(58)【調査した分野】(Int.Cl.,DB名)
パラレルリンク機構と直動機構とが組み合わせられ、対象ワークの被作業平面上の角部となる境界面を跨がるラインに沿ってエンドエフェクタを連続的に作用させて作業を行うリンク作動装置を制御する制御装置であって、
前記パラレルリンク機構は、前記エンドエフェクタが取付けられた先端側のリンクハブが基端側のリンクハブに対し3組以上のリンク機構を介して姿勢を変更可能に連結され、前記先端側のリンクハブの姿勢を変更させる複数のアクチュエータを有し、
前記直動機構は、アクチュエータの駆動により直交する2軸方向または3軸方向に直線移動する機能を有し、前記パラレルリンク機構の前記基端側のリンクハブを移動させ、または対象ワークを移動させるように設けられ、
前記制御装置は、前記ラインを線分データで記憶するライン記憶手段と、記憶したラインから前記パラレルリンク機構および前記直動機構を動作させる動作指令を生成する動作指令生成手段と、生成された動作指令に従って前記パラレルリンク機構および前記直動機構の前記アクチュエータを制御する制御手段とを有し、
前記動作指令生成手段は、
前記被作業平面上のラインを、前記境界面を基準に、定められた規則に従い直線領域とコーナー領域とに分ける領域分割部と、
前記直線領域において前記パラレルリンク機構の姿勢を固定したまま前記直動機構のみを動作させる指令を生成する直線領域動作指令生成部と、
前記コーナー領域において前記直動機構と前記パラレルリンク機構が協調動作を行うことで、前記エンドエフェクタの作用点が実質的に等速で前記境界面を通過するように指令を生成するコーナー領域動作指令生成部とを有し、
前記コーナー領域動作指令生成部は、前記コーナー領域の始点から終点までの経路を通過点で指定個数の区間に分割し、分割した各区間における前記直動機構の移動量と、前記パラレルリンク機構を構成する前記各アクチュエータの移動量とを計算し、指定した目標移動速度と各区間の距離とから定まる各区間内の移動時間と、各区間における前記各アクチュエータの移動量とから、各区間における前記各アクチュエータの移動速度を計算し、分割した各区間において、前記各アクチュエータを加減速なしで連続位置決めする前記指令を生成し、
前記領域分割部は、前記コーナー領域動作指令生成部における指定された目標移動速度と分割した各通過点から求められる前記直動機構の移動速度と、前記直動機構の制限速度から、コーナー領域の大きさを計算するリンク作動装置の制御装置。
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記のようなパラレルリンク機構において、エンドエフェクタが作業する対象ワークは、2次元形状のものだけではなく、3次元形状に対して作業する用途も多い。例えば、3次元ワークの側面の全周に対してエンドエフェクタを作用させる場合、ワークを搭載したターンテーブルとエンドエフェクタがワーク側面へ向くように付加した直動機構を協調動作することで実現可能と考えられるが、ワークサイズや重量が大きくなった場合、ワークを回転させることが困難になる。それに対して、パラレルリンク機構と直動機構を組み合わせた構成にすることで、ワークを回転させることなく、ワーク側面の全周に対してエンドエフェクタを作用させることが可能となる。
【0005】
例えば、
図15に示すように、パラレルリンク機構1がXYステージ34に吊り下げ状態に設置され、Z軸ステージであるワーク台39上に直方体形状の対象ワークWが設置されている構成で説明する。なお、同図は後に
図2で説明する構成と同様である。このような構成において、直方体の対象ワークWの側面全周に対してエンドエフェクタ29を作用させるには、一般的に次のような方法がある。
【0006】
図15の構成の作用の説明の為に、同図の構成を上面から見た時の対象ワークとパラレルリンク機構の位置関係を
図16に示す。
まず、XYステージ33(
図15)が(i)の位置に移動し、パラレルリンク機構1は、エンドエフェクタ29がワーク側面上のa点を指す位置に移動する。その後、エンドエフェクタ29を起動すると同時に、パラレルリンク機構1は固定したまま直動機構31(ここでは、XYステージ34のY軸)のみを (ii) の位置まで移動させ、(ii) の位置へ移動完了後、エンドエフェクタ29を停止させる。次に、XYステージが(iii)の位置に移動し、パラレルリンク機構1は、エンドエフェクタ29がワーク側面上のb点を指す位置に移動する。
