特許第6799166号(P6799166)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 深▲セン▼市華星光電技術有限公司の特許一覧

特許6799166AMOLED画素駆動回路および駆動方法
<>
  • 特許6799166-AMOLED画素駆動回路および駆動方法 図000002
  • 特許6799166-AMOLED画素駆動回路および駆動方法 図000003
  • 特許6799166-AMOLED画素駆動回路および駆動方法 図000004
  • 特許6799166-AMOLED画素駆動回路および駆動方法 図000005
  • 特許6799166-AMOLED画素駆動回路および駆動方法 図000006
  • 特許6799166-AMOLED画素駆動回路および駆動方法 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6799166
(24)【登録日】2020年11月24日
(45)【発行日】2020年12月9日
(54)【発明の名称】AMOLED画素駆動回路および駆動方法
(51)【国際特許分類】
   G09G 3/3233 20160101AFI20201130BHJP
   G09G 3/20 20060101ALI20201130BHJP
   H01L 51/50 20060101ALI20201130BHJP
【FI】
   G09G3/3233
   G09G3/20 624B
   G09G3/20 641D
   G09G3/20 611H
   G09G3/20 670K
   G09G3/20 642A
   G09G3/20 612E
   H05B33/14 A
【請求項の数】8
【全頁数】16
(21)【出願番号】特願2019-541835(P2019-541835)
(86)(22)【出願日】2016年12月20日
(65)【公表番号】特表2019-532357(P2019-532357A)
(43)【公表日】2019年11月7日
(86)【国際出願番号】CN2016110914
(87)【国際公開番号】WO2018072299
(87)【国際公開日】20180426
【審査請求日】2019年6月17日
(31)【優先権主張番号】201610912658.9
(32)【優先日】2016年10月18日
(33)【優先権主張国】CN
(73)【特許権者】
【識別番号】515204720
【氏名又は名称】深▲セン▼市華星光電技術有限公司
(74)【代理人】
【識別番号】100188558
【弁理士】
【氏名又は名称】飯田 雅人
(74)【代理人】
【識別番号】100154922
【弁理士】
【氏名又は名称】崔 允辰
(72)【発明者】
【氏名】▲陳▼ 小▲龍▼
(72)【発明者】
【氏名】周 明忠
(72)【発明者】
【氏名】温 亦▲謙▼
【審査官】 西島 篤宏
(56)【参考文献】
【文献】 中国特許出願公開第103187024(CN,A)
【文献】 特開2008−040450(JP,A)
【文献】 特開2006−065282(JP,A)
【文献】 特開2007−025192(JP,A)
【文献】 特開2009−271199(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G09G 3/3233
G09G 3/20
H01L 51/50
(57)【特許請求の範囲】
【請求項1】
AMOLED画素駆動回路であって、第1薄膜トランジスタ、第2薄膜トランジスタ、第3薄膜トランジスタ、第4薄膜トランジスタ、第5薄膜トランジスタ、第6薄膜トランジスタ、コンデンサ、および有機発光ダイオードを含み、
前記第1薄膜トランジスタのゲートが第1ノードに電気的に接続され、ソースが第2ノードに電気的に接続され、ドレインが第3ノードに電気的に接続され、
前記第2薄膜トランジスタのゲートが第1走査信号にアクセスし、ソースが基準電圧に電気的に接続され、ドレインが第1ノードに電気的に接続され、
前記第3薄膜トランジスタのゲートが第2走査信号にアクセスし、ソースがデータ信号にアクセスし、ドレインが第2ノードに電気的に接続され、
前記第4薄膜トランジスタのゲートが第3走査信号にアクセスし、ソースが第1ノードに電気的に接続され、ドレインが第3ノードに電気的に接続され、
前記第5薄膜トランジスタのゲートが発光信号にアクセスし、ソースが電源正電圧にアクセスし、ドレインが第3ノードに電気的に接続され、
前記第6薄膜トランジスタのゲートが発光信号にアクセスし、ソースが第2ノードに電気的に接続され、ドレインが有機発光ダイオードのアノードに電気的に接続され、
前記コンデンサの一端が第1ノードに電気的に接続され、他端がアースし、
前記有機発光ダイオードのアノードが第6薄膜トランジスタのドレインに電気的に接続され、カソードが電源負電圧にアクセスし、
前記第1走査信号、第2走査信号、第3走査信号、発光信号、およびデータ信号が組み合わせられて、順に初期化段階、閾値電圧検知段階、および駆動発光段階に対応し、
前記第1薄膜トランジスタ、第2薄膜トランジスタ、第3薄膜トランジスタ、第4薄膜トランジスタ、第5薄膜トランジスタ、および第6薄膜トランジスタはいずれもN型薄膜トランジスタであり、
前記初期化段階では、前記第1走査信号は高電位を提供し、前記第2走査信号は高電位を提供し、前記第3走査信号は低電位を提供し、前記発光信号は低電位を提供し、前記データ信号は初期化電位を提供し、
前記閾値電圧検知段階では、前記第1走査信号は低電位を提供し、前記第2走査信号は高電位を提供し、前記第3走査信号は高電位を提供し、前記発光信号は低電位を提供し、前記データ信号は表示データ電位を提供し、
前記駆動発光段階では、前記第1、第2、および第3走査信号はいずれも低電位を提供し、前記発光信号は高電位を提供するAMOLED画素駆動回路。
【請求項2】
