μm以下である絶縁層30であって絶縁層30と導体層24との密着強度が0.15kgf/cm以上である絶縁層30を形成する工程である。
【0046】
工程(B)において、樹脂組成物層30Xを熱硬化して絶縁層30を形成する。熱硬化する前にプラスチックフィルム支持体50を樹脂組成物層30Xから剥離してもよい。プラスチックフィルム支持体50の表面に離形処理がされ、離形処理された面と樹脂組成物層30Xとが接している場合など、絶縁層30の形成後、絶縁層30の表面30aから容易にプラスチックフィルム支持体50が剥離可能な場合は、プラスチックフィルム支持体50を剥離せずにそのまま熱硬化して絶縁層30を形成することもできる。
【0047】
工程(B)において、樹脂組成物層30Xの熱硬化条件は、特に限定されないが、例えば、硬化温度を120℃〜240℃の範囲(好ましくは150℃〜210℃の範囲、より好ましくは160℃〜200℃の範囲)とし、硬化時間を5分間〜90分間の範囲(好ましくは10分間〜75分間の範囲、より好ましくは15分間〜60分間の範囲)とすることができる。また、熱硬化時の圧力は特に限定されず、常圧下、加圧下、減圧下のいずれであってもよい。
【0048】
樹脂組成物層30Xを熱硬化させる前に、樹脂組成物層30Xを硬化温度よりも低い温度にて加熱処理する予備加熱処理を行ってもよい。例えば、樹脂組成物層30Xを熱硬化させるのに先立ち、50℃以上120℃未満(好ましくは60℃以上110℃以下)の温度にて、樹脂組成物層30Xを5分間以上(好ましくは5分間〜150分間)加熱処理する予備加熱処理を行ってもよい。
【0049】
樹脂組成物層30Xの熱硬化により形成される絶縁層30の導体層24上の厚さ、すなわち上述したビアホール40の深さdは薄型の回路基板10とする観点から30μm以下とされる。薄型化の観点から絶縁層30の導体層24上の厚さは25μm以下とすることが好ましい。絶縁層30の導体層24上の厚さの下限は、特に限定されないが、通常、3μm以上である。絶縁層30の厚さt及び絶縁層30の導体層24上の厚さ(d)は、プラスチックフィルム支持体付き樹脂シート60の樹脂組成物層30Xの厚さを調整することにより、適宜調整することができる。
【0050】
樹脂組成物層30Xの熱硬化により形成された絶縁層30と導体層24との密着強度は、0.15kgf/cm以上とされる。絶縁層30と導体層24との密着強度は、好ましくは、0.2kgf/cm以上である。密着強度が0.15kgf/cm未満であると、レーザーの照射によるビアホール40の形成時に、ビアホール40の底部44側に位置する導体層24の表面24aにおけるレーザー光の反射、拡散により、絶縁層30と導体層24とがレーザーエネルギーの熱により剥離してしまうといった不具合を引き起こす場合がある。
【0051】
形成された絶縁層30と導体層24との密着強度は、絶縁層30を形成するための樹脂組成物の成分、絶縁層30を形成する際の硬化条件(絶縁層30を構成する樹脂のガラス転移温度(Tg))、導体層24の表面24aの表面粗度、導体層24の表面24aの密着性を向上させるための処理等により調整することができる。
【0052】
絶縁層30と導体層24との密着強度の調整の観点から、例えば樹脂組成物の成分において、エポキシ樹脂を主成分とする樹脂組成物を用い、硬化剤としてフェノール系硬化剤、活性エステル系硬化剤を用いることが好ましい。このような樹脂組成物の硬化条件としては樹脂組成物の硬化物のTgが100℃以上となるような硬化条件で硬化することが好ましい。樹脂組成物の材料としてトリアジン構造を有するエポキシ樹脂、トリアジン構造を有するフェノール系硬化剤を使用した場合、絶縁層30と導体層24との密着強度は向上する傾向にある。他方、エポキシ樹脂として脂環式エポキシ樹脂を使用すると絶縁層30と導体層24との密着強度は低下する傾向にあり、また樹脂組成物の成分としてビニル重合系の樹脂を使用する場合にも密着強度は低下する傾向にある。
【0053】
導体層24の表面24aの表面粗度が大きいほど、いわゆるアンカー効果により絶縁層30と導体層24との密着強度は向上する傾向にある。しかし、導体層24の表面24aの表面粗度が大きいほど、信号の伝送損失も増大する傾向にある。よって、本実施形態にかかる回路基板10では導体層24の表面24aの表面粗度は350μm以下とされる。また導体層24の表面24aに密着強度を向上させるための表面処理を行うことにより、絶縁層30と導体層24との密着強度を向上させることもできる。
【0054】
導体層24の表面24aを低粗度としつつ密着強度を向上させることができる表面処理の例としては、有機酸系マイクロエッチング剤である「メックエッチボンドCZ8100」、「メックエッチボンドCZ8101」(メック(株)製)を用いる粗化処理が挙げられる。また導体層24の表面24aの密着強度を向上させるための表面処理の例としては、スズ系処理剤である「Secure HFz」(Atotech社製)による表面処理などが挙げられる。また、粗化処理、密着強度を向上させるための処理を行った後、さらにカップリング剤を用いる処理を施すことにより、密着強度を向上させてもよい。用いられ得るカップリング剤の例としては、シランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤等が挙げられる。中でもシランカップリング剤が好ましく、シランカップリング剤の例としては、アミノシランカップリング剤、エポキシシランカップリング剤、スチレンシランカップリング剤等が挙げられる。このような表面処理としては、スズ系処理剤による処理とカップリング剤を用いる処理とを含む「フラットボンド」(メック(株)製)による表面処理が挙げられる。
【0055】
本実施形態にかかる回路基板10の製造方法では、絶縁層30にビアホール40が形成される。既に説明したとおり、形成されるビアホール40のトップ径(Z)は50μm以下であり、ビアホール40のトップ径(Z)とビアホール40の最小径(Y)とビアホール40の底部径(X)との関係は、Y/Z=0.7〜0.99とされ、Y/X=0.7〜1(Z>Y)とされる。このときビアホール40の最小径の位置は、ビアホール40の深さdを基準としたときに導体層24寄りに位置する。
【0056】
<工程(C)>
本実施形態にかかる回路基板10は、例えば、工程(A)及び工程(B)の実施後、工程(C)を実施することにより製造することができる。
工程(C)は、プラスチックフィルム支持体50側、すなわちプラスチックフィルム支持体50の上方からレーザーを照射して、絶縁層30にトップ径(Z)が50μm以下のビアホール40であって、該ビアホール40のトップ径(Z)と該ビアホール40の最小径(Y)と該ビアホール40の底部径(X)との関係が、Y/Z=0.7〜0.99及びY/X=0.7〜1(Z>Y)を満たすビアホール40を形成する工程である。
【0057】
図4に示されるように、工程(C)では、レーザーを照射して、絶縁層30にトップ径(Z)が50μm以下のビアホール40を形成する。図示例のようにプラスチックフィルム支持体50が絶縁層30に接合された状態で存在する場合には、プラスチックフィルム支持体50の上方からプラスチックフィルム支持体50に対してレーザーを照射してもよく、プラスチックフィルム支持体50を剥離して絶縁層30に対し直接的にレーザーを照射してもよい。ビアホール40を精度よく形成する観点から、プラスチックフィルム支持体50を剥離することなくその上方からレーザーを照射してビアホール40を形成することが好ましい。
【0058】
工程(C)において形成されるビアホール40のトップ径(Z)は、回路基板10が備える配線パターンのさらなる高密度化の観点から、50μm未満であることが好ましく、40μm以下であることがより好ましく、35μm以下であることがさらに好ましく、30μm以下であることが特に好ましい。
【0059】
工程(C)において形成されるビアホール40の個数は、特に限定されず、回路基板10の設計に応じて任意好適な個数とすることができる。形成される複数のビアホール40のトップ径(Z)は同一であっても互いに異なっていてもよい。なお、工程(C)において形成されるビアホール40の全てのトップ径(Z)が50μm以下である必要はない。回路基板10の設計に応じて、50μmを超えるトップ径(Z)を有するビアホール40を併せて形成してもよい。
【0060】
本実施形態にかかる回路基板10の製造方法で形成されるビアホール40のトップ径(Z)とビアホール40の最小径(Y)とビアホール40の底部径(X)との関係は、Y/Z=0.7〜0.99とされ、Y/X=0.7〜1(Z>Y)とされる。そしてビアホール40の最小径の位置は、ビアホール40の深さdを基準としたときに導体層24寄りに位置する。
【0061】
工程(C)において、レーザーの照射に用いられ得るレーザー光源としては、例えば、炭酸ガスレーザー、YAGレーザー、UV−YAGレーザー、YVOレーザー、YLFレーザー、エキシマレーザー等が挙げられる。プラスチックフィルム支持体50、絶縁層30の吸光特性等に応じて、任意好適なレーザー光源を使用することができる。
【0062】
レーザーの照射条件は、既に説明した程度のトップ径(Z)を有する小径のビアホール40を形成し得る限りにおいて特に限定されず、レーザー光源の種類、プラスチックフィルム支持体50の有無とその厚さ及び絶縁層30の厚さ、種類等に応じて、適宜決定してよい。以下、レーザー光源として炭酸ガスレーザーを使用する場合の照射条件について説明する。レーザー光源として炭酸ガスレーザーを使用する場合、一般に9.3μm〜10.6μmの波長のレーザー光が使用される。ショット数は、形成すべきビアホール40の深さd、トップ径(Z)によっても異なるが、通常1ショット〜10ショットの範囲で選択される。加工速度を高めて回路基板の生産性を向上させる観点から、ショット数は少ない方が好ましく、1ショット〜5ショットの範囲であることが好ましく、1ショット〜3ショットの範囲であることがより好ましい。なお、ショット数が2ショット以上である場合、バーストモード、サイクルモードの何れのモードでレーザーを照射してもよい。レーザーのエネルギーは、ショット数、ビアホール40の深さd、プラスチックフィルム支持体50の有無、その厚さにもよるが、好ましくは0.2mJ以上、より好ましくは0.3mJ以上、さらに好ましくは0.4mJ以上に設定される。レーザーのエネルギーの上限は、好ましくは20mJ以下、より好ましくは15mJ以下、さらに好ましくは10mJ以下である。
【0063】
工程(C)は、市販のレーザー装置を用いて実施することができる。市販のレーザー装置としては、例えば、日立ビアメカニクス(株)製「LC−2E21B/1C」(炭酸ガスレーザー装置)、三菱電機(株)製「605GTWIII(−P)」(炭酸ガスレーザー装置)、ESI社製「MODEL5330xi」、「MODEL5335」(UV−YAGレーザー装置)等が挙げられる。
【0064】
工程(C)において形成されたビアホール40の内部(特にビアホール40の底部)には、一般に、樹脂残渣(スミア)が付着している。このようなスミアは、層間における電気的な接続不良の原因となるため、ビアホール40の形成後には、通常スミアを除去するデスミア処理(工程(D))が行われる。