【0007】
その後、エンドエフェクタ29を再度起動すると同時に、パラレルリンク機構1は固定したまま直動機構31(ここでは、X軸ステージ33)のみを(iv)の位置に移動させ、(iv)の位置に移動完了後、エンドエフェクタ29を停止させる。同様の動作を(v)→(vi)→(vii)→(viii)と繰り返すことで、直方体の対象ワークWの側面全周に対してエンドエフェクタ29を作用させることができる。
【0008】
この方法においては、一連動作の中でエンドエフェクタ29を起動、停止させている為、側面の境界部分でエンドエフェクタ29の繋ぎ目(切れ目)が生じる。そこで、一連動作において、各コーナーの移動時、エンドエフェクタ29を停止せず、起動させたままパラレルリンク機構1および直動機構31を動作する方法が望まれる。
その際、例えばb点のコーナーにおいて、XYステージ34は、b点を中心に中心角90度で(ii)から(iii)へ円弧補間移動し、同時にパラレルリンク機構1はエンドエフェクタ29がb点を指すように90度旋回することになる。その為、直動機構31およびパラレルリンク機構1が(ii)から(iii)へ移動する時間の分だけ、エンドエフェクタ29がb点を作用し続けることになり、bのコーナー部でエンドエフェクタ29が過度に作用することになる。
【0009】
いずれの方法においても、レーザによる加工や、ディスペンサ、インクジェットによる塗布、または溶接を行う場合、加工ムラや塗装ムラ、あるいは溶接の際の肉厚ムラの発生原因となる。
【0010】
この発明の目的は、パラレルリンク機構と直動機構を組み合わせた作業装置において、上記の課題を解消し、対象ワーク表面の急峻な角度を有する境界面に対して、エンドエフェクタが境界面を実質的に等速に移動しながら作業を行うことができて、前記境界面でムラを生じることなく作業が行えるリンク作動装置の制御装置および制御方法を提供することである。
【課題を解決するための手段】
【0011】
この発明のリンク作動装置の制御装置は、パラレルリンク機構1と直動機構31とが組み合わせられ、対象ワークWの被作業平面S上の角部となる境界面Bを跨がるラインLに沿ってエンドエフェクタ29を連続的に作用させて作業を行うリンク作動装置41を制御する制御装置であって、
前記パラレルリンク機構1は、前記エンドエフェクタ29が取付けられた先端側のリンクハブ3が基端側のリンクハブ2に対し3組以上のリンク機構4を介して姿勢を変更可能に連結され、前記先端側のリンクハブ3の姿勢を変更させる複数のアクチュエータ53〜55を有し、
前記直動機構31は、アクチュエータ35〜37の駆動により直交する2軸方向または3軸方向に直線移動する機能を有し、前記パラレルリンク機構1の前記基端側のリンクハブ2を移動させ、または対象ワークWを移動させるように設けられ、
前記制御装置61は、前記ラインLを線分データで記憶するライン記憶手段64と、記憶したラインLから前記パラレルリンク機構1および前記直動機構31を動作させる動作指令を生成する動作指令生成手段65と、生成された動作指令に従って前記パラレルリンク機構1および前記直動機構31の前記アクチュエータ35〜37を制御する制御手段66とを有し、
前記動作指令生成手段65は、
前記被作業平面S上のラインLを、前記境界面Bを基準に、定められた規則に従い直線領域LSとコーナー領域LCとに分ける領域分割部67と、
前記直線領域LSにおいて前記パラレルリンク機構1の姿勢を固定したまま前記直動機構31のみを動作させる指令を生成する直線領域動作指令生成部68と、
前記コーナー領域LCにおいて前記直動機構31と前記パラレルリンク機構1が協調動作を行うことで、前記エンドエフェクタ29の作用点Pが実質的に等速で前記境界面Bを通過するように指令を生成するコーナー領域動作指令生成部69とを有する。
【0012】
この構成の制御装置によると、前記領域分割部67は、対象ワークWの被作業平面S上の角部となる境界面B、いわば急峻な角度を有する境界面Bを跨がるラインLに沿ってエンドエフェクタ29を連続的に作用させる動作において、前記ラインLを直線領域LSとコーナー領域LCに分ける。
直線領域LSでは、パラレルリンク機構1は所望する姿勢に固定したまま直動機構31のみを動作させる。コーナー領域LCでは直動機構31とパラレルリンク機構1が協調動作を行うように制御することで、エンドエフェクタ29の作用点Pを実質的に等速で前記境界面Bを通過させる。