前記第1薄膜トランジスタ、第2薄膜トランジスタ、第3薄膜トランジスタ、第4薄膜トランジスタ、第5薄膜トランジスタ、および第6薄膜トランジスタはいずれも低温多結晶シリコン薄膜トランジスタ、酸化物半導体薄膜トランジスタ、またはアモルファスシリコン薄膜トランジスタである請求項1に記載のAMOLED画素駆動回路。
【請求項3】
前記第1走査信号、第2走査信号、第3走査信号、および発光信号はいずれも外部シーケンスコントローラにより提供される請求項1に記載のAMOLED画素駆動回路。
【請求項4】
AMOLED画素駆動方法であって、
AMOLED画素駆動回路を提供するステップ1と、
初期化段階に入るステップ2と、
閾値電圧検知段階に入るステップ3と、
駆動発光段階に入るステップ4と、を含み
ステップ1では、前記AMOLED画素駆動回路は、第1薄膜トランジスタ、第2薄膜トランジスタ、第3薄膜トランジスタ、第4薄膜トランジスタ、第5薄膜トランジスタ、第6薄膜トランジスタ、コンデンサ、および有機発光ダイオードを備え、
前記第1薄膜トランジスタのゲートが第1ノードに電気的に接続され、ソースが第2ノードに電気的に接続され、ドレインが第3ノードに電気的に接続され、
前記第2薄膜トランジスタのゲートが第1走査信号にアクセスし、ソースが基準電圧に電気的に接続され、ドレインが第1ノードに電気的に接続され、
前記第3薄膜トランジスタのゲートが第2走査信号にアクセスし、ソースがデータ信号にアクセスし、ドレインが第2ノードに電気的に接続され、
前記第4薄膜トランジスタのゲートが第3走査信号にアクセスし、ソースが第1ノードに電気的に接続され、ドレインが第3ノードに電気的に接続され、
前記第5薄膜トランジスタのゲートが発光信号にアクセスし、ソースが電源正電圧にアクセスし、ドレインが第3ノードに電気的に接続され、
前記第6薄膜トランジスタのゲートが発光信号にアクセスし、ソースが第2ノードに電気的に接続され、ドレインが有機発光ダイオードのアノードに電気的に接続され、
前記コンデンサの一端が第1ノードに電気的に接続され、他端がアースし、
前記有機発光ダイオードのアノードが第6薄膜トランジスタのドレインに電気的に接続され、カソードが電源負電圧にアクセスし、
ステップ2では、前記第1走査信号は第2薄膜トランジスタがオンになるように制御し、前記第2走査信号は第3薄膜トランジスタがオンになるように制御し、前記第3走査信号は第4薄膜トランジスタがオフになるように制御し、前記発光信号は第5、および第6薄膜トランジスタがオフになるように制御し、前記データ信号は初期化電位を提供し、第1ノードは基準電圧を書き込み、第2ノードは初期化電位を書き込み、
ステップ3では、前記第1走査信号は第2薄膜トランジスタがオフになるように制御し、前記第2走査信号は第3薄膜トランジスタがオンになるように制御し、前記第3走査信号は第4薄膜トランジスタがオンになるように制御し、前記発光信号は第5、および第6薄膜トランジスタがオフになるように制御し、前記データ信号は表示データ電位を提供し、オンになった第4薄膜トランジスタが第1薄膜トランジスタのゲートとドレインに短絡接続され、第1ノードの電圧が表示データ電位と第1薄膜トランジスタの閾値電圧の合計に達し、第1ノードの電圧がコンデンサに記憶され、
ステップ4では、前記第1、第2、および第3走査信号はそれぞれ第2、第3、および第4薄膜トランジスタがオフになるように制御し、前記発光信号は第5、および第6薄膜トランジスタがオンになるように制御し、コンデンサの記憶作用により、第1ノードの電圧を表示データ電位と第1薄膜トランジスタの閾値電圧の合計に保持し、第3ノードは電源正電圧を書き込き、第1薄膜トランジスタがオンになり、有機発光ダイオードが発光し、且つ前記有機発光ダイオードを流れる電流が第1薄膜トランジスタの閾値電圧と無関係であるAMOLED画素駆動方法。
【請求項5】
前記第1薄膜トランジスタ、第2薄膜トランジスタ、第3薄膜トランジスタ、第4薄膜トランジスタ、第5薄膜トランジスタ、および第6薄膜トランジスタはいずれも低温多結晶シリコン薄膜トランジスタ、酸化物半導体薄膜トランジスタ、またはアモルファスシリコン薄膜トランジスタである請求項に記載のAMOLED画素駆動方法。
【請求項6】
前記第1走査信号、第2走査信号、第3走査信号、および発光信号はいずれも外部シーケンスコントローラにより提供される請求項に記載のAMOLED画素駆動方法。
【請求項7】
前記第1薄膜トランジスタ、第2薄膜トランジスタ、第3薄膜トランジスタ、第4薄膜トランジスタ、第5薄膜トランジスタ、および第6薄膜トランジスタはいずれもN型薄膜トランジスタであり、
前記初期化段階では、前記第1走査信号は高電位を提供し、前記第2走査信号は高電位を提供し、前記第3走査信号は低電位を提供し、前記発光信号は低電位を提供し、前記データ信号は初期化電位を提供し、
前記閾値電圧検知段階では、前記第1走査信号は低電位を提供し、前記第2走査信号は高電位を提供し、前記第3走査信号は高電位を提供し、前記発光信号は低電位を提供し、前記データ信号は表示データ電位を提供し、
前記駆動発光段階では、前記第1、第2、および第3走査信号はいずれも低電位を提供し、前記発光信号は高電位を提供する請求項に記載のAMOLED画素駆動方法。
【請求項8】
AMOLED画素駆動回路であって、
第1薄膜トランジスタ、第2薄膜トランジスタ、第3薄膜トランジスタ、第4薄膜トランジスタ、第5薄膜トランジスタ、第6薄膜トランジスタ、コンデンサ、および有機発光ダイオードを含み、
前記第1薄膜トランジスタのゲートが第1ノードに電気的に接続され、ソースが第2ノードに電気的に接続され、ドレインが第3ノードに電気的に接続され、
前記第2薄膜トランジスタのゲートが第1走査信号にアクセスし、ソースが基準電圧に電気的に接続され、ドレインが第1ノードに電気的に接続され、
前記第3薄膜トランジスタのゲートが第2走査信号にアクセスし、ソースがデータ信号にアクセスし、ドレインが第2ノードに電気的に接続され、
前記第4薄膜トランジスタのゲートが第3走査信号にアクセスし、ソースが第1ノードに電気的に接続され、ドレインが第3ノードに電気的に接続され、