【0065】
<工程(D)>
工程(D)は、デスミア処理を行う工程である。
工程(D)において、デスミア処理は、特に限定されず、任意好適な従来公知のデスミア処理を行うことができる。デスミア処理は、例えば、乾式デスミア処理、湿式デスミア処理又はこれらの組み合わせにより行ってよい。レーザーによるビアホール40の形成をプラスチックフィルム支持体50の上方から行う場合には、絶縁層30にプラスチックフィルム支持体50が接合した状態であるが、デスミア処理は、プラスチックフィルム支持体50を剥離後に行ってもよいし、絶縁層30に接合した状態で行ってもよい。
【0066】
乾式デスミア処理の例としてはプラズマを用いたデスミア処理が挙げられる。プラズマを用いたデスミア処理は、市販のプラズマデスミア処理装置を使用して実施することができる。市販のプラズマデスミア処理装置の中でも、本発明の回路基板の製造用途に好適な例として、ニッシン(株)製のマイクロ波プラズマ装置、積水化学工業(株)製の常圧プラズマエッチング装置等が挙げられる。
【0067】
乾式デスミア処理の例としてはまた、研磨材をノズルから吹き付けて処理対象を研磨し得る乾式サンドブラスト処理が挙げられる。乾式サンドブラスト処理は、市販の乾式サンドブラスト処理装置を用いて実施することができる。研磨材として、水溶性の研磨材を使用する場合には、乾式サンドブラスト処理後に水洗処理することにより、研磨材がビアホール40の内部に残留することもなく、スミアを効果的に除去することができる。
【0068】
湿式デスミア処理としては、例えば、酸化剤溶液を用いたデスミア処理等が挙げられる。酸化剤溶液を用いてデスミア処理する場合、膨潤液による膨潤処理、酸化剤溶液による酸化処理、中和液による中和処理をこの順に行うことが好ましい。膨潤液としては、例えば、アトテックジャパン(株)製の「スウェリング・ディップ・セキュリガンスP」、「スウェリング・ディップ・セキュリガンスSBU」等を挙げることができる。膨潤処理は、ビアホール40の形成された基板を、60℃〜80℃に加熱した膨潤液に5分間〜10分間浸漬させることにより行うことが好ましい。酸化剤溶液としては、アルカリ性過マンガン酸水溶液が好ましく、例えば、水酸化ナトリウムの水溶液に過マンガン酸カリウムや過マンガン酸ナトリウムを溶解した溶液を挙げることができる。酸化剤溶液による酸化処理は、膨潤処理後の基板を、60℃〜80℃に加熱した酸化剤溶液に10分間〜30分間浸漬させることにより行うことが好ましい。アルカリ性過マンガン酸水溶液の市販品としては、例えば、アトテックジャパン(株)製の「コンセントレート・コンパクトCP」、「ド−ジングソリューション・セキュリガンスP」等が挙げられる。中和液による中和処理は、酸化処理後の基板を、30℃〜50℃の中和液に3分間〜10分間浸漬させることにより行うことが好ましい。中和液としては、酸性の水溶液が好ましく、市販品としては、例えば、アトテックジャパン(株)製の「リダクションソリューション・セキュリガントP」が挙げられる。
【0069】
湿式デスミア処理としてはまた、研磨材と分散媒とをノズルから吹き付けて処理対象を研磨し得る湿式サンドブラスト処理を用いてもよい。湿式サンドブラスト処理は、市販の湿式サンドブラスト処理装置を用いて実施することができる。
【0070】
乾式デスミア処理と湿式デスミア処理とを組み合わせて実施する場合、乾式デスミア処理を先に実施してもよく、湿式デスミア処理を先に実施してもよい。
【0071】
本発明の効果をより享受し得る観点から、工程(D)のデスミア処理は、湿式デスミア処理であることが好ましい。
【0072】
<工程(E)>
工程(E)は、プラスチックフィルム支持体50を絶縁層30から剥離する工程である。
プラスチックフィルム支持体50の剥離の方法は、特に限定されず、従来公知の任意好適な方法により行うことができる。プラスチックフィルム支持体50は、自動剥離装置により機械的に剥離することができる。
【0073】
<工程(F)>
工程(F)は、絶縁層30に配線層70を形成する工程である。
デスミア処理の後、絶縁層30の表面30aに配線層70(ビルドアップ配線層)を形成する。
配線層70に用いられ得る導体材料は特に限定されない。好適な実施形態では、配線層70は、金、白金、パラジウム、銀、銅、アルミニウム、コバルト、クロム、亜鉛、ニッケル、チタン、タングステン、鉄、スズ及びインジウムからなる群から選択される1種以上の金属を材料として含む。配線層70は、単金属層であっても合金層であってもよく、合金層としては、例えば、上記の群から選択される2種以上の金属の合金(例えば、ニッケル・クロム合金、銅・ニッケル合金及び銅・チタン合金)から形成された層が挙げられる。配線層70は、中でも、配線層70の形成の容易性、コスト、パターニングの容易性等の観点から、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅の単金属層、又はニッケル・クロム合金、銅・ニッケル合金、銅・チタン合金の合金層であることが好ましく、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅の単金属層、又はニッケル・クロム合金の合金層であることがより好ましく、銅の単金属層であることがさらに好ましい。
【0074】
配線層70は、単層構造であっても、異なる種類の金属若しくは合金からなる単金属層又は合金層が2層以上積層した複層構造であってもよい。配線層70が複層構造である場合、絶縁層30と接合する層は、クロム、亜鉛若しくはチタンの単金属層、又はニッケル・クロム合金の合金層であることが好ましい。
【0075】
配線層70の厚さは、所望の回路基板のデザインによるが、通常35μm以下、好ましくは30μm以下、より好ましくは25μm以下である。配線層70の厚さの下限は、特に限定されないが、通常3μm以上、好ましくは5μm以上である。
【0076】
好適な実施形態において、工程(F)は、
絶縁層30の表面に乾式めっきにより金属層を形成するステップと、
金属層の表面に湿式めっきにより配線層70を形成するステップと
をこの順序で含む(以下、「工程(F−1)」という。)。
【0077】
工程(F−1)においては、まず、絶縁層30の表面30aに乾式めっきにより金属層を形成する。
【0078】
乾式めっきとしては、例えば、蒸着、スパッタリング、イオンプレーティング、レーザーアブレーション等の物理気相成長(PVD)法、熱CVD、プラズマCVD等の化学気相成長(CVD)法が挙げられ、中でも蒸着、スパッタリングが好ましい。金属層は、これら乾式めっきのうちの2種を組み合わせて形成してもよい。
【0079】
形成される金属層の厚さは、特に限定されないが、好ましくは5nm〜2μmであり、より好ましくは10nm〜1μmであり、さらに好ましくは20nm〜500nmである。なお、金属層は、単層構造であっても、複層構造であってもよい。金属層が複層構造である場合、金属層全体の厚さが上記範囲にあることが好ましい。
【0080】
工程(F−1)においては、金属層の形成後、該金属層の表面に湿式めっきにより配線層70を形成する。
【0081】
金属層をめっきシード層として用い、セミアディティブ法で湿式めっきにより所望のパターンを有する配線パターンを含む配線層70を形成することができる。詳細には、めっきシード層(金属層)上に、所望の配線パターンに対応してめっきシード層の一部を露出させるマスクパターンを形成する。露出しためっきシード層上に、電解めっきにより配線層70を形成した後、マスクパターンを除去する。その後、不要なめっきシード層をエッチング等により除去して、所望の配線パターンを含む配線層70を形成することができる。
【0082】
なお、配線層70を形成するにあたり、絶縁層30の表面30aを粗化処理してもよい。この場合、工程(F−1)は、
絶縁層30の表面30aを粗化処理するステップと、
絶縁層30の表面30aに乾式めっきにより金属層を形成するステップと、
金属層の表面に湿式めっきにより配線層70を形成するステップと
をこの順序で含む。
【0083】
粗化処理としては、例えば、乾式粗化処理、湿式粗化処理が挙げられ、これらを組み合わせて粗化処理を実施してもよい。
【0084】
乾式粗化処理は、既に説明した乾式デスミア処理と同様にして行うことができる。また、湿式粗化処理は、既に説明した湿式デスミア処理と同様にして行うことができる。乾式粗化処理と湿式粗化処理とを組み合わせて実施する場合、乾式粗化処理を先に実施してもよく、湿式粗化処理を先に実施してもよい。粗化処理は、絶縁層30の露出している表面30aの粗化を目的とするものであるが、ビアホール40の内部のスミア除去に関しても一定の効果を奏する。そのため、工程(D)を温和な条件で実施した場合にも、スミアの残留を防止することができる。
【0085】
好適な他の実施形態において、工程(F)は、
絶縁層30の表面30aを粗化処理するステップと、
絶縁層30の表面30aに湿式めっきにより配線層70を形成するステップと
をこの順序で含む(以下、「工程(F−2)」という。)。
【0086】
粗化処理の詳細については、既に説明したとおりである。
【0087】
工程(F−2)においては、絶縁層30の表面30aを粗化処理した後、絶縁層30の表面30aに湿式めっきにより配線層70を形成する。
【0088】
例えば、無電解めっきと電解めっきとを組み合わせてセミアディティブ法で所望のパターンを有する配線パターンを含む配線層70を形成することができる。
【0089】
得られる絶縁層30の表面30aの表面粗度をより低くすることができ、配線の微細化、高密度化により寄与することから、工程(F)としては、工程(F−1)を行うことが好ましい。
【0090】
以上の工程により回路基板10が製造される。なお、ここでは絶縁層30を1層のみ形成する例を説明したが、さらなる絶縁層及びこの絶縁層に設けられる配線層を含む、いわゆるビルドアップ層をさらに1層以上形成してもよい。
【0091】
<プラスチックフィルム支持体付き樹脂シート>
本発明の製造方法で使用されるプラスチックフィルム支持体付き樹脂シート60について説明する。
【0092】
本発明の製造方法で使用されるプラスチックフィルム支持体付き樹脂シート60は、プラスチックフィルム支持体50と、プラスチックフィルム支持体50と接合する樹脂組成物層30Xとを含む。以下、これらについて説明する。
【0093】
(プラスチックフィルム支持体)
プラスチックフィルム支持体50の材料としては、例えば、ポリエチレンテレフタレート(「PET」という。)、ポリエチレンナフタレート(「PEN」という。)等のポリエステル、ポリカーボネート(「PC」という。)、ポリメチルメタクリレート(「PMMA」という。)等のアクリル、環状ポリオレフィン、トリアセチルセルロース(「TAC」という。)、ポリエーテルサルファイド(「PES」という。)、ポリエーテルケトン、ポリイミドなどが挙げられる。中でも、PET、PEN、ポリイミドが好ましく、PET、PENがより好ましい。好適な一実施形態において、プラスチックフィルム支持体50は、PETフィルム支持体又はPENフィルム支持体である。
【0094】