このように、被作業平面Sの急峻な角度を有する境界面B上をエンドエフェクタ29が連続的に作用する動作において、エンドエフェクタ29の作用点Pが実質的に等速で動作することができて、前記エンドエフェクタ29による作業のムラをなくすことができる。例えば、前記エンドエフェクタ29として、レーザ、ディスペンサ、インクジェット、または溶接等をリンクに取付けて作業を行う際、レーザの加工ムラやディスペンサ、インクジェットによる塗布ムラ、溶接による溶接ムラをなくすことができる。
前記直線領域LSとコーナー領域LCとに分け、コーナー領域LCのみ協調動作させるため、協調動作させる指令の生成が、効率良く短時間で行える。また、直動領域LSではパラレルリンク機構1は直動機構31のみを動作させるため、高速で動作させることができ、またエンドエフェクタ29の姿勢が変化しないため、作業の品質の面からも好ましい。
【0013】
前記協調動作の具体的な方法は、例えば、まずコーナー領域LCの始点Aから終点Eまでの経路を通過点Fで複数の区間に分割する。各区間における直動機構31の位置とパラレルリンク機構1の姿勢は、エンドエフェクタ29の作用する角度が滑らかに変化するように設定する。このとき、エンドエフェクタ29の作用する角度の変化は、エンドエフェクタ29の作用後の品質に影響を与えない程度に小さいものとする。分割した各区間における直動機構31(XYZステージ)の移動量(X,Y,Z)と、パラレルリンク機構1を構成する各アクチュエータ53〜55の移動量(β1 、β2 、β3 )を算出する。次に、指定した目標移動速度(ワーク側面上をなぞる速度)と各区間の距離から定まる各区間内の移動時間と、各区間における各アクチュエータ35〜37,53〜55の移動量とから、各区間における各アクチュエータ35〜37,53〜55の移動速度を算出する。分割した各区間において、各アクチュエータ35〜37,53〜55を加減速なしで連続位置決めすることにより、コーナー領域LCの始点Aから終点Eまでをエンドエフェクタ29が実質的に等速に移動する。「実質的に等速」とは、換言すれば「近似的に等速」であり、エンドエフェクタ29による作業の観点から等速であると見なせる程度に速度の変化が生じないことを言う。また、コーナー領域LCと直線領域LSの繋ぎ目においては、同様に加減速なしの連続動作を行う。これにより、レーザによる加工や、ディスペンサ、インクジェットによる塗布、または溶接を行う場合は、境界部Bでの加工ムラや塗装ムラ、及び溶接の際の肉厚ムラをなくすことができる。
【0014】
上記の協調動作の具体的な方法を実現するにつき、例えば、前記コーナー領域動作指令生成部69は、前記コーナー領域LCの始点Aから終点Eまでの経路を通過点Fで指定個数の区間に分割し、分割した各区間における前記直動機構31の移動量X,Y,Zと、前記パラレルリンク機構1を構成する前記各アクチュエータ53〜55の移動量β1,β2
,β3を計算し、指定した目標移動速度と各区間の距離とから定まる各区間内の移動時間と、各区間における前記各アクチュエータ53〜55,35〜37の移動量β1,β2,β3,X,Y,Zとから、各区間における前記各アクチュエータ35〜37,53〜55の移動速度を計算し、分割した各区間において、前記各アクチュエータ35〜37,53〜55を加減速なしで連続位置決めする指令を生成するようにする。
【0015】
前記領域分割部67は、前記コーナー領域動作指令生成部69における指定された目標移動速度と分割した各通過点Fから求められる前記直動機構31の移動速度と、前記直動機構31の制限速度から、コーナー領域LCの大きさを計算するようにしても良い。
これにより、所望の協調動作が行える適切なコーナー領域LCの大きさを求めることができる。
【0016】
前記領域分割部67は、前記コーナー領域LCの大きさと指定された目標移動速度との関係を示すテーブルTBを有し、このテーブルTBを用いて、前記目標移動速度から前記コーナー領域LCの大きさを算出するようにしても良い。
これによっても、所望の協調動作が行える適切なコーナー領域LCの大きさを求めることができる。
【0017】