前記第5薄膜トランジスタのゲートが発光信号にアクセスし、ソースが電源正電圧にアクセスし、ドレインが第3ノードに電気的に接続され、
前記第6薄膜トランジスタのゲートが発光信号にアクセスし、ソースが第2ノードに電気的に接続され、ドレインが有機発光ダイオードのアノードに電気的に接続され、
前記コンデンサの一端が第1ノードに電気的に接続され、他端がアースし、
前記有機発光ダイオードのアノードが第6薄膜トランジスタのドレインに電気的に接続され、カソードが電源負電圧にアクセスし、
前記第1薄膜トランジスタ、第2薄膜トランジスタ、第3薄膜トランジスタ、第4薄膜トランジスタ、第5薄膜トランジスタ、および第6薄膜トランジスタはいずれも低温多結晶シリコン薄膜トランジスタ、酸化物半導体薄膜トランジスタ、またはアモルファスシリコン薄膜トランジスタであり、
前記第1走査信号、第2走査信号、第3走査信号、および発光信号はいずれも外部シーケンスコントローラにより提供され、
前記第1走査信号、第2走査信号、第3走査信号、発光信号、およびデータ信号が組み合わせられて、順に初期化段階、閾値電圧検知段階、および駆動発光段階に対応し、
前記第1薄膜トランジスタ、第2薄膜トランジスタ、第3薄膜トランジスタ、第4薄膜トランジスタ、第5薄膜トランジスタ、および第6薄膜トランジスタはいずれもN型薄膜トランジスタであり、
前記初期化段階では、前記第1走査信号は高電位を提供し、前記第2走査信号は高電位を提供し、前記第3走査信号は低電位を提供し、前記発光信号は低電位を提供し、前記データ信号は初期化電位を提供し、
前記閾値電圧検知段階では、前記第1走査信号は低電位を提供し、前記第2走査信号は高電位を提供し、前記第3走査信号は高電位を提供し、前記発光信号は低電位を提供し、前記データ信号は表示データ電位を提供し、
前記駆動発光段階では、前記第1、第2、および第3走査信号はいずれも低電位を提供し、前記発光信号は高電位を提供するAMOLED画素駆動回路。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は表示技術分野に関し、特にAMOLED画素駆動回路および駆動方法に関する。
【背景技術】
【0002】
有機発光ダイオード(Organic Light Emitting Display、OLED)表示装置は、自己発光が可能であり、駆動電圧が低く、発光効率が高く、応答時間が短く、解像度とコントラストが高く、視野角が180°に近く、使用可能な温度範囲が広く、フレキシブル表示や大面積のフルカラー表示を実現できるなどの多くの利点を有し、最も有望な表示装置として業界によって認められた。
【0003】
OLED表示装置は、駆動方式によってパッシブマトリクスOLED(Passive Matrix OLED、PMOLED)とアクティブマトリクスOLED(Active Matrix OLED、AMOLED)の2種、すなわち直接アドレッシングと薄膜トランジスタ(Thin Film Transistor、TFT)マトリクスアドレッシングの2種に分類することができる。AMOLEDは、アレイ状に配列された画素を有し、アクティブ表示タイプであり、発光効率が高く、一般的に高解像度の大型表示装置として用いられる。
【0004】
AMOLEDは電流駆動デバイスであり、電流が有機発光ダイオードを流れるとき、有機発光ダイオードが発光し、且つ発光の明るさが有機発光ダイオード自体を流れる電流によって決まる。ほとんどの従来の集積回路(Integrated Circuit、IC)が電圧信号のみを伝送するため、AMOLEDの画素駆動回路は電圧信号から電流信号への変換を行う必要がある。
【0005】
従来のAMOLED画素駆動回路は、一般的に2T1Cであり、すなわち2つの薄膜トランジスタと1つのコンデンサからなる構造であり、図1に示すように、従来の2T1C画素駆動回路は、第1薄膜トランジスタT10、第2薄膜トランジスタT20、コンデンサC10、および有機発光ダイオードD10を備え、第1薄膜トランジスタT10のゲートが第2薄膜トランジスタT20のドレインに電気的に接続され、ドレインが電源正電圧OVDDにアクセスし、ソースが有機発光ダイオードD10のアノードに電気的に接続され、第2薄膜トランジスタT20のゲートがゲート駆動信号Gateにアクセスし、ソースがデータ信号Dataにアクセスし、ドレインが第1薄膜トランジスタT10のゲートに電気的に接続され、コンデンサC10の一端が第1薄膜トランジスタT10のゲートに電気的に接続され、他端が第1薄膜トランジスタT10のドレインに電気的に接続され、有機発光ダイオードD10のアノードが第1薄膜トランジスタT10のソースに電気的に接続され、カソードが電源負電圧OVSSにアクセスする。該2T1CのAMOLED画素駆動回路が作動するとき、有機発光ダイオードD10を流れる電流が下記式を満たす。
【0006】
I=k×(Vgs−Vth)
式中、Iは有機発光ダイオードD10を流れる電流、kは駆動薄膜トランジスタ、すなわち第1薄膜トランジスタT10の特性に関連する定数係数、Vgsは駆動薄膜トランジスタ、すなわち第1薄膜トランジスタT10のゲートとソースの電圧差、Vthは駆動薄膜トランジスタ、すなわち第1薄膜トランジスタT10の閾値電圧であり、以上からわかるように、有機発光ダイオードD10を流れる電流は駆動薄膜トランジスタ閾値電圧に関連する。
【0007】
パネルを製造するプロセスの不安定性などの原因のため、パネル内の各画素駆動回路における駆動薄膜トランジスタの閾値電圧に差別が発生し、長時間使用すると薄膜トランジスタの材料が老化して劣化し、その結果、駆動薄膜トランジスタの閾値電圧がドリフトして、有機発光ダイオードを流れる電流が不安定になるという問題を引き起こし、パネル表示の不均一さが発生してしまう。従来の2T1C回路においては、駆動薄膜トランジスタの閾値電圧ドリフトを調整により改善することができず、従って、新たな薄膜トランジスタまたは新たな信号を追加する方式で閾値電圧ドリフトによる影響を弱め、すなわちAMOLED画素駆動回路に補償機能を持たせる必要がある。
