【実施例】
【0044】
以下、実施例を示して本発明について具体的に説明するが、本発明の技術的範囲はこれに限定されるものではない。
(実施例1)
バガス(サトウキビ残渣、粒径;250μm〜500μm、120mg)を、1−エチル−3−メチルイミダゾリウムアセテート(アニオンの共役酸のDMSO中におけるpKaが12.3、4g)に溶解させ、80℃、攪拌条件下で一晩真空乾燥させた。その後、反応容器のAr置換を行い、イソプロペニルアセテート(4ml)を反応系に加えた。得られた反応溶液を80℃、攪拌条件下で一晩反応させた。反応溶液から、メタノールによる再沈殿、続く濾過により固体状の多糖類誘導体を得た。また、得られた濾液の減圧留去によりメタノール及びイソプロペニルアセテートを除き、得られた溶液を多量の水に沈殿させることで、リグニン誘導体を得た。残存の液相は、減圧留去により水を除き、イオン液体を回収した。固体状の多糖類誘導体の固体
13C NMRスペクトルを
図1のC)に、FT−IRスペクトル(ATR法)を
図2のC)示す。また、リグニン誘導体の
1H NMRスペクトルを
図3のA)に、FT−IRスペクトル(ATR法)を
図4のA)にそれぞれ示す。なお、
図1のA)、
図2のA)は市販の酢酸セルロースを示している。これらの結果から、バガスから直接的に、セルロース誘導体である酢酸セルロースが製造されたことが確認された。また、
図1のC)では、120ppm付近に現れるリグニン由来のピークが観測されなかったため、酢酸セルロースがリグニンと完全に分離した状態で得られることが明らかとなった。さらに、
図3のA)では、4.5〜5.5ppmに多糖に由来するピークが観測されなかったため、リグニン誘導体は酢酸セルロースと分離した状態で得られることが明らかとなった。
【0045】
(実施例2〜4)
バガスに代えて、バイオマス原料としてケナフ(実施例2)、ユーカリ(実施例3)及びスギ(実施例4)を用いた以外は、実施例1と同様の手順で多糖類誘導体を製造した。得られた多糖類誘導体及びリグニン誘導体のスペクトルを
図1〜4に示す。
図1において、D)はケナフより得られた多糖類誘導体、E)はユーカリより得られた多糖類誘導体、F)はスギより得られた多糖類誘導体の固体
13C NMRスペクトルを示している。また、
図2において、D)はケナフより得られた多糖類誘導体、E)はユーカリより得られた多糖類誘導体、F)はスギより得られた多糖類誘導体のFT−IRスペクトル(ATR法)を示している。また、
図3において、B)はケナフより得られたリグニン誘導体、C)はユーカリより得られたリグニン誘導体、D)はスギより得られたリグニン誘導体の
1H NMRスペクトルを示している。さらに、
図4において、B)はケナフより得られたリグニン誘導体、C)はユーカリより得られたリグニン誘導体、D)はスギより得られたリグニン誘導体のFT−IRスペクトル(ATR法)を示している。これらの結果から、ケナフ、ユーカリ及びスギを原料として、酢酸セルロース及びリグニン誘導体が直接的に得られたことが確認された。
【0046】
(実施例5)
セルロース(SIGMA−ALDRICHより購入したAvicel、600mg、[モノマー単位]
0=3.7mmol)を、1−エチル−3−メチルイミダゾリウムアセテート(20g)に溶解させ、80℃、攪拌条件下で一晩真空乾燥させた。ここで、[モノマー単位]
0とは、モノマー単位(繰り返し単位)としての濃度を表している。その後反応容器のAr置換を行い、イソプロペニルアセテート(20ml、184mmol)を反応系に加えた。得られた反応溶液を80℃、攪拌条件下で一晩反応させた。反応溶液を大過剰のメタノールで再沈殿させ、続く濾過により固体状の物質を得た。得られた物質の固体
13C スペクトル、FT−IRスペクトル(ATR法)及び
1H NMRスペクトルをそれぞれ
図1のB)、
図2のB及び
図5のB)に示す。なお、
図5のA)は市販の酢酸セルロースを示している。これらの結果から、セルロースを原料として酢酸セルロースが得られたことが確認された。
【0047】
(実施例6)
キチン(SIGMA−ALDRICHより購入、120mg、[モノマー単位]
0=0.54mmol)を、1−エチル−3−メチルイミダゾリウムアセテート(4g)に溶解させ、80℃、撹拌条件下で一晩真空乾燥させた。その後反応容器のAr置換を行い、イソプロペニルアセテート(4ml、37mmol)を反応系に加えた。得られた反応溶液を80℃、撹拌条件下で一晩反応させた。反応溶液を大過剰のメタノールで再沈殿させ、続く濾過により固体状の物質を得た。得られた物質のFT−IRスペクトル(ATR法)を
図6のB)に示す。なお、
図6のA)は原料のキチンを示している。これらの結果から、キチンを原料とするキチンのエステル交換反応の進行が確認された。