本発明の回路基板10を製造する際には、プラスチックフィルム支持体50側の上方よりレーザーを照射して、絶縁層30に小径のビアホール40を形成することが好ましい。レーザーの照射によりビアホール40を円滑に形成する観点から、プラスチックフィルム支持体50は、レーザーエネルギーを吸収し得ることが好ましい。例えば、PENフィルム支持体は、紫外線(UV)吸収性を有することから、UV照射によるビアホール40の形成にプラスチックフィルム支持体50として好適に使用できる。
【0095】
プラスチックフィルム支持体50にレーザーエネルギー吸収性成分を含有させることにより、レーザーエネルギー吸収性を賦与あるいは増大させてもよい。レーザーエネルギー吸収性成分としては、ビアホール40の形成に使用されるレーザーを吸収し得る限り特に限定されず、例えば、カーボン粉、金属化合物粉、金属粉及び黒色染料等が挙げられる。レーザーエネルギー吸収性成分は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0096】
カーボン粉としては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック、アントラセンブラック等のカーボンブラックの粉末、黒鉛粉末、及びこれらの混合物の粉末が挙げられる。金属化合物粉としては、例えば、酸化チタン等のチタニア類、酸化マグネシウム等のマグネシア類、酸化鉄等の鉄酸化物、酸化ニッケル等のニッケル酸化物、二酸化マンガン、酸化亜鉛等の亜鉛酸化物、二酸化珪素、酸化アルミニウム、希土類酸化物、酸化コバルト等のコバルト酸化物、酸化錫等のスズ酸化物、酸化タングステン等のタングステン酸化物、炭化珪素、炭化タングステン、窒化硼素、窒化珪素、窒化チタン、窒化アルミニウム、硫酸バリウム、希土類酸硫化物、及びこれらの混合物の粉末が挙げられる。金属粉としては、例えば、銀、アルミニウム、ビスマス、コバルト、銅、鉄、マグネシウム、マンガン、モリブデン、ニッケル、パラジウム、アンチモン、ケイ素、錫、チタン、バナジウム、タングステン、亜鉛、及びこれらの合金若しくは混合物の粉末などが挙げられる。黒色染料としては、例えば、アゾ(モノアゾ、ジスアゾ等)染料、アゾ−メチン染料、アントラキノン系染料キノリン染料、ケトンイミン染料、フルオロン染料、ニトロ染料、キサンテン染料、アセナフテン染料、キノフタロン染料、アミノケトン染料、メチン染料、ペリレン染料、クマリン染料、ペリノン染料、トリフェニル染料、トリアリルメタン染料、フタロシアニン染料、インクロフェノール染料、アジン染料、及びこれらの混合物などが挙げられる。黒色染料は、分散性を向上させるため、溶剤に対して可溶性である黒色染料を用いることが好ましい。中でも、レーザーエネルギー吸収性成分としては、レーザーエネルギーの熱への変換効率や、汎用性等の観点から、カーボン粉が好ましく、特にカーボンブラックが好ましい。なお、レーザーエネルギー吸収性成分の平均粒径の上限は、レーザーエネルギーを効率よく吸収する観点から、好ましくは20μm以下であり、より好ましくは10μm以下である。該平均粒径の下限は、分散性の観点から、好ましくは0.001μm以上であり、より好ましくは0.002μmである。ここでいう「平均粒径」とは、粒度分布測定装置、BET法で測定することができる。BET法とは、粉体粒子の表面に吸着占有面積が既知の分子を液体窒素の温度で吸着させ、その量から試料の比表面積を求める方法である。さらにBET法より求められた比表面積から平均粒径を算出することができる。
【0097】
レーザーエネルギー吸収性成分の含有量は、プラスチックフィルム支持体50を構成する全成分を100質量%としたとき、ビアホール40を円滑に形成する観点から、好ましくは0.01質量%以上であり、より好ましくは0.03質量%であり、さらに好ましくは0.05質量%以上である。該含有量の上限は、良好な可撓性を有するプラスチックフィルム支持体50を得る観点から、好ましくは40質量%以下であり、より好ましくは20質量%以下であり、さらに好ましくは10質量%以下である。なお、レーザーエネルギー吸収性成分は、後述する離型層中に含まれていてもよい。
【0098】
プラスチックフィルム支持体50の市販品としては、例えば、東レ(株)製の「ルミラーR56」、「ルミラーR80」、「ルミラーT6AM」(PETフィルム)、帝人デュポンフィルム(株)製の「G2LA」(PETフィルム)、「テオネックスQ83」(PENフィルム)、宇部興産(株)製の「ユーピレックス−S」(ポリイミドフィルム)、(株)カネカ製の「アピカルAH」、「アピカルNPI」(ポリイミドフィルム)などが挙げられる。
【0099】
プラスチックフィルム支持体50は、樹脂組成物層30Xと接合する面にマット処理、コロナ処理を施してあってもよい。
【0100】
工程(B)において絶縁層30とプラスチックフィルム支持体50との間の密着強度を所望の範囲に調整し易いことから、プラスチックフィルム支持体50としては、樹脂組成物層30Xと接合する面に離型層を有する離型層付きのプラスチックフィルム支持体50が好適である。離型層に使用し得る離型剤としては、例えば、アルキド樹脂、メラミン樹脂、オレフィン樹脂、ウレタン樹脂等の非シリコーン系離型剤、及びシリコーン系離型剤が挙げられる。離型剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも、プラスチックフィルム支持体付き樹脂シート60を作製するに際して樹脂ワニスに対して高い濡れ性を示し、樹脂組成物層30Xとの接触状態が全面にわたって均一となり易いことから、離型層は、非シリコーン系離型剤を含む離型層であることが好ましく、アルキド樹脂及び/又はオレフィン樹脂を含む離型層であることがより好ましい。
【0101】
離型剤は、その構成成分の種類等に応じて、剥離強度が低い、いわゆる軽剥離型の離型剤、剥離強度が高い、いわゆる重剥離型の離型剤、軽剥離型の離型剤と重剥離型の離型剤との中間の剥離強度を示す、いわゆる中剥離型の離型剤に分類し得るが、工程(B)において密着強度を所望の範囲に調整し易いことから、重剥離型の離型剤が好ましい。絶縁層30を形成するための樹脂組成物層30Xの組成、工程(A)の積層の条件、工程(B)の熱硬化の条件等によっても異なるが、離型剤としては、初期の密着強度が好ましくは100(mN/20mm)以上であり、より好ましくは300(mN/20mm)以上であり、さらに好ましくは500(mN/20mm)以上であり、700(mN/20mm)以上、800(mN/20mm)以上、900(mN/20mm)以上又は1000(mN/20mm)以上である離型剤を使用することができる。初期の密着強度の上限は、特に限定されないが、工程(E)においてプラスチックフィルム支持体50を円滑に剥離する観点から、通常、8000(mN/20mm)以下であり、7500(mN/20mm)以下などとし得る。初期の密着強度は、離型剤で離型処理した面にアクリル粘着テープ(日東電工(株)製「31B」)を2kgローラーを用いて貼付し、30分間放置した後、アクリル粘着テープの一端を剥がしてつかみ具で掴み、室温下、30cm/分の速度、剥離角度180°の条件で引き剥がしたときの荷重(mN/20mm)を測定して求めることができる。測定は、例えば、(株)TSE製「AC−50C−SL」等の引っ張り試験機を使用して実施してよい。
【0102】
離型剤の市販品としては、例えば、リンテック(株)製の「X」(シリコーン含有アルキド樹脂系離型剤;490mN/20mm)、「SK−1」(シリコーン含有アルキド樹脂系離型剤;1250mN/20mm)、「AL−5」(非シリコーン・アルキド樹脂系離型剤;1480mN/20mm)、「6050」(非シリコーン・アルキド樹脂系離型剤;2400mN/20mm)、「6051」(非シリコーン・アルキド樹脂系離型剤;2800mN/20mm)、「6052」(非シリコーン・アルキド樹脂系離型剤;4000mN/20mm)などが挙げられる(括弧内に初期の密着強度の値を示す)。離型剤の市販品としてはまた、リンテック(株)製の「AL−7」(非シリコーン・アルキド樹脂系離型剤;重剥離型)、藤森工業(株)製の「NSP−4」(非シリコーン・アルキド樹脂系離型剤;重剥離型)などが挙げられる。
【0103】
プラスチックフィルム支持体50の厚さは、特に限定されないが、10μm〜100μmの範囲であることが好ましく、15μm〜75μmの範囲であることがより好ましい。特に小径ビアの形成がしやすくなるという観点から、20μm〜50μmの範囲であることがさらに好ましい。なお、プラスチックフィルム支持体50が離型層付きのプラスチックフィルム支持体50である場合、離型層付きのプラスチックフィルム支持体50全体の厚さが上記範囲であることが好ましい。
【0104】
(樹脂組成物層)
樹脂組成物層30Xに用いられる樹脂組成物は、その硬化物が、十分な硬度と絶縁性を有すると共に、プラスチックフィルム支持体50との所望の密着強度をもたらす限りにおいて特に限定されない。樹脂組成物としては、例えば、エポキシ樹脂、硬化剤及び無機充填材を含む樹脂組成物を用いることができる。樹脂組成物層30Xに用いられる樹脂組成物は、必要に応じて、さらに熱可塑性樹脂、硬化促進剤、難燃剤及び有機充填材等の添加剤を含んでいてもよい。以下、樹脂組成物の成分について説明する。
【0105】
−エポキシ樹脂−
エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert−ブチル−カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、線状脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂及びトリメチロール型エポキシ樹脂等が挙げられる。例示したエポキシ樹脂は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0106】
エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含むことが好ましい。エポキシ樹脂の不揮発成分を100質量%とした場合に、少なくとも50質量%以上は1分子中に2個以上のエポキシ基を有するエポキシ樹脂であることが好ましい。中でも、1分子中に2個以上のエポキシ基を有し、温度20℃で液状であるエポキシ樹脂(以下「液状エポキシ樹脂」という。)と、1分子中に3個以上のエポキシ基を有し、温度20℃で固体状であるエポキシ樹脂(以下「固体状エポキシ樹脂」という。)とを含むことが好ましい。エポキシ樹脂として、液状エポキシ樹脂と固体状エポキシ樹脂とを併用することで、優れた可撓性を有する樹脂組成物が得られる。また、樹脂組成物の硬化物の破断強度も向上する。
【0107】