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明は、駆動薄膜トランジスタの閾値電圧を効果的に補償し、有機発光ダイオードを流れる電流を安定化させ、有機発光ダイオードの発光の明るさの均一性を確保し、画面の表示効果を改善することができるAMOLED画素駆動回路を提供することを目的とする。
【0009】
本発明は、駆動薄膜トランジスタの閾値電圧を効果的に補償し、閾値電圧ドリフトによって有機発光ダイオードを流れる電流が不安定になるという問題を解決し、有機発光ダイオードの発光の明るさを均一にして、画面の表示効果を改善することができるAMOLED画素駆動方法を提供することをさらなる目的とする。
【0010】
上記目的を達成させるために、本発明はAMOLED画素駆動回路を提供し、前記AMOLED画素駆動回路は、第1薄膜トランジスタ、第2薄膜トランジスタ、第3薄膜トランジスタ、第4薄膜トランジスタ、第5薄膜トランジスタ、第6薄膜トランジスタ、コンデンサ、および有機発光ダイオードを備え、
前記第1薄膜トランジスタのゲートが第1ノードに電気的に接続され、ソースが第2ノードに電気的に接続され、ドレインが第3ノードに電気的に接続され、
前記第2薄膜トランジスタのゲートが第1走査信号にアクセスし、ソースが基準電圧に電気的に接続され、ドレインが第1ノードに電気的に接続され、
前記第3薄膜トランジスタのゲートが第2走査信号にアクセスし、ソースがデータ信号にアクセスし、ドレインが第2ノードに電気的に接続され、
前記第4薄膜トランジスタのゲートが第3走査信号にアクセスし、ソースが第1ノードに電気的に接続され、ドレインが第3ノードに電気的に接続され、
前記第5薄膜トランジスタのゲートが発光信号にアクセスし、ソースが電源正電圧にアクセスし、ドレインが第3ノードに電気的に接続され、
前記第6薄膜トランジスタのゲートが発光信号にアクセスし、ソースが第2ノードに電気的に接続され、ドレインが有機発光ダイオードのアノードに電気的に接続され、
前記コンデンサの一端が第1ノードに電気的に接続され、他端がアースし、
前記有機発光ダイオードのアノードが第6薄膜トランジスタのドレインに電気的に接続され、カソードが電源負電圧にアクセスする。
【0011】
前記第1薄膜トランジスタ、第2薄膜トランジスタ、第3薄膜トランジスタ、第4薄膜トランジスタ、第5薄膜トランジスタ、および第6薄膜トランジスタはいずれも低温多結晶シリコン薄膜トランジスタ、酸化物半導体薄膜トランジスタ、またはアモルファスシリコン薄膜トランジスタである。
【0012】
前記第1走査信号、第2走査信号、第3走査信号、および発光信号はいずれも外部シーケンスコントローラにより提供される。
【0013】
前記第1走査信号、第2走査信号、第3走査信号、発光信号、およびデータ信号が組み合わせられて、順に初期化段階、閾値電圧検知段階、および駆動発光段階に対応する。
【0014】
前記第1薄膜トランジスタ、第2薄膜トランジスタ、第3薄膜トランジスタ、第4薄膜トランジスタ、第5薄膜トランジスタ、および第6薄膜トランジスタはいずれもN型薄膜トランジスタであり、
前記初期化段階では、前記第1走査信号は高電位を提供し、前記第2走査信号は高電位を提供し、前記第3走査信号は低電位を提供し、前記発光信号は低電位を提供し、前記データ信号は初期化電位を提供し、
前記閾値電圧検知段階では、前記第1走査信号は低電位を提供し、前記第2走査信号は高電位を提供し、前記第3走査信号は高電位を提供し、前記発光信号は低電位を提供し、 前記データ信号は表示データ電位を提供し、
前記駆動発光段階では、前記第1、第2、および第3走査信号はいずれも低電位を提供し、前記発光信号は高電位を提供する。
【0015】
本発明は、さらに、AMOLED画素駆動方法を提供し、前記AMOLED画素駆動方法は、
AMOLED画素駆動回路を提供するステップ1と、
初期化段階に入るステップ2と、
閾値電圧検知段階に入るステップ3と、
駆動発光段階に入るステップ4とを含み、
ステップ1では、前記AMOLED画素駆動回路は、第1薄膜トランジスタ、第2薄膜トランジスタ、第3薄膜トランジスタ、第4薄膜トランジスタ、第5薄膜トランジスタ、第6薄膜トランジスタ、コンデンサ、および有機発光ダイオードを備え、
前記第1薄膜トランジスタのゲートが第1ノードに電気的に接続され、ソースが第2ノードに電気的に接続され、ドレインが第3ノードに電気的に接続され、
前記第2薄膜トランジスタのゲートが第1走査信号にアクセスし、ソースが基準電圧に電気的に接続され、ドレインが第1ノードに電気的に接続され、
前記第3薄膜トランジスタのゲートが第2走査信号にアクセスし、ソースがデータ信号にアクセスし、ドレインが第2ノードに電気的に接続され、
前記第4薄膜トランジスタのゲートが第3走査信号にアクセスし、ソースが第1ノードに電気的に接続され、ドレインが第3ノードに電気的に接続され、
前記第5薄膜トランジスタのゲートが発光信号にアクセスし、ソースが電源正電圧にアクセスし、ドレインが第3ノードに電気的に接続され、
前記第6薄膜トランジスタのゲートが発光信号にアクセスし、ソースが第2ノードに電気的に接続され、ドレインが有機発光ダイオードのアノードに電気的に接続され、
前記コンデンサの一端が第1ノードに電気的に接続され、他端がアースし、
前記有機発光ダイオードのアノードが第6薄膜トランジスタのドレインに電気的に接続され、カソードが電源負電圧にアクセスし、
ステップ2では、前記第1走査信号は第2薄膜トランジスタがオンになるように制御し、前記第2走査信号は第3薄膜トランジスタがオンになるように制御し、前記第3走査信号は第4薄膜トランジスタがオフになるように制御し、前記発光信号は第5、および第6薄膜トランジスタがオフになるように制御し、前記データ信号は初期化電位を提供し、第1ノードは基準電圧を書き込み、第2ノードは初期化電位を書き込み、