【0048】
(実施例7)
セルロース(60mg、[モノマー単位]
0=0.40mmol)を、1−エチル−3−メチルイミダゾリウムアセテート(2.0g)に溶解させ、80℃、攪拌条件下で一晩真空乾燥させた。その後反応容器のAr置換を行い、1,2−エポキシヘキサン(2ml、16.6mmol)を反応溶液に加え、アルゴン雰囲気下で反応を行った。反応終了後、メタノールに反応溶液を沈殿させ、固体物を濾過により回収した。得られた固体物を真空乾燥させ、生成物を得た。生成物の
1H NMRスペクトルを
図7に示す。この結果から、生成物はセルロースエーテルと同定された。
【0049】
(実施例8)
セルロース(60mg、[モノマー単位]
0=0.40mmol)を、1−エチル−3−メチルイミダゾリウムアセテート(4.0g)に溶解させ、80℃、攪拌条件下で一晩真空乾燥させた。その後反応容器のAr置換を行い、δ−バレロラクトン(4ml、44mmol)を加えた。得られた反応溶液を80℃、攪拌条件下で一晩反応させた。得られた液体をメタノールに沈殿させ、デカンテーションにより沈殿物を回収した。回収した沈殿物について測定した
1H NMRスペクトル及びFT−IRスペクトル(ATR法)をそれぞれ
図8及び
図9のB)に示す。なお、
図9のA)は、セルロースのFT−IRスペクトルを示している。
図8及び
図9の結果から、ポリエステルが生成したことが確認された。
【0050】
(比較例1)
セルロース(SIGMA−ALDRICHより購入したAvicel、60mg、[モノマー単位]
0=0.37mmol)を、1−エチル−3−メチルイミダゾリウムクロライド(アニオンの共役酸のDMSO中におけるpKaが1.8、2g)に加え、80℃、攪拌条件下で一晩真空乾燥させた。その後反応容器のAr置換を行い、イソプロペニルアセテート(2ml、18.4mmol)を反応系に加え、80℃、攪拌条件下で一晩反応させた。生成物のFT−IRスペクトル(ATR法)を
図10のB)に示す。なお、
図10のA)は反応前のセルロースを示している。
図10に示すように、生成物には1750cm
−1にピークは現れず、セルロースの水酸基はアセチル基によって置換されていないことが明らかとなった。
【0051】
(実施例9)酢酸酪酸セルロースの合成
セルロースのエステル交換反応により酢酸酪酸セルロース(CAB)を合成した。以下にその合成方法を示す。はじめに、セルロース(240mg、グルコース単位=1.48mmol)及び8gの1−エチル−3−メチルイミダゾリウムアセテート(EmimAc)をシュレンク管に測り入れた。得られた混合溶液を80℃のオイルバス中で3時間、減圧乾燥させた後に、アルゴンにより系中を置換した。次に、それぞれ0.2〜0.5mlのビニルブチレート又はイソプロペニルアセテート(IPA)を反応溶液へ滴下し、反応を開始させた。80℃で一晩反応させた後、8mlのIPA(73.5mmol)又はビニルブチレート(63.1mmol)を反応溶液へ滴下し、80℃でさらに4時間反応させた。この工程では、未反応の水酸基をエステル交換反応でエステル化するため、大過剰の試薬を添加している。反応終了後、得られた溶液をメタノール/水混合溶液への再沈殿により精製した。ろ過により得られた固体を減圧乾燥し、反応生成物である酢酸酪酸セルロースを得た。酢酸酪酸セルロースの置換度を測定する目的で、酢酸酪酸セルロースのベンゾイル化反応を行った。ベンゾイル化の手順を以下に示す。はじめに、酢酸酪酸セルロース(100mg)、クロロホルム(4ml)、トリエチルアミン(0.44ml、3.12mmol)をナス型フラスコに秤量した。得られた溶液に、安息香酸クロライド(0.36ml、3.12mmol)を滴下し、反応溶液を撹拌した。一晩反応を行った後、反応溶液をメタノール/水混合溶液への再沈殿を行った。その後、得られた固体を減圧乾燥し、目的の高分子化合物を得た。得られた生成物の化学構造はIRスペクトル測定及び
1H NMR測定により決定した。生成物のIRスペクトルを
図11に、
1H NMRスペクトル(CDCl
3中)を
図12にそれぞれ示す。
図11の上側は原料であるセルロースのIRスペクトルを示す。なお、生成物におけるアセチル基及びブチリル基の位置選択性は
図11及び
図12中の化学式のとおりではない。
1H NMR測定の結果、セルロースの3つの水酸基に対するアセチル基及びブチリル基による置換位置はランダムであり、また、セルロースの水酸基の位置によるアセチル基もしくはブチリル基の導入率の違いはみられなかった。
図11及び
図12に示すように、酢酸酪酸セルロースが生成したことが確認された。
【0052】