前記動作指令生成手段65は、前記ラインLの線分データからの動作指令の生成を、前記リンク作動装置41の動作時、例えば直前または動作と並行して行うようにしても良いが、この他に、前記コーナー領域LCの前記各区間の設定(例えば動作指令)を全て、実際に前記リンク作動装置41が動作する前に演算して動作指令記憶手段70に記録し、前記制御手段66が、前記リンク作動装置41を動作させる時に前記区間に応じた設定を前記動作指令記憶手段70から読み出して制御するようにしても良い。
この場合、前記動作指令生成手段65と、前記制御手段66とは、物理的に別のコンピュータ等で構成されていても良く、生成された動作指令はオンラインで、またはオフラインで前記制御手段66側にある動作指令記憶手段70に記憶させるようにしても良い。
【0018】
前記エンドエフェクタ29が作業する前記被作業平面Sは、直方体の外周面であってもよく、また内周面であっても良い。
このような直方体の外周面や内周面が被作業平面Sである場合、この発明のムラなく作業が行えると言う効果が、より効果的に発揮される。
【0019】
この発明のリンク作動装置の制御方法は、前記構成のリンク作動装置41を制御する方法であって、
前記被作業平面S上のラインLを、前記境界面Bを基準に、定められた規則に従い直線領域LSとコーナー領域LCとに分け、
前記直線領域LSにおいては、前記パラレルリンク機構1の姿勢を固定したまま前記直動機構31のみを動作させ、
前記コーナー領域LCにおいては、前記直動機構31と前記パラレルリンク機構1が協調動作を行うことで、前記エンドエフェクタ29の作用点Pが実質的に等速で前記境界面Bを通過するように動作させる。
【0020】
この制御方法によると、この発明の制御装置につき説明したと同様に、対象ワーク表面の急峻な角度を有する境界面Bに対して、エンドエフェクタ29が境界面Bを実質的に等速に移動しながら作業を行うことができて、前記境界面Bでムラを生じることなく作業を行うことができる。
【発明の効果】
【0021】
この発明のリンク作動装置は、パラレルリンク機構と直動機構とが組み合わせられ、対象ワークの被作業平面上の角部となる境界面を跨がるラインに沿ってエンドエフェクタを連続的に作用させて作業を行うリンク作動装置を制御する制御装置であって、前記ラインを線分データで記憶するライン記憶手段と、記憶したラインから前記パラレルリンク機構および前記直動機構を動作させる動作指令を生成する動作指令生成手段と、生成された動作指令に従って前記パラレルリンク機構および前記直動機構の前記アクチュエータを制御する制御手段とを有し、前記動作指令生成手段は、前記被作業平面上のラインを、前記境界面を基準に、定められた規則に従い直線領域とコーナー領域とに分ける領域分割部と、前記直線領域において前記パラレルリンク機構の姿勢を固定したまま前記直動機構のみを動作させる指令を生成する直線領域動作指令生成部と、前記コーナー領域において前記直動機構と前記パラレルリンク機構が協調動作を行うことで、前記エンドエフェクタの作用点が実質的に等速で前記境界面を通過するように指令を生成するコーナー領域動作指令生成部とを有するため、対象ワークの側面等の急峻な角度を有する境界面上をエンドエフェクタが連続的に作用する動作において、エンドエフェクタが作業するワーク被作業平面上の複数の座標を実質的に等速で動作することが可能となり、エンドエフェクタとして、レーザ、ディスペンサ、インクジェット、溶接等をリンクに取付けた際、レーザの加工ムラやディスペンサ、インクジェットによる塗布ムラ、溶接による溶接ムラ等の作業ムラをなくすことができる。
【0022】
この発明のリンク作動装置の制御方法は、前記構成のリンク作動装置を制御する方法であって、前記被作業平面上のラインを、前記境界面を基準に、定められた規則に従い直線領域とコーナー領域とに分け、前記直線領域においては、前記パラレルリンク機構の姿勢を固定したまま前記直動機構のみを動作させ、前記コーナー領域においては、前記直動機構と前記パラレルリンク機構が協調動作を行うことで、前記エンドエフェクタの作用点が実質的に等速で前記境界面を通過するように動作させるため、対象ワークの側面等の急峻な角度を有する境界面上をエンドエフェクタが連続的に作用する動作において、エンドエフェクタが作業するワーク被作業平面上の複数の座標を実質的に等速で動作することが可能となり、エンドエフェクタとして、レーザ、ディスペンサ、インクジェット、溶接等をリンクに取付けた際、レーザの加工ムラやディスペンサ、インクジェットによる塗布ムラ、溶接による溶接ムラ等の作業ムラをなくすことができる。