液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、及びブタジエン構造を有するエポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、及びナフタレン型エポキシ樹脂がより好ましい。液状エポキシ樹脂の具体例としては、DIC(株)製の「HP4032」、「HP4032H」、「HP4032D」、「HP4032SS」(ナフタレン型エポキシ樹脂)、三菱化学(株)製の「jER828EL」(ビスフェノールA型エポキシ樹脂)、「jER807」(ビスフェノールF型エポキシ樹脂)、「jER152」(フェノールノボラック型エポキシ樹脂)、新日鉄住金化学(株)製の「ZX1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂との混合品)、ナガセケムテックス(株)製の「EX−721」(グリシジルエステル型エポキシ樹脂)、ダイセル化学工業(株)製の「PB−3600」(ブタジエン構造を有するエポキシ樹脂)が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0108】
固体状エポキシ樹脂としては、ナフタレン型4官能エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂が好ましく、ナフタレン型4官能エポキシ樹脂、ナフトール型エポキシ樹脂、及びビフェニル型エポキシ樹脂がより好ましい。固体状エポキシ樹脂の具体例としては、DIC(株)製の「HP−4700」、「HP−4710」(ナフタレン型4官能エポキシ樹脂)、「N−690」(クレゾールノボラック型エポキシ樹脂)、「N−695」(クレゾールノボラック型エポキシ樹脂)、「HP−7200」(ジシクロペンタジエン型エポキシ樹脂)、「EXA7311」、「EXA7311−G3」、「EXA7311−G4」、「EXA7311−G4S」、「HP6000」(ナフチレンエーテル型エポキシ樹脂)、日本化薬(株)製の「EPPN−502H」(トリスフェノール型エポキシ樹脂)、「NC7000L」(ナフトールノボラック型エポキシ樹脂)、「NC3000H」、「NC3000」、「NC3000L」、「NC3100」(ビフェニル型エポキシ樹脂)、新日鉄住金化学(株)製の「ESN475V」(ナフトール型エポキシ樹脂)、「ESN485V」(ナフトールノボラック型エポキシ樹脂)、三菱化学(株)製の「YX4000H」、「YL6121」(ビフェニル型エポキシ樹脂)、「YX4000HK」(ビキシレノール型エポキシ樹脂)、「YX8800」(アントラセン型エポキシ樹脂)、大阪ガスケミカル(株)製の「PG−100」、「CG−500」、三菱化学(株)製の「YL7800」(フルオレン型エポキシ樹脂)等が挙げられる。
【0109】
エポキシ樹脂として、液状エポキシ樹脂と固体状エポキシ樹脂とを併用する場合、それらの量比(液状エポキシ樹脂:固体状エポキシ樹脂)は、質量比で、1:0.1〜1:6の範囲とすることが好ましい。液状エポキシ樹脂と固体状エポキシ樹脂との量比をかかる範囲とすることにより、i)プラスチックフィルム支持体付き樹脂シートの形態で使用する場合に適度な粘着性がもたらされる、ii)プラスチックフィルム支持体付き樹脂シートの形態で使用する場合に十分な可撓性が得られ、取り扱い性が向上する、並びにiii)十分な破断強度を有する硬化物を得ることができるなどの効果が得られる。上記i)〜iii)の効果の観点から、液状エポキシ樹脂と固体状エポキシ樹脂との量比(液状エポキシ樹脂:固体状エポキシ樹脂)は、質量比で、1:0.3〜1:5の範囲であることがより好ましく、1:0.6〜1:4.5の範囲であることがさらに好ましい。
【0110】
樹脂組成物中のエポキシ樹脂の含有量は、好ましくは3質量%〜40質量%であり、より好ましくは5質量%〜35質量%であり、さらに好ましくは10質量%〜30質量%である。
【0111】
本明細書において、樹脂組成物中の各成分の含有量は、特記しない限り、樹脂組成物中の不揮発成分を100質量%としたときの値である。
【0112】
エポキシ樹脂の重量平均分子量は、好ましくは100〜5000、より好ましくは250〜3000、さらに好ましくは400〜1500である。ここで、エポキシ樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定されるポリスチレン換算の重量平均分子量である。
【0113】
エポキシ樹脂のエポキシ当量は、好ましくは50〜3000、より好ましくは80〜2000、さらに好ましくは110〜1000である。この範囲とすることで、硬化物の架橋密度が十分となり表面粗さの小さい絶縁層をもたらすことができる。なお、エポキシ当量は、JIS K7236で規定されている方法に従って測定することができ、1当量のエポキシ基を含む樹脂の質量である。
【0114】
−硬化剤−
硬化剤としては、エポキシ樹脂を硬化する機能を有する限り特に限定されず、例えば、フェノール系硬化剤、ナフトール系硬化剤、活性エステル系硬化剤、ベンゾオキサジン系硬化剤、シアネートエステル系硬化剤及びカルボジイミド系硬化剤等が挙げられる。硬化剤は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0115】
フェノール系硬化剤及びナフトール系硬化剤としては、耐熱性及び耐水性の観点から、ノボラック構造を有するフェノール系硬化剤、又はノボラック構造を有するナフトール系硬化剤が好ましい。また、導体層との密着強度の観点から、含窒素フェノール系硬化剤又は含窒素ナフトール系硬化剤が好ましく、トリアジン骨格含有フェノール系硬化剤又はトリアジン骨格含有ナフトール系硬化剤がより好ましい。中でも、耐熱性、耐水性、及び導体層との密着強度を高度に満足させる観点から、トリアジン骨格含有フェノールノボラック樹脂が好ましい。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0116】
フェノール系硬化剤及びナフトール系硬化剤の具体例としては、例えば、明和化成(株)製の「MEH−7700」、「MEH−7810」、「MEH−7851」、日本化薬(株)製の「NHN」、「CBN」、「GPH」、東都化成(株)製の「SN−170」、「SN−180」、「SN−190」、「SN−475」、「SN−485」、「SN−495」、「SN−375」、「SN−395」、DIC(株)製の「LA−7052」、「LA−7054」、「LA−3018」、「LA−1356」等が挙げられる。
【0117】
導体層24との密着強度を高める観点から、活性エステル系硬化剤も好ましい。活性エステル系硬化剤としては、特に制限はないが、一般にフェノールエステル類、チオフェノールエステル類、N−ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。該活性エステル系硬化剤は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル系硬化剤が好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル系硬化剤がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、例えばハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、カテコール、α−ナフトール、β−ナフトール、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。
【0118】
活性エステル系硬化剤としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物、ナフタレン構造を含む活性エステル化合物、フェノールノボラックのアセチル化物を含む活性エステル化合物、フェノールノボラックのベンゾイル化物を含む活性エステル化合物が好ましく、中でもナフタレン構造を含む活性エステル化合物、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物がより好ましい。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、「ジシクロペンタジエン型ジフェノール構造」とは、フェニレン−ジシクロペンタレン−フェニレンからなる2価の構造単位を表す。
【0119】
活性エステル系硬化剤の市販品としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として、「EXB9451」、「EXB9460」、「EXB9460S」、「HPC8000−65T」(DIC(株)製)、ナフタレン構造を含む活性エステル化合物として「EXB9416−70BK」(DIC(株)製)、フェノールノボラックのアセチル化物を含む活性エステル化合物として「DC808」(三菱化学(株)製)、フェノールノボラックのベンゾイル化物を含む活性エステル化合物として「YLH1026」(三菱化学(株)製)などが挙げられる。
【0120】
ベンゾオキサジン系硬化剤の具体例としては、昭和高分子(株)製の「HFB2006M」、四国化成工業(株)製の「P−d」、「F−a」が挙げられる。
【0121】
シアネートエステル系硬化剤としては、特に限定されないが、例えば、ノボラック型(フェノールノボラック型、アルキルフェノールノボラック型など)シアネートエステル系硬化剤、ジシクロペンタジエン型シアネートエステル系硬化剤、ビスフェノール型(ビスフェノールA型、ビスフェノールF型、ビスフェノールS型など)シアネートエステル系硬化剤、及びこれらが一部トリアジン化したプレポリマーなどが挙げられる。具体例としては、ビスフェノールAジシアネート(BADCy、2,2−ビス(4−シアネートフェニル)プロパンとも称される。)、ポリフェノールシアネート(オリゴ(3−メチレン−1,5−フェニレンシアネート))、4,4’−メチレンビス(2,6−ジメチルフェニルシアネート)、4,4’−エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、1,1−ビス(4−シアネートフェニル)メタン、ビス(4−シアネート−3,5−ジメチルフェニル)メタン、1,3−ビス(4−シアネートフェニル−1−(メチルエチリデン))ベンゼン、ビス(4−シアネートフェニル)チオエーテル、及びビス(4−シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック及びクレゾールノボラック等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。シアネートエステル系硬化剤の市販品としては、ロンザ社製の「PT30」及び「PT60」(いずれもフェノールノボラック型多官能シアネートエステル樹脂)、「BA230」(ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー)、「Primaset(登録商標) BADCy」等が挙げられる。
【0122】
カルボジイミド系硬化剤の具体例としては、日清紡ケミカル(株)製の「V−03」、「V−07」等が挙げられる。
【0123】
エポキシ樹脂と硬化剤との量比は、得られる絶縁層の機械強度や耐水性を向上させる観点から、[エポキシ樹脂のエポキシ基の合計数]:[硬化剤の反応基の合計数]の比率で、1:0.2〜1:2の範囲が好ましく、1:0.3〜1:1.5の範囲がより好ましく、1:0.4〜1:1の範囲がさらに好ましい。ここで、硬化剤の反応基とは、活性水酸基、活性エステル基等であり、硬化剤の種類によって異なる。また、エポキシ樹脂のエポキシ基の合計数とは、各エポキシ樹脂の不揮発成分の質量をエポキシ当量で除した値をすべてのエポキシ樹脂について合計した値であり、硬化剤の反応基の合計数とは、各硬化剤の不揮発成分の質量を反応基当量で除した値をすべての硬化剤について合計した値である。