ステップ3では、前記第1走査信号は第2薄膜トランジスタがオフになるように制御し、前記第2走査信号は第3薄膜トランジスタがオンになるように制御し、前記第3走査信号は第4薄膜トランジスタがオンになるように制御し、前記発光信号は第5、および第6薄膜トランジスタがオフになるように制御し、前記データ信号は表示データ電位を提供し、オンになった第4薄膜トランジスタが第1薄膜トランジスタのゲートとドレインに短絡接続され、第1ノードの電圧が表示データ電位と第1薄膜トランジスタの閾値電圧の合計に達し、第1ノードの電圧がコンデンサに記憶され、
ステップ4では、前記第1、第2、および第3走査信号はそれぞれ第2、第3、および第4薄膜トランジスタがオフになるように制御し、前記発光信号は第5、および第6薄膜トランジスタがオンになるように制御し、コンデンサの記憶作用により、第1ノードの電圧を表示データ電位と第1薄膜トランジスタの閾値電圧の合計に保持し、第3ノードは電源正電圧を書き込き、第1薄膜トランジスタがオンになり、有機発光ダイオードが発光し、且つ前記有機発光ダイオードを流れる電流は第1薄膜トランジスタの閾値電圧と無関係である。
【0016】
前記第1薄膜トランジスタ、第2薄膜トランジスタ、第3薄膜トランジスタ、第4薄膜トランジスタ、第5薄膜トランジスタ、および第6薄膜トランジスタはいずれも低温多結晶シリコン薄膜トランジスタ、酸化物半導体薄膜トランジスタ、またはアモルファスシリコン薄膜トランジスタである。
【0017】
前記第1走査信号、第2走査信号、第3走査信号、および発光信号はいずれも外部シーケンスコントローラにより提供される。
【0018】
前記第1薄膜トランジスタ、第2薄膜トランジスタ、第3薄膜トランジスタ、第4薄膜トランジスタ、第5薄膜トランジスタ、および第6薄膜トランジスタはいずれもN型薄膜トランジスタであり、
前記初期化段階では、前記第1走査信号は高電位を提供し、前記第2走査信号は高電位を提供し、前記第3走査信号は低電位を提供し、前記発光信号は低電位を提供し、前記データ信号は初期化電位を提供し、
前記閾値電圧検知段階では、前記第1走査信号は低電位を提供し、前記第2走査信号は高電位を提供し、前記第3走査信号は高電位を提供し、前記発光信号は低電位を提供し、前記データ信号は表示データ電位を提供し、
前記駆動発光段階では、前記第1、第2、および第3走査信号はいずれも低電位を提供し、前記発光信号は高電位を提供する。
【0019】
本発明はさらに、AMOLED画素駆動回路を提供し、前記AMOLED画素駆動回路は、第1薄膜トランジスタ、第2薄膜トランジスタ、第3薄膜トランジスタ、第4薄膜トランジスタ、第5薄膜トランジスタ、第6薄膜トランジスタ、コンデンサ、および有機発光ダイオードを備え、
前記第1薄膜トランジスタのゲートが第1ノードに電気的に接続され、ソースが第2ノードに電気的に接続され、ドレインが第3ノードに電気的に接続され、
前記第2薄膜トランジスタのゲートが第1走査信号にアクセスし、ソースが基準電圧に電気的に接続され、ドレインが第1ノードに電気的に接続され、
前記第3薄膜トランジスタのゲートが第2走査信号にアクセスし、ソースがデータ信号にアクセスし、ドレインが第2ノードに電気的に接続され、
前記第4薄膜トランジスタのゲートが第3走査信号にアクセスし、ソースが第1ノードに電気的に接続され、ドレインが第3ノードに電気的に接続され、
前記第5薄膜トランジスタのゲートが発光信号にアクセスし、ソースが電源正電圧にアクセスし、ドレインが第3ノードに電気的に接続され、
前記第6薄膜トランジスタのゲートが発光信号にアクセスし、ソースが第2ノードに電気的に接続され、ドレインが有機発光ダイオードのアノードに電気的に接続され、
前記コンデンサの一端が第1ノードに電気的に接続され、他端がアースし、
前記有機発光ダイオードのアノードが第6薄膜トランジスタのドレインに電気的に接続され、カソードが電源負電圧にアクセスし、
前記第1薄膜トランジスタ、第2薄膜トランジスタ、第3薄膜トランジスタ、第4薄膜トランジスタ、第5薄膜トランジスタ、および第6薄膜トランジスタはいずれも低温多結晶シリコン薄膜トランジスタ、酸化物半導体薄膜トランジスタ、またはアモルファスシリコン薄膜トランジスタであり、
前記第1走査信号、第2走査信号、第3走査信号、および発光信号はいずれも外部シーケンスコントローラにより提供される。
【発明の効果】
【0020】
本発明の有益な効果は以下のとおりである。本発明に係るAMOLED画素駆動回路は6T1C構造であり、初期化段階では、第2、および第3薄膜トランジスタがオンになり、第4、第5、および第6薄膜トランジスタがオフになるように制御し、第1薄膜トランジスタ、すなわち駆動薄膜トランジスタゲートに基準電圧を書き込ませ、ソースに初期化電位を書き込ませ、閾値電圧検知段階では、第3、および第4薄膜トランジスタがオンになり、第2、第5、および第6薄膜トランジスタがオフになるように制御し、第1薄膜トランジスタのゲートの電圧を表示データ電位と第1薄膜トランジスタの閾値電圧の合計まで上昇させてコンデンサに記憶し、駆動発光段階では、第5、および第6薄膜トランジスタがオンになり、第2、第3、および第4薄膜トランジスタがオフになるように制御し、コンデンサの記憶作用により、第1薄膜トランジスタのゲート電圧を表示データ電位と第1薄膜トランジスタの閾値電圧の合計に保持し、第1薄膜トランジスタがオンになり、有機発光ダイオードを発光させ、且つ有機発光ダイオードを流れる電流が第1薄膜トランジスタの閾値電圧と無関係であり、それによって、有機発光ダイオードの発光の明るさの均一性を確保し、画面の表示効果を改善することができる。本発明に係るAMOLED画素駆動方法は、駆動薄膜トランジスタの閾値電圧を効果的に補償し、閾値電圧ドリフトにより有機発光ダイオードを流れる電流が不安定になるという問題を解決し、有機発光ダイオードの発光の明るさを均一にし、画面の表示効果を改善することができる。
【0021】
本発明の特徴および技術内容をさらに理解するために、以下の本発明に関する詳細な説明および図面を参照することができる。しかしながら、図面は参照および説明のために提供されるものに過ぎず、本発明を限定するものではない。