【発明を実施するための形態】
【0024】
この発明の一実施形態を図面と共に説明する。このリンク作動装置の制御装置61は、パラレルリンク機構1と直動機構31とが組み合わせられたリンク作動装置41を制御する装置であって、対象ワークWの被作業平面上の角部となる境界面Bを跨がるラインLに沿ってエンドエフェクタ29を連続的に作用させて作業を行う場合に適用される。
【0025】
<リンク作動装置41の構成>
図2に示すように、パラレルリンク機構1は、エンドエフェクタ29が取付けられた先端側のリンクハブ3が基端側のリンクハブ2に対し3組のリンク機構4を介して姿勢を変更可能に連結され、前記リンク機構4に作用して前記先端側のリンクハブ3の姿勢を変更させる複数のアクチュエータ53,54,55を有する。
【0026】
直動機構31は、直交する3軸方向に対象ワークWを直線移動する機能を有する機構である。この実施形態では、直動機構31は、X軸,Y軸の2軸方向に対象ワークWを移動するリンク側直動機構部31Aと、Z軸方向に対象ワークWを移動するワーク側直動機構部31Bとで構成される。前記X,Y,Z軸は、それぞれ左右方向、前後方向、および上下方向であり、互いに直交している。
リンク側直動機構部31Aは、架台32の上部にX軸方向に移動可能に設置されたXステージ33と、このXステージ33にY軸方向に移動可能に設置されたXYステージ34とを有する。XYステージ34には、パラレルリンク機構1がその上端に位置する基端側のリンクハブ2が接続され、パラレルリンク機構1が下向きとなるように設置されている。Xステージ33およびXYステージ34は、それぞれモータ等のX軸およびY軸のアクチュエータ35,36により、架台32およびXステージ33に対して進退駆動される。
ワーク側直動機構部31Bは、パラレルリンク機構1が動作する領域の下方に位置して設置され、昇降機構38を介してモータ等のZ軸のアクチュエータ37により昇降駆動されるワーク台39を有している。このワーク台39の上に前記対象ワークWが載置される。
【0027】
前記エンドエフェクタ29は、対象ワークWに対して非接触等で作業を行う装置であり、例えば、レーザ加工用のレーザ、塗装用のディスペンサ、インクジェットノズル、あるいは溶接トーチ等である。
【0028】
前記パラレルリンク機構1の具体例につき、
図7〜
図11と共に具体的に説明する。
図9(A),(B)はパラレルリンク機構1のそれぞれ異なる状態を示す正面図である。このパラレルリンク機構1は、基端側のリンクハブ2に対し先端側のリンクハブ3を3組のリンク機構4を介して姿勢変更可能に連結したものである。
図9では、1組のリンク機構4のみが示されている。
【0029】
図7は、パラレルリンク機構1を三次元的に表わした斜視図である。3組の各リンク機構4は、基端側の端部リンク部材5、先端側の端部リンク部材6、および中央リンク部材7で構成され、4つの回転対偶からなる3節連鎖のリンク機構をなす。基端側および先端側の端部リンク部材5,6はL字状をなし、基端がそれぞれ基端側のリンクハブ2および先端側のリンクハブ3にそれぞれ回転自在に連結されている。中央リンク部材7は、一端に基端側の端部リンク部材5の先端が、他端に先端側の端部リンク部材6の先端がそれぞれ回転自在に連結されている。
【0030】
基端側および先端側の端部リンク部材5,6は球面リンク構造で、3組のリンク機構4における球面リンク中心PA,PB(
図9)は一致している。また、その球面リンク中心PA,PB間の距離dも同じである。端部リンク部材5,6と中央リンク部材7との各回転対偶の中心軸は、ある交差角γをもっていてもよいし、平行であってもよい。
【0031】
つまり、3組のリンク機構4は、幾何学的に同一形状をなす。幾何学的に同一形状とは、各リンク部材5,6,7を直線で表現した幾何学モデル、すなわち各回転対偶と、これら回転対偶間を結ぶ直線とで表現したモデルが、中央リンク部材7の中央部に対する基端側部分と先端側部分が対称を成す形状であることを言う。
図10は、一組のリンク機構4を直線で表現した図である。
【0032】
この実施形態のリンク機構4は回転対称タイプで、基端側のリンクハブ2および基端側の端部リンク部材5と、先端側のリンクハブ3および先端側の端部リンク部材6との位置関係が、中央リンク部材7の中心線Cに対して回転対称となる位置構成になっている。