【0124】
−無機充填材−
無機充填材の材料は、特に限定されないが、例えば、シリカ、アルミナ、ガラス、コーディエライト、シリコン酸化物、硫酸バリウム、炭酸バリウム、タルク、クレー、雲母粉、酸化亜鉛、ハイドロタルサイト、ベーマイト、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化マンガン、ホウ酸アルミニウム、炭酸ストロンチウム、酸化ジルコニウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウム、リン酸ジルコニウム、及びリン酸タングステン酸ジルコニウム等が挙げられる。これらの中でも無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等のシリカが特に好適である。またシリカとしては球形シリカが好ましい。無機充填材は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。市販されている球形溶融シリカとして、(株)アドマテックス製「SO−C3」、「SO−C2」、「SO−C1」、「YA100C」、「YA050C」、「YA010C」等が挙げられる。
【0125】
無機充填材の平均粒径は、その上に微細な配線パターンを形成し得る絶縁層を得る観点から、3μm以下であることが好ましく、1μm以下であることがより好ましく、0.7μm以下であることがさらに好ましく、0.5μm以下、0.4μm以下、又は0.3μm以下であることがさらにより好ましい。無機充填材の平均粒径の下限は、樹脂組成物を使用して樹脂ワニスを形成する際に適度な粘度を有し取り扱い性の良好な樹脂ワニスを得る観点から、0.01μm以上であることが好ましく、0.03μm以上であることがより好ましく、0.05μm以上であることがさらに好ましく、0.07μm以上であることがさらにより好ましく、0.1μm以上であることが特に好ましい。無機充填材の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折式粒度分布測定装置としては、(株)堀場製作所製「LA−500」、「LA−750」、「LA−950」等を使用することができる。
【0126】
本実施形態の製造方法において用いられる無機充填材としては、分級により粗大な粒子が除去された無機充填材を使用することが好ましい。一実施形態において、分級により粒径10μm以上の粒子が除去された無機充填材を使用することが好ましく、分級により粒径5μm以上の粒子が除去された無機充填材を使用することがより好ましく、分級により粒径3μm以上の粒子が除去された無機充填材を使用することがさらに好ましい。
【0127】
無機充填材の平均粒径は、好ましくは0.01μm〜3μmであり、より好ましくは0.01μm〜0.4μmである。
【0128】
無機充填材は、分散性、耐湿性を向上させる観点から、表面処理剤で表面処理されていることが好ましい。表面処理剤としては、例えば、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤、オルガノシラザン化合物、チタネート系カップリング剤が挙げられる。表面処理剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。表面処理剤の市販品としては、例えば、信越化学工業(株)製「KBM403」(3−グリシドキシプロピルトリメトキシシラン)、信越化学工業(株)製「KBM803」(3−メルカプトプロピルトリメトキシシラン)、信越化学工業(株)製「KBE903」(3−アミノプロピルトリエトキシシラン)、信越化学工業(株)製「KBM573」(N−フェニル−3−アミノプロピルトリメトキシシラン)、信越化学工業(株)製「SZ−31」(ヘキサメチルジシラザン)等が挙げられる。
【0129】
無機充填材の表面処理後に、無機充填材の表面に結合している単位表面積当たりのカーボン量は、好ましくは0.05mg/m以上であり、より好ましくは0.08mg/m以上であり、さらに好ましくは0.11mg/m以上であり、さらにより好ましくは0.14mg/m以上であり、特に好ましくは0.17mg/m以上、0.20mg/m以上、0.23mg/m以上、又は0.26mg/m以上である。カーボン量の上限は、好ましくは1.00mg/m以下であり、より好ましくは0.75mg/m以下であり、さらに好ましくは0.70mg/m以下であり、さらにより好ましくは0.65mg/m以下、0.60mg/m以下、0.55mg/m以下、0.50mg/m以下である。
【0130】
無機充填材の表面に結合している単位面積当たりのカーボン量は、以下の手順で算出することができる。表面処理後の無機充填材に溶剤として十分な量のメチルエチルケトン(MEK)を加えて、超音波洗浄する。上澄液を除去し、得られた不揮発成分を乾燥させた後、カーボン分析計を用いて無機充填材の表面に結合しているカーボン量を測定する。得られたカーボン量を無機充填材の比表面積で除すことにより、無機充填材に結合している単位表面積当たりのカーボン量を算出する。カーボン分析計としては、例えば、(株)堀場製作所製「EMIA−320V」等が挙げられる。
【0131】
樹脂組成物中の無機充填材の含有量は、絶縁層30の熱膨張率を低下させて、絶縁層30と導体層24との熱膨張の差によるクラックや回路歪みの発生を防止する観点から、40質量%以上であることが好ましく、50質量%以上であることがより好ましく、60質量%以上であることがさらに好ましい。無機充填材含有量の高い樹脂組成物を用いて絶縁層30を形成する場合、絶縁層30と導体層24との密着強度が低下する場合があるが、本発明の回路基板の製造方法によれば、無機充填材の含有量の高い樹脂組成物を用いる場合にも絶縁層30と導体層24との十分な密着強度を実現することができる。本発明の回路基板の製造方法においては、絶縁層30と導体層24との密着強度を低下させることなく、樹脂組成物中の無機充填材の含有量をさらに高めることができる。例えば、樹脂組成物中の無機充填材の含有量は、62質量%以上、64質量%以上、66質量%以上、68質量%以上、又は70質量%以上にまで高めてよい。
【0132】
無機充填材の含有量の上限は、絶縁層30の機械強度の観点から、95質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下であることがさらに好ましい。
【0133】
一実施形態において、樹脂組成物層30Xに使用される樹脂組成物は、上述のエポキシ樹脂、硬化剤及び無機充填材を含む。中でも、樹脂組成物は、エポキシ樹脂として液状エポキシ樹脂と固体状エポキシ樹脂との混合物(液状エポキシ樹脂:固体状エポキシ樹脂の質量比は好ましくは1:0.1〜1:6、より好ましくは1:0.3〜1:5、さらに好ましくは1:0.6〜1:4.5)を、硬化剤としてフェノール系硬化剤、ナフトール系硬化剤、活性エステル系硬化剤及びシアネートエステル系硬化剤からなる群から選択される1種以上を、無機充填材としてシリカを、それぞれ含むことが好ましい。かかる特定の成分を組み合わせて含む樹脂組成物層30Xに関しても、エポキシ樹脂、硬化剤、及び無機充填材の好適な含有量は上述のとおりであるが、中でも、エポキシ樹脂の含有量が5質量%〜35質量%、無機充填材の含有量が40質量%〜95質量%であることが好ましく、エポキシ樹脂の含有量が10質量%〜30質量%、無機充填材の含有量が50質量%〜90質量%であることがより好ましい。硬化剤の含有量に関しては、エポキシ樹脂のエポキシ基の合計数と、硬化剤の反応基の合計数との比が、1:0.2〜1:2となるように含有させることが好ましく、1:0.3〜1:1.5となるように含有させることがより好ましく、1:0.4〜1:1となるように含有させることがさらに好ましい。
【0134】
樹脂組成物層30Xの形成に用いられる樹脂組成物は、必要に応じて、さらに熱可塑性樹脂、硬化促進剤、難燃剤及び有機充填材等を含んでいてもよい。以下、これらの成分について説明する。
【0135】
−熱可塑性樹脂−
熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリオレフィン樹脂、ポリブタジエン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂が挙げられる。熱可塑性樹脂は、1種単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。
【0136】
熱可塑性樹脂のポリスチレン換算の重量平均分子量は8000〜70000の範囲であることが好ましく、10000〜60000の範囲であることがより好ましく、20000〜60000の範囲であることがさらに好ましい。熱可塑性樹脂のポリスチレン換算の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される。具体的には、熱可塑性樹脂のポリスチレン換算の重量平均分子量は、測定装置として島津製作所(株)製LC−9A/RID−6Aを、カラムとして昭和電工(株)製Shodex K−800P/K−804L/K−804Lを、移動相としてクロロホルム等を用いて、カラム温度を40℃として測定し、標準ポリスチレンの検量線を用いて算出することができる。
【0137】
フェノキシ樹脂としては、例えば、ビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格、ビスフェノールアセトフェノン骨格、ノボラック骨格、ビフェニル骨格、フルオレン骨格、ジシクロペンタジエン骨格、ノルボルネン骨格、ナフタレン骨格、アントラセン骨格、アダマンタン骨格、テルペン骨格、及びトリメチルシクロヘキサン骨格からなる群から選択される1種以上の骨格を有するフェノキシ樹脂が挙げられる。フェノキシ樹脂の末端は、フェノール性水酸基、エポキシ基等のいずれの官能基でもよい。フェノキシ樹脂は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。フェノキシ樹脂の具体例としては、三菱化学(株)製の「1256」及び「4250」(いずれもビスフェノールA骨格含有フェノキシ樹脂)、「YX8100」(ビスフェノールS骨格含有フェノキシ樹脂)、及び「YX6954」(ビスフェノールアセトフェノン骨格含有フェノキシ樹脂)が挙げられ、その他にも、東都化成(株)製の「FX280」及び「FX293」、三菱化学(株)製の「YX7553」、「YX7553BH30」、「YL6794」、「YL7213」、「YL7290」及び「YL7482」等が挙げられる。
【0138】
ポリビニルアセタール樹脂の具体例としては、電気化学工業(株)製の電化ブチラール4000−2、5000−A、6000−C、6000−EP、積水化学工業(株)製のエスレックBHシリーズ、BXシリーズ、KSシリーズ、BLシリーズ、BMシリーズ等が挙げられる。