【図面の簡単な説明】
【0022】
図1】従来の2T1C構造のAMOLED画素駆動回路の回路図である。
図2】本発明のAMOLED画素駆動回路の回路図である。
図3】本発明のAMOLED画素駆動回路のシーケンス図である。
図4】本発明のAMOLED画素駆動方法のステップ2の模式図である。
図5】本発明のAMOLED画素駆動方法のステップ3の模式図である。
図6】本発明のAMOLED画素駆動方法のステップ4の模式図である。
【発明を実施するための形態】
【0023】
本発明が用いる技術案およびその効果をさらに説明するために、以下、本発明の好適な実施例およびその図面を参照しながら詳細に説明する。
【0024】
図2および図3に示すように、本発明は、第1薄膜トランジスタT1、第2薄膜トランジスタT2、第3薄膜トランジスタT3、第4薄膜トランジスタT4、第5薄膜トランジスタT5、第6薄膜トランジスタT6、コンデンサC1、および有機発光ダイオードD1を備える6T1C構造のAMOLED画素駆動回路を提供する。
【0025】
前記第1薄膜トランジスタT1のゲートが第1ノードGに電気的に接続され、ソースが第2ノードSに電気的に接続され、ドレインが第3ノードDに電気的に接続され、
前記第2薄膜トランジスタT2のゲートが第1走査信号Scan1にアクセスし、ソースが基準電圧Vrefに電気的に接続され、ドレインが第1ノードGに電気的に接続され、
前記第3薄膜トランジスタT3のゲートが第2走査信号Scan2にアクセスし、ソースがデータ信号Dataにアクセスし、ドレインが第2ノードSに電気的に接続され、
前記第4薄膜トランジスタT4のゲートが第3走査信号Scan3にアクセスし、ソースが第1ノードGに電気的に接続され、ドレインが第3ノードDに電気的に接続され、
前記第5薄膜トランジスタT5のゲートが発光信号EMにアクセスし、ソースが電源正電圧OVDDにアクセスし、ドレインが第3ノードDに電気的に接続され、
前記第6薄膜トランジスタT6のゲートEMが発光信号にアクセスし、ソースが第2ノードSに電気的に接続され、ドレインが有機発光ダイオードD1のアノードに電気的に接続され、
前記コンデンサC1の一端が第1ノードGに電気的に接続され、他端がアースし、
前記有機発光ダイオードD1のアノードが第6薄膜トランジスタT6のドレインに電気的に接続され、カソードが電源負電圧OVSSにアクセスする。
【0026】
第1薄膜トランジスタT1は駆動薄膜トランジスタであり、有機発光ダイオードD1を駆動して発光させる。
【0027】
具体的には、前記第1薄膜トランジスタT1、第2薄膜トランジスタT2、第3薄膜トランジスタT3、第4薄膜トランジスタT4、第5薄膜トランジスタT5、および第6薄膜トランジスタT6はいずれも低温多結晶シリコン薄膜トランジスタ、酸化物半導体薄膜トランジスタ、またはアモルファスシリコン薄膜トランジスタである。
【0028】
具体的には、前記第1走査信号Scan1、第2走査信号Scan2、第3走査信号Scan3、および発光信号EMはいずれも外部シーケンスコントローラにより提供される。
【0029】
具体的には、前記第1走査信号Scan1、第2走査信号Scan2、第3走査信号Scan3、発光信号EM、およびデータ信号Dataが組み合わせられて、順に初期化段階1、閾値電圧検知段階2、および駆動発光段階3に対応する。
【0030】
図2および図3と組み合わせて、図4図6を参照すると、本発明のAMOLED画素駆動回路の作動過程は以下のとおりである。
【0031】
前記初期化段階1では、前記第1走査信号Scan1は第2薄膜トランジスタT2がオンになるように制御し、前記第2走査信号Scan2は第3薄膜トランジスタT3がオンになるように制御し、前記第3走査信号Scan3は第4薄膜トランジスタT4がオフになるように制御し、前記発光信号EMは第5、および第6薄膜トランジスタT5、T6がオフになるように制御し、前記データ信号Dataは初期化電位Viniを提供し、第2ノードS、すなわち第1薄膜トランジスタT1のソースはオンになった第3薄膜トランジスタT3を介して初期化電位Viniを書き込み、第1ノードG、すなわち第1薄膜トランジスタT1のゲートはオンになった第2薄膜トランジスタT2を介して基準電圧Vrefを書き込み、それによって、第1薄膜トランジスタT1のゲート、ソース電圧に対する初期化を完了し、
前記閾値電圧検知段階2では、前記第1走査信号Scan1は第2薄膜トランジスタT2がオフになるように制御し、前記第2走査信号Scan2は第3薄膜トランジスタT3がオンになるように制御し、前記第3走査信号Scan3は第4薄膜トランジスタT4がオンになるように制御し、前記発光信号EMは第5、および第6薄膜トランジスタT5、T6がオフになるように制御し、前記データ信号Dataは表示データ電位Vdataを提供し、オンになった第4薄膜トランジスタT4が第1薄膜トランジスタT1のゲートとドレインに短絡接続され、電位が表示データ電位Vdataと第1薄膜トランジスタT1の閾値電圧の合計に達し、すなわちVg=Vs+Vth=Vdata+Vth、(式中、Vgは第1薄膜トランジスタT1のゲートの電圧、Vsは第1薄膜トランジスタT1のソースの電圧、Vdataは表示データ電位、Vthは第1薄膜トランジスタT1の閾値電圧である)になるまで、第1ノードG、すなわち第1薄膜トランジスタT1のゲートの電圧は第1薄膜トランジスタT1のソースを介して連続的に放電し、この際に、第1薄膜トランジスタT1のゲートの電圧がコンデンサC1に記憶され、
前記駆動発光段階3では、前記第1、第2、および第3走査信号Scan1、Scan2、Scan3はそれぞれ第2、第3、および第4薄膜トランジスタT2、T3、T4がオフになるように制御し、前記発光信号EMは第5、および第6薄膜トランジスタT5、T6がオンになるように制御し、コンデンサC1の記憶作用により、第1ノードG、すなわち第1薄膜トランジスタT1のゲートの電圧を表示データ電位Vdataと第1薄膜トランジスタT1の閾値電圧の合計に保持し、第3ノードD、すなわち第1薄膜トランジスタT1のドレインはオンになった第5薄膜トランジスタT5を介して電源正電圧OVDDを書き込き、第1薄膜トランジスタT1がオンになり、有機発光ダイオードD1が発光し、