図5(A)は、基端側のリンクハブ2の中心軸QAと先端側のリンクハブ3の中心軸QBとが同一線上にある状態を示し、
図9(B)は、基端側のリンクハブ2の中心軸QAに対して先端側のリンクハブ3の中心軸QBが所定の作動角をとった状態を示す。各リンク機構4の姿勢が変化しても、基端側と先端側の球面リンク中心PA,PB間の距離dは変化しない。
【0033】
基端側のリンクハブ2と先端側のリンクハブ3と3組のリンク機構4とで、基端側のリンクハブ2に対し先端側のリンクハブ3が直交2軸方向に移動自在な2自由度機構が構成される。言い換えると、基端側のリンクハブ2に対して先端側のリンクハブ3を、回転が2自由度で姿勢変更自在な機構である。この2自由度機構は、基端側のリンクハブ2の中心軸QA、先端側のリンクハブ3の中心軸QB、および中央リンク部材7の中心線Cの交点Pを中心として、基端側のリンクハブ2に対して先端側のリンクハブ3が姿勢を変更する。
【0034】
この2自由度機構は、コンパクトでありながら、基端側のリンクハブ2に対する先端側のリンクハブ3の可動範囲を広くとれる。例えば、基端側のリンクハブ2の中心軸QAと先端側のリンクハブ3の中心軸QBの折れ角θ(
図7)の最大値(最大折れ角)を約±90°とすることができる。また、基端側のリンクハブ2に対する先端側のリンクハブ3の旋回角φを0°〜360°の範囲に設定できる。折れ角θは、基端側のリンクハブ2の中心軸QAに対して先端側のリンクハブ3の中心軸QBが傾斜した垂直角度のことであり、旋回角φは、基端側のリンクハブ2の中心軸QAに対して先端側のリンクハブ3の中心軸QBが傾斜した水平角度のことである。
【0035】
このパラレルリンク機構1において、各リンク機構4の端部リンク部材5,6の軸部材13(
図8)の角度、および長さが等しく、かつ基端側の端部リンク部材5と先端側の端部リンク部材6の幾何学的形状が等しく、かつ中央リンク部材7についても基端側の先端側とで形状が等しいとき、中央リンク部材7の対称面に対して、中央リンク部材7と端部リンク部材5,6との角度位置関係を基端側と先端側とで同じにすれば、幾何学的対称性から基端側のリンクハブ2および基端側の端部リンク部材5と、先端側のリンクハブ3および先端側の端部リンク部材6とは同じに動く。例えば、基端側と先端側のリンクハブ2,3にそれぞれの中心軸QA,QBと同軸に回転軸を設け、基端側から先端側へ回転伝達を行う場合、基端側と先端側は同じ回転角になって等速で回転する等速自在継手となる。この等速回転するときの中央リンク部材7の対称面を等速二等分面という。
【0036】
このため、基端側のリンクハブ2および先端側のリンクハブ3を共有する同じ幾何学形状のリンク機構4を円周上に複数配置させることにより、複数のリンク機構4が矛盾なく動ける位置として中央リンク部材7が等速二等分面上のみの動きに限定される。これにより、基端側と先端側とが任意の作動角をとっても、基端側と先端側とが等速回転する。
【0037】
基端側のリンクハブ2および先端側のリンクハブ3は、その中心部に貫通孔10(
図11)が軸方向に沿って形成され、外形が球面状をしたドーナツ形状をしている。貫通孔10の中心はリンクハブ2,3の中心軸QA,QBと一致している。これら基端側のリンクハブ2および先端側のリンクハブ3の外周面の円周方向に等間隔の位置に、基端側の端部リンク部材5および先端側の端部リンク部材6がそれぞれ回転自在に連結されている。
【0038】
図11は、基端側のリンクハブ2と基端側の端部リンク部材5の回転対偶、および基端側の端部リンク部材5と中央リンク部材7の回転対偶を示す断面図である。基端側のリンクハブ2は、前記軸方向の貫通孔10と外周側とを連通する半径方向の連通孔11が円周方向3箇所に形成され、各連通孔11内に設けた二つの軸受12により軸部材13がそれぞれ回転自在に支持されている。軸部材13の外側端部は基端側のリンクハブ2から突出し、その突出ねじ部13aに基端側の端部リンク部材5が結合され、ナット14によって締付け固定されている。
【0039】
前記軸受12は、例えば深溝玉軸受等の転がり軸受であり、その外輪(図示せず)が前記連通孔11の内周に嵌合し、その内輪(図示せず)が前記軸部材13の外周に嵌合している。外輪は止め輪15によって抜け止めされている。また、内輪と基端側の端部リンク部材5の間には間座16が介在し、ナット14の締付力が基端側の端部リンク部材5および間座16を介して内輪に伝達されて、軸受12に所定の予圧を付与している。