【0139】
ポリイミド樹脂の具体例としては、新日本理化(株)製の「リカコートSN20」及び「リカコートPN20」が挙げられる。ポリイミド樹脂の具体例としてはまた、2官能性ヒドロキシル基末端ポリブタジエン、ジイソシアネート化合物及び四塩基酸無水物を反応させて得られる線状ポリイミド(例えば特開2006−37083号公報に記載の線状ポリイミド)、ポリシロキサン骨格含有ポリイミド(特開2002−12667号公報及び特開2000−319386号公報等に記載のポリシロキサン骨格含有ポリイミド)等の変性ポリイミドが挙げられる。
【0140】
ポリアミドイミド樹脂の具体例としては、東洋紡績(株)製の「バイロマックスHR11NN」及び「バイロマックスHR16NN」が挙げられる。ポリアミドイミド樹脂の具体例としてはまた、日立化成工業(株)製のポリシロキサン骨格含有ポリアミドイミド「KS9100」、「KS9300」等の変性ポリアミドイミドが挙げられる。
【0141】
ポリエーテルスルホン樹脂の具体例としては、住友化学(株)製の「PES5003P」等が挙げられる。
【0142】
ポリスルホン樹脂の具体例としては、ソルベイアドバンストポリマーズ(株)製のポリスルホン「P1700」、「P3500」等が挙げられる。
【0143】
樹脂組成物中の熱可塑性樹脂の含有量は、好ましくは0.1質量%〜20質量%であり、より好ましくは0.5質量%〜10質量%であり、さらに好ましくは1質量%〜5質量%である。
【0144】
−硬化促進剤−
硬化促進剤としては、例えば、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、グアニジン系硬化促進剤等が挙げられ、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤が好ましい。硬化促進剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。硬化促進剤の含有量は、エポキシ樹脂と硬化剤との不揮発成分の合計を100質量%としたとき、0.05質量%〜3質量%の範囲で使用することが好ましい。硬化促進剤としては、例えば4−ジメチルアミノピリジン(DMAP)、コバルト(III)アセチルアセトナート(Co(III)−1M)(東京化成(株))が挙げられる。
【0145】
−難燃剤−
難燃剤としては、例えば、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等が挙げられる。難燃剤は、1種単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。樹脂組成物中の難燃剤の含有量は特に限定はされないが、好ましくは0.5質量%〜10質量%であり、より好ましくは1質量%〜9質量%である。難燃剤としては、例えば、HCA−HQ(三光(株)製)が挙げられる。
【0146】
−有機充填材−
有機充填材としては、回路基板の絶縁層を形成するに際し使用し得る任意の有機充填材を使用してよく、例えば、ゴム粒子、ポリアミド微粒子、シリコーン粒子などが挙げられ、ゴム粒子が好ましい。
【0147】
ゴム粒子としては、ゴム弾性を示す樹脂に化学的架橋処理を施し、有機溶剤に不溶かつ不融とした樹脂の微粒子体である限り特に限定されず、例えば、アクリロニトリルブタジエンゴム粒子、ブタジエンゴム粒子、アクリルゴム粒子などが挙げられる。ゴム粒子としては、具体的には、XER−91(日本合成ゴム(株)製)、スタフィロイドAC3355、AC3816、AC3816N、AC3832、AC4030、AC3364、IM101(以上、アイカ工業(株)製)、パラロイドEXL2655、EXL2602(以上、呉羽化学工業(株)製)などが挙げられる。
【0148】
有機充填材の平均粒径は、好ましくは0.005μm〜1μmの範囲であり、より好ましくは0.2μm〜0.6μmの範囲である。ゴム粒子の平均粒径は、動的光散乱法を用いて測定することができる。例えば、適当な有機溶剤にゴム粒子を超音波などにより均一に分散させ、濃厚系粒径アナライザー(大塚電子(株)製「FPAR−1000」)を用いて、ゴム粒子の粒度分布を質量基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。樹脂組成物中のゴム粒子の含有量は、好ましくは1質量%〜10質量%であり、より好ましくは2質量%〜5質量%である。
【0149】
−他の成分−
樹脂組成物層に用いる樹脂組成物は、必要に応じて、他の成分を含んでいてもよい。他の成分としては、例えば、有機銅化合物、有機亜鉛化合物及び有機コバルト化合物等の有機金属化合物、並びに増粘剤、消泡剤、レベリング剤、密着性付与剤、着色剤及び硬化性樹脂等の樹脂添加剤等が挙げられる。
【0150】
プラスチックフィルム支持体付き樹脂シート60において、樹脂組成物層30Xは、2層以上の層からなる複層構造であってもよい。複層構造の樹脂組成物層30Xとする場合、その全体の厚さが上記範囲にあることが好ましい。
【0151】
プラスチックフィルム支持体付き樹脂シート60は、プラスチックフィルム支持体50に接合するように樹脂組成物層30Xを形成することによって製造することができる。
【0152】
樹脂組成物層30Xは、従来公知の任意好適な方法で、プラスチックフィルム支持体50に形成することができる。例えば、溶剤に樹脂組成物を溶解した樹脂ワニスを調製し、この樹脂ワニスを、ダイコーターなどの塗布装置を用いてプラスチックフィルム支持体50の表面に塗布し、塗布膜を乾燥させて樹脂組成物層30Xを形成することができる。
【0153】
樹脂ワニスの調製に用いられる溶剤としては、例えば、アセトン、メチルエチルケトン及びシクロヘキサノン等のケトン系溶媒、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート及びカルビトールアセテート等の酢酸エステル系溶媒、セロソルブ及びブチルカルビトール等のカルビトール系溶媒、トルエン及びキシレン等の芳香族炭化水素系溶媒、ジメチルホルムアミド、ジメチルアセトアミド及びN−メチルピロリドン等のアミド系溶媒等を挙げることができる。溶剤は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0154】
塗布膜の乾燥は、加熱、熱風吹きつけ等の公知の乾燥方法により実施してよい。樹脂組成物層30X中に溶剤が多く残留すると、硬化後に膨れが発生する原因となるため、樹脂組成物中の残留溶剤量が通常10質量%以下、好ましくは5質量%以下となるように乾燥させる。樹脂ワニス中の有機溶剤の沸点によっても異なるが、例えば30質量%〜60質量%の溶剤を含む樹脂ワニスを用いる場合、50℃〜150℃で3分間〜10分間乾燥させることにより、樹脂組成物層30Xを形成することができる。
【0155】
プラスチックフィルム支持体付き樹脂シート60において、樹脂組成物層30Xのプラスチックフィルム支持体50と接合していない面(即ち、プラスチックフィルム支持体50とは反対側の面)には、プラスチックフィルム支持体50に準じた保護フィルムをさらに積層することができる。保護フィルムの厚さは、特に限定されず、例えば、1μm〜40μmであってよい。保護フィルムを積層することにより、樹脂組成物層30Xの表面へのゴミ等の付着やキズを防止することができる。プラスチックフィルム支持体付き樹脂シート60は、ロール状に巻きとって保存することが可能であり、回路基板10を製造する際には、保護フィルムを剥がすことによって使用可能となる。
【0156】
[半導体装置]
本発明の製造方法により製造された回路基板10を用いて、例えば所望の機能を有する半導体チップをこれに搭載することにより、回路基板10を備える半導体装置を製造することができる。
【0157】
かかる半導体装置の例としては、電気製品(例えば、コンピューター、携帯電話、デジタルカメラ及びテレビ等)及び乗物(例えば、自動二輪車、自動車、電車、船舶及び航空機等)等に供される各種半導体装置が挙げられる。
【実施例】
【0158】
本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下において、「部」及び「%」は、別途明示のない限り、それぞれ「質量部」及び「質量%」を意味する。
【0159】
以下、実施例1〜3及び比較例1〜4について説明する。
【0160】
〔サンプルの作成、並びに評価〕
(1)配線基板の下地処理
直径150μmの円形の導体パターン(配線パターン)が両面に形成されたガラス布基材エポキシ樹脂積層板(銅箔の厚さ18μm、基板の厚さ0.3mm、サイズ510mm×340mm、パナソニック(株)製「R5715ES」を用いて導体パターン(残銅率約70%)を形成した配線基板)の両面に対し、処理(i)メック(株)製「CZ8100」にて厚さにして約0.6μmエッチングして除去し導体パターンの表面の粗化処理を行って得たサンプル(i)と、処理(i)の代わりに処理(ii)導体パターンの表面にメック(株)製「フラットボンド」処理を行って得たサンプル(ii)とを用意した。
【0161】
(導体層の表面の算術平均粗さ(Ra値)の測定)
非接触型表面粗さ計(ビーコインスツルメンツ社製WYKO NT3300)を用いて、VSIコンタクトモード、50倍レンズにより測定範囲を121μm×92μmとして得られる数値としてRa値を求めた。なお、Ra値はサンプル(i)及びサンプル(ii)それぞれの10点の測定値の平均値を求めることにより得た値である。CZ8100で処理したサンプル(i)のRa値は270nmであり、フラットボンド処理を行ったサンプル(ii)ではRa値は160nmであった。このように本実施例では、Ra値が従来の処理(厚さにして1μm〜2μm程度のエッチング)によるRa値(500nm〜700nm)と比較してより小さくされている。
【0162】
(2)プラスチックフィルム支持体付き樹脂シートの積層工程
下記作製例に示されるとおりに作製されたプラスチックフィルム支持体付き樹脂シート(プラスチックフィルム支持体付きプリプレグ)(サイズ504mm×334mm)の保護フィルムを剥離し、バッチ式真空加圧ラミネーター(ニチゴー・モートン(株)製、2ステージビルドアップラミネーター、CVP700)を用いて、樹脂組成物層が前記(1)で処理された配線基板と接するように、配線基板の両面に積層した。この積層工程は、30秒間減圧して気圧を13hPa以下とした後、温度110℃、圧力0.74MPaの条件にて30秒間圧着させることにより実施した。次いで、温度110℃、圧力0.5MPaの条件にて60秒間熱プレス工程を行った。
【0163】
プラスチックフィルム支持体付き樹脂シートがプラスチックフィルム支持体付きプリプレグである場合には、配線基板の両面にプラスチックフィルム支持体付きプリプレグを接合した後、積層工程を、30秒間減圧して気圧を13hPa以下とし、温度120℃、圧力0.74MPaの条件で60秒間圧着させることにより実施した。次いで、温度を120℃、圧力0.5MPaの条件で90秒間熱プレス工程を行った。
【0164】
(導体層と絶縁層との密着強度(ピール強度)の測定及び評価)
下記(a)〜(c)の処理によりピール強度を測定した。