さらに、有機発光ダイオードD1を流れる電流が下記式(1)を満たすことは既知である。
【0032】
I=k×(Vgs−Vth) (1)
式中、Iは有機発光ダイオードD1を流れる電流、kは駆動薄膜トランジスタ、すなわち第1薄膜トランジスタT1の特性に関連する定数係数、Vgsは駆動薄膜トランジスタ、すなわち第1薄膜トランジスタT1のゲートとソースの電圧差、Vthは駆動薄膜トランジスタ、すなわち第1薄膜トランジスタT1の閾値電圧である。
Vgs=Vdata+Vth (2)
式(2)を式(1)に代入すると、
I=k×(Vgs−Vth)
=k×(Vdata+Vth−Vs−Vth)
=k×(Vdata−Vs)になる。
以上から分かるように、第1薄膜トランジスタT1および有機発光ダイオードD1を流れる電流値が第1薄膜トランジスタT1の閾値電圧Vthと無関係であり、駆動薄膜トランジスタの閾値電圧ドリフトを補償し、閾値電圧ドリフトにより有機発光ダイオードを流れる電流が不安定になるという問題を解決し、有機発光ダイオードの発光の明るさを均一にし、画面の表示効果を改善することができる。
【0033】
さらに、本発明の好適な実施例において、前記第1薄膜トランジスタT1、第2薄膜トランジスタT2、第3薄膜トランジスタT3、第4薄膜トランジスタT4、第5薄膜トランジスタT5、および第6薄膜トランジスタT6はいずれもN型薄膜トランジスタであり、前記初期化段階1では、前記第1走査信号Scan1は高電位を提供し、前記第2走査信号Scan2は高電位を提供し、前記第3走査信号Scan3は低電位を提供し、前記発光信号EMは低電位を提供し、前記データ信号Dataは初期化電位Viniを提供し、前記閾値電圧検知段階2では、前記第1走査信号Scan1は低電位を提供し、前記第2走査信号Scan2は高電位を提供し、前記第3走査信号Scan3は高電位を提供し、前記発光信号EMは低電位を提供し、前記データ信号Dataは表示データ電位Vdataを提供し、前記駆動発光段階3では、前記第1、第2、および第3走査信号Scan1、Scan2、Scan3はいずれも低電位を提供し、前記発光信号EMは高電位を提供する。
【0034】
図2および図3を組み合わせて、図4図6を参照すると、上記AMOLED画素駆動回路に基づいて、本発明はさらに、AMOLED画素駆動方法を提供し、AMOLED画素駆動方法はステップ1〜ステップ4を含む。
【0035】
ステップ1、AMOLED画素駆動回路を提供する。
前記AMOLED画素駆動回路は、第1薄膜トランジスタT1、第2薄膜トランジスタT2、第3薄膜トランジスタT3、第4薄膜トランジスタT4、第5薄膜トランジスタT5、第6薄膜トランジスタT6、コンデンサC1、および有機発光ダイオードD1を備え、
前記第1薄膜トランジスタT1のゲートが第1ノードGに電気的に接続され、ソースが第2ノードSに電気的に接続され、ドレインが第3ノードDに電気的に接続され、
前記第2薄膜トランジスタT2のゲートが第1走査信号Scan1にアクセスし、ソースが基準電圧Vrefに電気的に接続され、ドレインが第1ノードGに電気的に接続され、
前記第3薄膜トランジスタT3のゲートが第2走査信号Scan2にアクセスし、ソースがデータ信号Dataにアクセスし、ドレインが第2ノードSに電気的に接続され、
前記第4薄膜トランジスタT4のゲートが第3走査信号Scan3にアクセスし、ソースが第1ノードGに電気的に接続され、ドレインが第3ノードDに電気的に接続され、
前記第5薄膜トランジスタT5のゲートが発光信号EMにアクセスし、ソースが電源正電圧OVDDにアクセスし、ドレインが第3ノードDに電気的に接続され、
前記第6薄膜トランジスタT6のゲートが発光信号EMにアクセスし、ソースが第2ノードSに電気的に接続され、ドレインが有機発光ダイオードD1のアノードに電気的に接続され、
前記コンデンサC1の一端が第1ノードGに電気的に接続され、他端がアースし、
前記有機発光ダイオードD1のアノードが第6薄膜トランジスタT6のドレインに電気的に接続され、カソードが電源負電圧OVSSにアクセスする。
【0036】
第1薄膜トランジスタT1は駆動薄膜トランジスタであり、有機発光ダイオードD1を駆動して発光させる。
【0037】
具体的には、前記第1薄膜トランジスタT1、第2薄膜トランジスタT2、第3薄膜トランジスタT3、第4薄膜トランジスタT4、第5薄膜トランジスタT5、および第6薄膜トランジスタT6はいずれも低温多結晶シリコン薄膜トランジスタ、酸化物半導体薄膜トランジスタ、またはアモルファスシリコン薄膜トランジスタである。
【0038】
具体的には、前記第1走査信号Scan1、第2走査信号Scan2、第3走査信号Scan3、および発光信号EMはいずれも外部シーケンスコントローラにより提供される。
【0039】
ステップ2、初期化段階1に入る。
前記第1走査信号Scan1は第2薄膜トランジスタT2がオンになるように制御し、前記第2走査信号Scan2は第3薄膜トランジスタT3がオンになるように制御し、前記第3走査信号Scan3は第4薄膜トランジスタT4がオフになるように制御し、前記発光信号EMは第5、および第6薄膜トランジスタT5、T6がオフになるように制御し、前記データ信号Dataは初期化電位Viniを提供し、第2ノードS、すなわち第1薄膜トランジスタT1のソースはオンになった第3薄膜トランジスタT3を介して初期化電位Viniを書き込み、第1ノードG、すなわち第1薄膜トランジスタT1のゲートはオンになった第2薄膜トランジスタT2を介して基準電圧Vrefを書き込み、それによって、第1薄膜トランジスタT1のゲート、ソース電圧に対する初期化を完了する。
【0040】
ステップ3、閾値電圧検知段階2に入る。