【0040】
基端側の端部リンク部材5と中央リンク部材7の回転対偶は、中央リンク部材7の両端に形成された連通孔18に二つの軸受19が設けられ、これら軸受19により、基端側の端部リンク部材5の先端の軸部20が回転自在に支持されている。軸受19は、間座21を介して、ナット22によって締付け固定されている。
【0041】
軸受19は、例えば深溝玉軸受等の転がり軸受であり、その外輪(図示せず)が前記連通孔18の内周に嵌合し、その内輪(図示せず)が前記軸部20の外周に嵌合している。外輪は止め輪23によって抜け止めされている。軸部20の先端ねじ部20aに螺着したナット22の締付力が間座21を介して内輪に伝達されて、軸受19に所定の予圧を付与している。
【0042】
以上、基端側のリンクハブ2と基端側の端部リンク部材5の回転対偶、および基端側の端部リンク部材5と中央リンク部材7の回転対偶について説明したが、先端側のリンクハブ3と先端側の端部リンク部材6の回転対偶、および先端側の端部リンク部材6と中央リンク部材7の回転対偶も同じ構成である(図示省略)。
【0043】
このように、各リンク機構4における4つの回転対偶、つまり、基端側のリンクハブ2と基端側の端部リンク部材5の回転対偶、先端側のリンクハブ3と先端側の端部リンク部材6の回転対偶、基端側の端部リンク部材5と中央リンク部材7と回転対偶、および先端側の端部リンク部材6と中央リンク部材7の回転対偶に、軸受12,19を設けた構造とすることにより、各回転対偶での摩擦抵抗を抑えて回転抵抗の軽減を図ることができ、滑らかな動力伝達を確保できると共に耐久性を向上できる。
【0044】
図8において、パラレルリンク機構1は、基端側のリンクハブ2がXYステージ34の下面に固定され、先端側のリンクハブ3が垂下した状態となっている。XYステージ34の上面には、モータまたは他のロータリアクチュエータからなるアクチュエータ53が設置されている。同図は一つのリンク機構4を示しているが、他の2つリンク機構4についても、上記と同様にアクチュエータ54,55が設けられ、以下の説明と同様にリンク機構4に接続されている。アクチュエータ53の出力軸53aはXYステージ34を貫通して下方に突出し、その出力軸53aに取付けたかさ歯車51と基端側のリンクハブ2の軸部材13に取付けた扇形のかさ歯車58とが噛み合っている。
【0045】
アクチュエータ53を回転させると、その回転が一対のかさ歯車57,58を介して軸部材13に伝達されて、基端側のリンクハブ2に対する基端側の端部リンク部材5の角度が変わる。各アクチュエータ53の動作量を制御して、リンク機構4ごとに基端側の端部リンク部材5の角度を調整することにより、基端側のリンクハブ2に対する先端側のリンクハブ3の姿勢(以下、「先端姿勢」とする)が決まる。各アクチュエータ53〜55の動作は、
図1の制御装置61により制御される。
【0046】
<制御装置61の構成>
図1に示すように、制御装置61は、対象ワークWの被作業平面Sの前記ラインLの線分データ等から動作指令を生成する指令生成部62と、生成された動作指令に従ってリンク作動装置41を制御する制御部63とを備える。これら指令生成部62と制御部63とは、一つのコンピュータ等に設けられて概念的に区別される構成であっても、また互いに異なるコンピュータ等の別装置に設けられていて、オンラインで接続されていても、オフラインであって記録媒体等でデータを授受できるようにされていても良い。別装置とする場合、互いに離れて遠隔地に設置されていても良い。
【0047】
前記制御部63は、制御手段66と動作指令記憶手段70とを備える。制御手段66は、生成された動作指令に従ってパラレルリンク機構1の各アクチュエータ53,54,55および直動機構31の各アクチュエータ35,36,37を制御する手段であり、いわば数値制御装置である。制御手段66は、例えばパラレルリンク機構1の各アクチュエータ53,54,55および直動機構31の各アクチュエータ35,36,37を、例えばポイントツーポイントで位置制御および速度制御を行う。前記動作指令記憶手段70は、制御手段66で実行する動作指令を記憶し、また指令生成部62で生成された動作指令を記憶する手段である。なお、指令生成部62と制御部63とが離れて構成される場合は、両方に有していて、両者間で動作指令が転送されるようにしても良い。