(a)銅箔の下地処理
三井金属鉱山(株)製3EC−III(電解銅箔、厚さ35μm)の光沢面側を、処理(i)メック(株)製「CZ8100」にて厚さにして0.6μmエッチングして除去し銅箔の表面の粗化処理を行って得たサンプル(i)と、前記処理(i)の代わりに処理(ii)メック(株)製「フラットボンド」処理により、銅箔の表面の処理を行って得たサンプル(ii)とを用意した。銅箔の表面の粗度は、CZ8100で処理したサンプル(i)についてはRa値が270(nm)であり、フラットボンド処理を行ったサンプル(ii)についてはRa値が160(nm)であった。
【0165】
(b)銅箔のラミネート及び絶縁層の形成
上記(2)においてラミネートされたプラスチックフィルム支持体付き樹脂シート(プラスチックフィルム支持体付きプリプレグ)からプラスチックフィルム支持体(PETフィルム)を剥離し、上記(a)で処理された銅箔の光沢面側を樹脂組成物層側に向けて、上記(2)の積層工程と同様の条件で、銅箔を、配線基板の両面に形成された樹脂組成物層にラミネートした。120℃で30分間、次いで175℃で30分間加熱処理し、樹脂組成物層を熱硬化することにより絶縁層として評価用のサンプル(回路基板)を得た。得られた回路基板を「評価基板A」と称する。またラミネートされた銅箔を導体層と称する。
【0166】
(c)導体層の引き剥がし強さ(ピール強度)の測定
上記(b)で得られた評価基板Aを150mm×30mmの小片に切断した。小片の銅箔部分に、幅10mm、長さ100mmの短冊状の切込みをいれ、銅箔のうちの短冊状の切込みの一端を剥がしてつかみ具((株)ティー・エス・イー、オートコム型試験機 AC−50C−SL)で掴み、インストロン万能試験機を用いて、室温で、50mm/分の速度で評価基板Aの表面に対して垂直方向に35mmを引き剥がした時の荷重を測定し、測定値をピール強度とした。
【0167】
測定されたピール強度が0.15kgf/cm以上であったサンプルを「○」と評価し、0.15kgf/cm未満であったサンプルを「×」と評価した。
【0168】
上記(2)のプラスチックフィルム支持体付き樹脂シートの積層工程に引き続き、下記(3)〜(7)を実施することにより評価基板B及び評価基板Cを得た。
【0169】
(3)樹脂組成物層の硬化
プラスチックフィルム支持体付き樹脂シートが積層された配線基板を、120℃で30分間、次いで175℃で30分間、又は165℃で30分間(比較例1及び2)加熱し、樹脂組成物層を熱硬化して絶縁層とした。
【0170】
(4)ビアホールの形成
プラスチックフィルム支持体側の上方からレーザーを照射して、内側にある直径150μmの円形の導体パターンの直上の絶縁層に小径のビアホールを形成した。
【0171】
ビアホールの形成工程は、下記(A)〜(D)に示したとおり条件を変えて行った。ここで実施例1〜3及び比較例1〜4との対応関係を説明する。
【0172】
実施例1、比較例1及び比較例3については下記(A)の手順に従って、実施例2及び実施例4については下記(B)の手順に従って、実施例3及び比較例4については下記(C)の手順に従って、比較例2については下記(D)の手順に従って、それぞれの絶縁層に小径のビアホールを形成した。
【0173】
(A)三菱電機(株)製COレーザー加工機「605GTWIII(−P)」を使用して、プラスチックフィルム支持体側の上方からレーザーを照射して、絶縁層にトップ径(直径)30又は31μmのビアホールを形成した。レーザーの照射条件は、マスク径が1mmであり、パルス幅が16μsであり、エネルギーが0.20mJ/ショットであり、ショット数が2であり、バーストモード(10kHz)で行った。
(B)三菱電機(株)製COレーザー加工機「605GTWIII(−P)」を使用して、プラスチックフィルム支持体側の上方からレーザーを照射して、絶縁層にトップ径(直径)25μmのビアホールを形成した。レーザーの照射条件は、マスク径が0.9mmであり、パルス幅が16μsであり、エネルギーが0.18mJ/ショットであり、ショット数が2であり、バーストモード(10kHz)で行った。
(C)ビアメカニクス(株)製COレーザー加工機「LC−2k212/2C」を使用して、プラスチックフィルム支持体側の上方からレーザーを照射して、絶縁層にトップ径(直径)40又は41μmのビアホールを形成した。レーザーの照射条件は、マスク径が2.5mmであり、パルス幅が4μsであり、パワーが0.7Wであり、ショット数が3であり、サイクルモード(2kHz)で行った。
(D)三菱電機(株)製COレーザー加工機「605GTWIII(−P)」を使用して、プラスチックフィルム支持体側の上方からレーザーを照射して、絶縁層にトップ径(直径)29μmのビアホールを形成した。レーザーの照射条件は、マスク径が0.9mmであり、パルス幅が16μsであり、エネルギーが0.36mJ/ショットであり、ショット数が2であり、バーストモード(10kHz)で行った。
【0174】
実施例1、実施例2、実施例4及び比較例1〜3で形成されたビアホールの深さdは15μmであり、実施例3及び比較例4で形成されたビアホールの深さdは23μmであった。
【0175】
(5)デスミア処理
ビアホールの形成後、プラスチックフィルム支持体を剥離し、ビアホールが設けられた回路基板に対してデスミア処理を行った。なお、デスミア処理としては、下記の湿式デスミア処理を実施した。
湿式デスミア処理:
ビアホールが設けられた回路基板を、膨潤液(アトテックジャパン(株)製「スウェリングディップ・セキュリガントP」、ジエチレングリコールモノブチルエーテル及び水酸化ナトリウムの水溶液)に60℃で10分間、次いで酸化剤溶液(アトテックジャパン(株)製「コンセントレート・コンパクトCP」、過マンガン酸カリウム濃度約6%、水酸化ナトリウム濃度約4%の水溶液)に80℃で20分間、最後に中和液(アトテックジャパン(株)製「リダクションソリューション・セキュリガントP」、硫酸水溶液)に40℃で5分間、浸漬した後、80℃で15分間乾燥した。得られた基板を「評価基板B」と称する。
【0176】
(6)ビアホールの形状の確認
上記(5)で得られた評価基板Bについて、ビアホールの開口部を表面から走査型電子顕微鏡(エスアイアイ・ナノテクノロジー(株)製SMI3050SE FIB−SEM 複合装置)にて観察した後、集束イオンビーム加工観察装置(FIB)にて中央部断面を削り出し、得られた画像からビアホールのトップ径(Z)、ビアホールの最小径(Y)、ビアホールの底部径(X)及び最小径(Y)のビアホール底部からの距離を測定し、10個のビアホールの平均値をそれぞれ求めた。
【0177】
(7)導体層の形成
評価基板Bの表面に導体層を形成するため、下記1〜7の工程を含むめっき工程(アトテックジャパン(株)製の薬液を使用した銅めっき工程)を行って導体層を形成した。
【0178】
1.アルカリクリーニング(ビアホールが設けられた絶縁層の表面の洗浄と電荷調整)
商品名:Cleaning Cleaner Securiganth 902(商品名)を用いて60℃で5分間洗浄した。
2.ソフトエッチング(ビアホール内の洗浄)
硫酸酸性ペルオキソ二硫酸ナトリウム水溶液を用いて、30℃で1分間処理した。
3.プレディップ(Pd付与のための絶縁層の表面の電荷の調整)
Pre. Dip Neoganth B(商品名)を用い、室温で1分間処理した。
4.アクティヴェーター付与(絶縁層の表面へのPdの付与)
Activator Neoganth 834(商品名)を用い、35℃で5分間処理した。
5.還元(絶縁層に付与されたPdを還元)
Reducer Neoganth WA(商品名)とReducer Acceralator 810 mod.(商品名)との混合液を用い、30℃で5分間処理した。
6.無電解銅めっき工程(Cuを絶縁層の表面(Pd表面)に析出)
Basic Solution Printganth MSK−DK(商品名)と、Copper solution Printganth MSK(商品名)と、Stabilizer Printganth MSK−DK(商品名)と、Reducer Cu(商品名)との混合液を用いて、35℃で20分間処理した。形成された無電解銅めっき層の厚さは1μmであった。
【0179】
7.電解銅めっき工程
次いで、アトテックジャパン(株)製の薬液を使用して、ビアホール内に銅が充填される条件で電解銅めっき工程を行った。その後に、エッチングによるパターニングのためのレジストパターンとして、ビアホールに対応する直径80μmのランドパターンを形成し、このランドパターンを用いて絶縁層の表面に15μmの厚さで導体パターンを有する導体層を形成した。次に、アニール処理を190℃にて60分間行って回路基板を得た。得られた回路基板を「評価基板C」と称する。
【0180】
<サーマルサイクルテスト>
上記(7)で得られた評価基板Cに対して、エスペック(株)製の小型冷熱衝撃装置「TSE−11」を用いて、−55℃で30分間の処理a及び120℃で30分間の処理bを連続的に行う処理を1サイクルとしてこれを1000サイクル行うサーマルサイクルテスト(TCB)を行った。その後、上記めっき工程によりビアホール内に充填された銅により構成されるフィルドビアを表面から走査型電子顕微鏡(エスアイアイ・ナノテクノロジー(株)製SMI3050SE FIB−SEM 複合装置)にて観察した後、FIBにて中央部断面を削り出し、10カ所のフィルドビアに対して絶縁層及び導体層のクラック、及び導体層中のボイドを観察し、下記の評価基準により評価した。
評価基準:
○:全てのフィルドビアについてクラック又はボイドが確認されなかった。
×:1個以上のフィルドビアについてクラック又はボイドが確認された。
【0181】
<調製例1>樹脂ワニス1の調製
ビスフェノール型エポキシ樹脂(エポキシ当量約165、新日鉄住金化学(株)製「ZX1059」、ビスフェノールA型とビスフェノールF型の1:1混合品)6部、ビキシレノール型エポキシ樹脂(エポキシ当量約185、三菱化学(株)製「YX4000HK」)10部、ビフェニル型エポキシ樹脂(エポキシ当量約290、日本化薬(株)製「NC3000H」)10部、及びフェノキシ樹脂(三菱化学(株)製「YX7553BH30」、不揮発成分30質量%のメチルエチルケトン(MEK)溶液)10部を、ソルベントナフサ20部に撹拌しながら加熱溶解させた。室温にまで冷却した後、そこへ、トリアジン骨格含有フェノールノボラック系硬化剤(水酸基当量146、DIC(株)製「LA−1356」、不揮発成分60質量%のMEK溶液)10部、活性エステル系硬化剤(DIC(株)製「HPC8000−65T」、活性基当量約223、不揮発成分65質量%のトルエン溶液)10部、硬化促進剤(4−ジメチルアミノピリジン(DMAP)、不揮発成分2質量%のMEK溶液)4部、難燃剤(三光(株)製「HCA−HQ」、10−(2,5−ジヒドロキシフェニル)−10−ヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、平均粒径1μm)2部、ゴム粒子(アイカ工業(株)製「スタフィロイドAC3816N」、微粉砕品)2部、アミノシラン系カップリング剤(信越化学工業(株)製「KBM573」)で表面処理されており、分級により3μm以上の粒子を除去した小径の球形シリカ((株)アドマテックス製「SO−C1」、平均粒径0.25μm、単位表面積当たりのカーボン量0.36mg/m)100部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニス1を調製した。樹脂ワニス1の配合成分及び配合量を表1に示す。