また、ビニルブチレート又はイソプロペニルアセテート(IPA)の使用量(0.2〜0.5ml)に対する、生成物におけるアセチル基及びブチリル基の置換度の変化をそれぞれ
図13及び
図14に示す。なお、アセチル基及びブチリル基の置換度は
1H NMRスペクトルから算出することができる。さらに、置換度(ブチリル基)に対する、酢酸酪酸セルロースのガラス転移点(Tg)及び熱分解温度(T
D50)の変化を
図15に示す。
図13及び
図14の結果から、試薬量の調整によってアセチル基及びブチリル基の導入比率を制御可能であることがわかった。また、
図15に示すように、ブチリル基による置換度の増加に伴い、熱分解温度は変化せず、ガラス転移点が低下することが明らかとなった。このことから、使用する試薬量を調整することによって酢酸酪酸セルロースの成形性等の物性を制御できることが示唆された。
【0053】
(実施例10)DMSOを共溶媒として用いた酢酸セルロースの合成
セルロース(120mg、グルコース単位=0.74mmol)、1−エチル−3−メチルイミダゾリウムアセテート(EmimAc、440mg)をシュレンク管に封入した。混合溶液を80℃で4時間攪拌させながら減圧乾燥した。乾燥終了後、系内をアルゴンにより置換した。続いて、ジメチルスルホキシド(DMSO、4mL)及びイソプロペニルアセテート(IPA、4mL)を反応系内に滴下し、80℃で一晩反応を行った。反応終了後、反応溶液のメタノールへの再沈殿により、固体状の生成物を得た。得られた酢酸セルロースの置換度を測定する目的で、酢酸セルロースのベンゾイル化反応を行った。ベンゾイル化の手順を以下に示す。はじめに、酢酸セルロース(100mg)、クロロホルム(4ml)、トリエチルアミン(0.44ml、3.12mmol)をナス型フラスコに秤量した。得られた溶液に、安息香酸クロライド(0.36ml、3.12mmol)を滴下し、反応溶液を撹拌した。一晩反応を行った後、反応溶液をメタノールへの再沈殿を行った。その後、得られた固体を減圧乾燥し、目的の高分子化合物を得た。得られた生成物の化学構造は
1H NMR測定により決定した。
【0054】
以下の実験を、120mgのセルロースに対するイオン液体(EmimAc)の重量を様々に変化させて同様に行った。
図16に、イオン液体とセルロースとの重量比([イオン液体]
0/[セルロース]
0)に対するセルロースの水酸基の置換度の変化を示す。実験は、重量比1.25から33.33まで変化させて行ったが
、いずれの重量比でも高い置換度の酢酸セルロースが得られた。しかし、重量比が2.42以上の場合には置換度は2.9を超えるのに対し、重量比が1.25の場合は置換度は2.78となり、酢酸セルロースの生成量も若干低下することから、重量比は2以上が好ましいことが示唆された。
【0055】
(実施例11)酢酸リグニンの合成
アルカリリグニン(1g)と1−エチル−3−メチルイミダゾリウムアセテート(EmimAc、20g)をシュレンク管に封入し、オイルバス内80℃で撹拌しながら一晩減圧乾燥した。アルゴン雰囲気下、イソプロペニルアセテート(IPA、20mL、0.183mol)を加え、得られた反応溶液を80℃で2時間撹拌した。反応後の溶液を水に再沈殿させ、得られた固体を減圧乾燥し、生成物を得た。生成物であるアセチル化リグニンの構造は
1H NMR及びFT−IR測定により解析した。生成物の
1H NMRスペクトルを
図17に、FT−IRスペクトルを
図18にそれぞれ示す。
図17及び
図18の結果から、アセチル基のピークが観測され、酢酸リグニンの生成が確認された。
【0056】
(参考例1)酢酸リグニンに対するエステル交換反応
アセチル化リグニン(50mg)、DMF(2mL)、水酸化ナトリウム(NaOH、70.5mg、1.76mmol)、ラウリル酸クロリド(1mL、4.32mmol)をナスフラスコに封入し、窒素雰囲気下、オイルバス内80℃で撹拌しながら一晩(21時間)反応させた。反応後の溶液を濃縮させ、ヘキサンを添加した。得られた溶液の遠心分離操作により、固体を得た。さらに得られた固体を、水で洗浄した。回収した固体を減圧乾燥し、目的の生成物を得た。生成物の構造は
1H NMR及びFT−IR測定により解析した。
図19に、生成物の
1H NMRスペクトルを、反応物である酢酸リグニン及びラウリル酸クロリドの
1H NMRスペクトルとともに示す。
図19の結果から明らかなように、酢酸リグニンのエステル交換反応が起こり、酢酸リグニンのアセチル基がラウロイル基によって置換されたことがわかった。
【0057】
なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
【0058】
本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。