前記第1走査信号Scan1は第2薄膜トランジスタT2がオフになるように制御し、 前記第2走査信号Scan2は第3薄膜トランジスタT3がオンになるように制御し、前記第3走査信号Scan3は第4薄膜トランジスタT4がオンになるように制御し、前記発光信号EMは第5、および第6薄膜トランジスタT5、T6がオフになるように制御し、前記データ信号Dataは表示データ電位Vdataを提供し、オンになった第4薄膜トランジスタT4が第1薄膜トランジスタT1のゲートとドレインに短絡接続され、電位が表示データ電位Vdataと第1薄膜トランジスタT1の閾値電圧の合計に達し、すなわちVg=Vs+Vth=Vdata+Vth(式中、Vgは第1薄膜トランジスタT1のゲートの電圧、Vsは第1薄膜トランジスタT1のソースの電圧、Vdataは表示データ電位、Vthは第1薄膜トランジスタT1の閾値電圧である)になるまで、第1ノードG、すなわち第1薄膜トランジスタT1のゲートの電圧は第1薄膜トランジスタT1のソースを介して連続的に放電し、この際に、第1ノードG、すなわち第1薄膜トランジスタT1のゲートの電圧がコンデンサC1に記憶される。
【0041】
ステップ4、駆動発光段階3に入る。
前記第1、第2、および第3走査信号Scan1、Scan2、Scan3はそれぞれ第2、第3、および第4薄膜トランジスタT2、T3、T4がオフになるように制御し、前記発光信号EMは第5、および第6薄膜トランジスタT5、T6がオンになるように制御し、コンデンサC1の記憶作用により、第1ノードG、すなわち第1薄膜トランジスタT1のゲートの電圧を表示データ電位Vdataと第1薄膜トランジスタT1の閾値電圧の合計に保持し、第3ノードD、すなわち第1薄膜トランジスタT1のドレインはオンになった第5薄膜トランジスタT5を介して電源正電圧OVDDを書き込き、第1薄膜トランジスタT1がオンになり、有機発光ダイオードD1が発光し、
さらに、有機発光ダイオードD1を流れる電流が下記式(1)を満たすことは既知である。
【0042】
I=k×(Vgs−Vth) (1)
式中、Iは有機発光ダイオードD1を流れる電流、kは駆動薄膜トランジスタ、すなわち第1薄膜トランジスタT1の特性に関連する定数係数、Vgsは駆動薄膜トランジスタ、すなわち第1薄膜トランジスタT1のゲートとソースの電圧差、Vthは駆動薄膜トランジスタ、すなわち第1薄膜トランジスタT1の閾値電圧である。
Vgs=Vdata+Vth (2)
式(2)を式(1)に代入すると、
I=k×(Vgs−Vth)
=k×(Vdata+Vth−Vs−Vth)
=k×(Vdata−Vs)になる。
以上から分かるように、第1薄膜トランジスタT1および有機発光ダイオードD1を流れる電流値が第1薄膜トランジスタT1の閾値電圧Vthと無関係であり、駆動薄膜トランジスタの閾値電圧ドリフトを補償し、閾値電圧ドリフトにより有機発光ダイオードを流れる電流が不安定になるという問題を解決し、有機発光ダイオードの発光の明るさを均一にし、画面の表示効果を改善することができる。
【0043】
さらに、本発明の好適な実施例において、前記第1薄膜トランジスタT1、第2薄膜トランジスタT2、第3薄膜トランジスタT3、第4薄膜トランジスタT4、第5薄膜トランジスタT5、および第6薄膜トランジスタT6はいずれもN型薄膜トランジスタであり、前記初期化段階1では、前記第1走査信号Scan1は高電位を提供し、前記第2走査信号Scan2は高電位を提供し、前記第3走査信号Scan3は低電位を提供し、前記発光信号EMは低電位を提供し、前記データ信号Dataは初期化電位Viniを提供し、前記閾値電圧検知段階2では、前記第1走査信号Scan1は低電位を提供し、前記第2走査信号Scan2は高電位を提供し、前記第3走査信号Scan3は高電位を提供し、前記発光信号EMは低電位を提供し、前記データ信号Dataは表示データ電位Vdataを提供し、前記駆動発光段階3では、前記第1、第2、および第3走査信号Scan1、Scan2、Scan3はいずれも低電位を提供し、前記発光信号EMは高電位を提供する。
【0044】
前記のとおり、本発明のAMOLED画素駆動回路は、6T1C構造であり、初期化段階では、第2、および第3薄膜トランジスタがオンになり、第4、第5、および第6薄膜トランジスタがオフになるように制御し、第1薄膜トランジスタ、すなわち駆動薄膜トランジスタゲートに基準電圧を書き込ませ、ソースに初期化電位を書き込ませ、閾値電圧誘導段階では、第3、および第4薄膜トランジスタがオンになり、第2、第5、および第6薄膜トランジスタがオフになるように制御し、第1薄膜トランジスタのゲートの電圧を表示データ電位と第1薄膜トランジスタの閾値電圧の合計まで上昇させてコンデンサに記憶し、駆動発光段階では、第5、および第6薄膜トランジスタがオンになり、第2、第3、および第4薄膜トランジスタがオフになるように制御し、コンデンサの記憶作用により、第1薄膜トランジスタのゲートの電圧を表示データ電位と第1薄膜トランジスタの閾値電圧の合計に保持し、第1薄膜トランジスタがオンになり、有機発光ダイオードを発光させ、且つ有機発光ダイオードを流れる電流は第1薄膜トランジスタの閾値電圧と無関係であり、それによって、有機発光ダイオードの発光の明るさの均一性を確保し、画面の表示効果を改善することができる。本発明のAMOLED画素駆動方法は、駆動薄膜トランジスタの閾値電圧を効果的に補償し、閾値電圧ドリフトにより有機発光ダイオードを流れる電流が不安定になるという問題を解決し、有機発光ダイオードの発光の明るさを均一にし、画面の表示効果を改善することができる。
【0045】
当業者であれば、以上の内容について本発明の技術案および技術発想に基づいて他の様々な変更および変形を行うことができ、すべてのこれらの変更および変形は本発明請求項の保護範囲に属する。
【符号の説明】
【0046】
T1 1薄膜トランジスタ
T2 第2薄膜トランジスタ
T3 第3薄膜トランジスタ
T4 第4薄膜トランジスタ
T5 第5薄膜トランジスタ
T6 第6薄膜トランジスタ
C1 コンデンサ
D 第3ノード
D1 有機発光ダイオード
OVDD 電源正電圧
図1
図2
図3
図4
図5
図6