【0182】
<調製例2>樹脂ワニス2の調製
ビスフェノール型エポキシ樹脂(エポキシ当量約165、新日鉄住金化学(株)製「ZX1059」、ビスフェノールA型とビスフェノールF型の1:1混合品)6部、ナフタレン型エポキシ樹脂(DIC(株)製「HP−4032SS」、エポキシ当量約144)3部、ビキシレノール型エポキシ樹脂(エポキシ当量約185、三菱化学(株)製「YX4000HK」)9部、ビフェニル型エポキシ樹脂(エポキシ当量約290、日本化薬(株)製「NC3000H」)8部、及びフェノキシ樹脂(三菱化学(株)製「YX7553BH30」、不揮発成分30質量%のメチルエチルケトン(MEK)溶液)10部を、ソルベントナフサ20部に撹拌しながら加熱溶解させた。室温にまで冷却した後、そこへ、活性エステル系硬化剤(DIC(株)製「HPC8000−65T」、活性基当量約223、不揮発成分65質量%のトルエン溶液)30部、硬化促進剤(4−ジメチルアミノピリジン(DMAP)、不揮発成分2質量%のMEK溶液)10部、難燃剤(三光(株)製「HCA−HQ」、10−(2,5−ジヒドロキシフェニル)−10−ヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、平均粒径1μm)2部、ゴム粒子(アイカ工業(株)製「スタフィロイドAC3816N」、微粉砕品)2部、アミノシラン系カップリング剤(信越化学工業(株)製「KBM573」)で表面処理されており、分級により3μm以上の粒子を除去した小径の球形シリカ((株)アドマテックス製「SO−C1」、平均粒径0.25μm、単位表面積当たりのカーボン量0.36mg/m)100部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニス2を調製した。樹脂ワニス2の配合成分及び配合量を表1に示す。
【0183】
<調製例3>樹脂ワニス3の調製
ビスフェノール型エポキシ樹脂(エポキシ当量約165、新日鉄住金化学(株)製「ZX1059」、ビスフェノールA型とビスフェノールF型の1:1混合品)2部、ビキシレノール型エポキシ樹脂(エポキシ当量約185、三菱化学(株)製「YX4000HK」)12部、ビフェニル型エポキシ樹脂(エポキシ当量約290、日本化薬(株)製「NC3000H」)12部、及びフェノキシ樹脂(三菱化学(株)製「YX7553BH30」、不揮発成分30質量%のメチルエチルケトン(MEK)溶液)10部を、ソルベントナフサ20部に撹拌しながら加熱溶解させた。室温にまで冷却した後、そこへ、活性エステル系硬化剤(DIC(株)製「HPC8000−65T」、活性基当量約223、不揮発成分65質量%のトルエン溶液)10部、シアネートエステル系硬化剤(BADCy、ロンザ社製「Primaset(登録商標) BADCy」)5部、硬化促進剤(4−ジメチルアミノピリジン(DMAP)、不揮発成分2質量%のMEK溶液)1部、硬化促進剤(東京化成(株)製、コバルト(III)アセチルアセトナート(Co(III)−1M)、不揮発成分1質量%のMEK溶液)2部、難燃剤(三光(株)製「HCA−HQ」、10−(2,5−ジヒドロキシフェニル)−10−ヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、平均粒径1μm)2部、ゴム粒子(アイカ工業(株)製「スタフィロイドAC3816N」、微粉砕品)2部、アミノシラン系カップリング剤(信越化学工業(株)製「KBM573」)で表面処理されており、分級により3μm以上の粒子を除去した小径の球形シリカ((株)アドマテックス製「SO−C1」、平均粒径0.25μm、単位表面積当たりのカーボン量0.36mg/m)100部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニス3を調製した。樹脂ワニス3の配合成分及び配合量を表1に示す。
【0184】
<作製例1>プラスチックフィルム支持体付き樹脂シート1の作製
プラスチックフィルム支持体として、非シリコーン系離型剤(リンテック(株)製「AL−5」)で離型処理したPETフィルム(東レ(株)製「ルミラーT6AM」、厚さ38μm)を用意した。該プラスチック支持体の離型面に、ダイコーターにて樹脂ワニス1を塗布し、80℃〜110℃(平均100℃)にて3分間乾燥させ、樹脂組成物層を形成した。樹脂組成物層の厚さは20μmであった。次いで、樹脂組成物層のプラスチックフィルム支持体と接合していない面に、保護フィルムとしてポリプロピレンフィルム(王子特殊紙(株)製「アルファンMA−411」、厚さ15μm)の粗面側を貼り合わせて、プラスチックフィルム支持体付き樹脂シート1(樹脂シート1)を得た。
【0185】
<作製例2>プラスチックフィルム支持体付きプリプレグ2の作製
ソルベント法により(株)有沢製作所製1000ガラスクロス(厚さ14μm)を前記樹脂ワニス1に浸漬、含浸し、加熱することにより溶剤を揮発させ、プリプレグ中に残存する溶剤量が0.5%となるように、かつ厚さが28μmとなるよう乾燥させ、両面から、非シリコーン系離型剤(リンテック(株)製「AL−5」)で離型処理したPETフィルム(東レ(株)製「ルミラーT6AM」、厚さ38μm)の離型面と、ポリプロピレンフィルム(王子特殊紙(株)製「アルファンMA−411」、厚さ15μm)の粗面側を貼り合わせて、プラスチックフィルム支持体付きプリプレグ2(プリプレグ2)を得た。
【0186】
<作製例3>プラスチックフィルム支持体付き樹脂シート3の作製
プラスチックフィルム支持体として、非シリコーン系離型剤(リンテック(株)製「AL−5」)で離型処理したPETフィルム(東レ(株)製「ルミラーT6AM」、厚さ38μm)を用意した。該プラスチック支持体の離型面に、ダイコーターにて樹脂ワニス2を塗布し、80℃〜110℃(平均100℃)にて3分間乾燥させ、樹脂組成物層を形成した。樹脂組成物層の厚さは20μmであった。次いで、樹脂組成物層のプラスチックフィルム支持体と接合していない面に、保護フィルムとしてポリプロピレンフィルム(王子特殊紙(株)製「アルファンMA−411」、厚さ15μm)の粗面側を貼り合わせて、プラスチックフィルム支持体付き樹脂シート3(樹脂シート3)を得た。
【0187】
<作製例4>プラスチックフィルム支持体付き樹脂シート4の作製
プラスチックフィルム支持体として、非シリコーン系離型剤(リンテック(株)製「AL−5」)で離型処理したPETフィルム(東レ(株)製「ルミラーT6AM」、厚さ38μm)を用意した。該プラスチック支持体の離型面に、ダイコーターにて樹脂ワニス3を塗布し、80℃〜110℃(平均100℃)にて3分間乾燥させ、樹脂組成物層を形成した。樹脂組成物層の厚さは20μmであった。次いで、樹脂組成物層のプラスチックフィルム支持体と接合していない面に、保護フィルムとしてポリプロピレンフィルム(王子特殊紙(株)製「アルファンMA−411」、厚さ15μm)の粗面側を貼り合わせて、プラスチックフィルム支持体付き樹脂シート4(樹脂シート4)を得た。
【0188】
<作製例5>プラスチックフィルム支持体付きプリプレグ5の作製
ソルベント法により(株)有沢製作所製1000ガラスクロス(厚さ14μm)を樹脂ワニス3に浸漬、含浸し、加熱することにより溶剤を揮発させ、プリプレグ中に残存する溶剤量が0.5%となるように、かつ厚さが28μmとなるよう乾燥させ、両面から、非シリコーン系離型剤(リンテック(株)製「AL−5」)で離型処理したPETフィルム(東レ(株)製「ルミラーT6AM」、厚さ38μm)の離型面と、ポリプロピレンフィルム(王子特殊紙(株)製「アルファンMA−411」、厚さ15μm)の粗面側を貼り合わせて、プラスチックフィルム支持体付きプリプレグ5(プリプレグ5)を得た。
【0189】
なお、樹脂シート1、プリプレグ2、樹脂シート3、樹脂シート4及びプリプレグ5の樹脂組成物層の厚さ(プリプレグの場合にはガラスクロスを含む厚さ)は、接触式層厚計((株)ミツトヨ製、MCD−25MJ)を用いて測定した。
【0190】
【表1】
【0191】
実施例1にかかるサンプルは、樹脂シート1を用い、導体層の表面のRa値(表面粗度)を上記の粗化処理により270(nm)とし、上記(3)の工程において120℃で30分間、次いで175℃で30分間加熱し、樹脂組成物層を熱硬化して絶縁層とすることにより作成した。
【0192】
また、実施例2にかかるサンプルは、導体層の表面のRa値をフラットボンド処理により160(nm)とした以外は実施例1と同様にして作成した。
【0193】
実施例3にかかるサンプルは、プラスチックフィルム支持体付き樹脂シートとしてプリプレグ2を用いた以外は実施例1と同様にして作成した。
【0194】
また、実施例4にかかるサンプルは、樹脂シート3を用いた以外は実施例2と同様にして作成した。
【0195】
比較例1にかかるサンプルは、上記(3)の工程において165℃で30分間加熱し、樹脂組成物層を熱硬化して絶縁層とした以外は実施例1にかかるサンプルと同様にして作成した。
【0196】
比較例2にかかるサンプルは、導体層の表面のRa値(表面粗度)をフラットボンド処理により160(nm)とした以外は比較例1と同様にして形成した。
【0197】
比較例3にかかるサンプルは、プラスチックフィルム支持体付き樹脂シートとして樹脂シート4を用いた以外は実施例1と同様にして作成した。
【0198】
比較例4にかかるサンプルは、プラスチックフィルム支持体付き樹脂シートとしてプリプレグ5を用いた以外は実施例1と同様にして作成した。
【0199】
実施例1〜4にかかるサンプルの作成条件、態様及び評価結果を下記表2に示し、及び比較例1〜4にかかるサンプルの作成条件、態様及び評価結果を下記表3に示す。
【0200】
【表2】
【0201】
【表3】
【0202】
表2及び表3から明らかなように、ビアホール40のトップ径(Z)と最小径(Y)と底部径(X)が所定の関係を満たす実施例1〜4にかかる回路基板では、レーザーの照射により小径のビアホールを形成した場合でも、導体層、絶縁層にクラックが発生するなどの経時的な不具合の発生を効果的に抑制することができることがサーマルサイクルテストにより明らかとなった。よって本発明によれば、経時的な特性の劣化が抑制されるため信頼性を向上させることができ、製品寿命をより長くすることができ、かつ薄型化された回路基板を提供することができる。
【符号の説明】
【0203】
10 回路基板
20 配線基板
22 基板
24 導体層
24a 導体層の表面
30 絶縁層
30X 樹脂組成物層
30a 絶縁層の表面
40 ビアホール
42 抉れ部
44 底部
50 プラスチックフィルム支持体
60 プラスチックフィルム支持体付き樹脂シート
70 配線層
X 底部径
Y 最小径
Z トップ径
t 絶縁層の厚さ
d ビアホールの深さ
図1
図2
図3
図4