【0048】
指令生成部62は、ライン記憶手段64と動作指令生成手段65とを備える。
ライン記憶手段64は、ラインLを数値による線分データとして記憶する。ライン記憶手段64に記憶される線分データは、例えば、順次繋がる複数の各線分のデータとされ、各線分毎に始点と終点を示す3次元の座標により構成される。また、ライン記憶手段64に記憶される線分データは、さらにその線分が直線であるか曲線であるか等の線形状の識別用のデータ等を含んでいてもよい。
【0049】
動作指令生成手段65は、ライン記憶手段64に記憶されたラインLの線分データから前記パラレルリンク機構1および直動機構31を動作させる動作指令を生成する手段である。動作指令生成手段65は、領域分割部67、直線領域動作指令生成部68、およびコーナ領域動作生成部69を有する。
【0050】
領域分割部67は、被作業平面S上のラインLを、境界面Bを基準に、定められた規則に従い直線領域LSとコーナー領域LCとに分ける手段である。
直線領域動作指令生成部68は、前記直線領域LSにおいて前記パラレルリンク機構1の姿勢を固定したまま前記直動機構31のみを動作させる指令を生成する手段である。 コーナー領域動作指令生成部69は、前記コーナー領域LCにおいて前記直動機構31と前記パラレルリンク機構1が協調動作を行うことで、前記エンドエフェクタ29の作用点Pが実質的に等速で前記境界面Bを通過するように指令を生成する手段である。
【0051】
領域分割部67は、前記規則として、例えば、前記コーナー領域動作指令生成部69における指定された目標移動速度、および分割した各通過点Fから求められる前記直動機構31の移動速度と、直動機構31の制限速度とから、コーナー領域LCの大きさを計算するようにしても良い。これにより、所望の協調動作が行える適切なコーナー領域LCの大きさを求めることができる。
この他に、領域分割部67は、コーナー領域LCの大きさと指定された目標移動速度との関係を示すテーブルTBを有し、このテーブルTBを用いて、目標移動速度からコーナー領域LCの大きさを算出するようにしても良い。
【0052】
コーナー領域動作指令生成部69は、例えば、コーナー領域LCの始点Aから終点Eまでの経路を通過点Fで指定個数の区間に分割する。そしてコーナー領域動作指令生成部69は、分割した各区間における前記直動機構31の移動量X,Y,Zと、パラレルリンク機構1を構成する各アクチュエータ53〜55の移動量β1,β2,β3とを計算する。次に、コーナー領域動作指令生成部69は、指定した目標移動速度と各区間の距離とから定まる各区間内の移動時間と、各区間における前記各アクチュエータ53〜55,35〜37の移動量β1,β2,β3,X,Y,Zとから、各区間における前記各アクチュエータ35〜37,53〜55の移動速度を計算する。そして、コーナー領域動作指令生成部69は、分割した各区間において、各アクチュエータ35〜37,53〜55を加減速なしで連続位置決めする指令を生成する。
【0053】
領域分割部67、直線領域動作指令生成部68、およびコーナー領域動作指令生成部69のより詳細な機能は、次に制御方法の具体例と共に説明する。
【0054】
<制御装置61の動作>
対象ワークWが直方体であって、その側面の外周面に対してエンドエフェクタ29を作用させる場合の例を示す。
図2の構成を上面から見た概略図を
図4に示す。エンドエフェクタ29が作用する直方体側面の外周のラインLを、直線領域LSとコーナー領域LC(LC1〜LC4)に分け、コーナー領域LCにおいて、コーナー領域LCの始点Aから終点Eまでの経路を通過点Fで複数の区間に分割する。数字を囲む丸プロットは、対象ワークWの直交座標系において、エンドエフェクタ29が作用する座標(ワーク座標:WX,WY,WZ)を表し、数字を囲む四角プロットはXYステージ34の直交座標系においてXYステージ34が移動する座標(ステージ座標:SX、SY)を表す。ここでは、ワーク座標とステージ座標の原点は同じ位置とする。
【0055】
パラレルリンク機構1がXYステージ34に搭載されていることから、四角プロットから丸プロットへの矢印は、エンドエフェクタ29が対象ワークWに対して作用する方向を表す。丸プロットおよび四角プロット内の数字は、一連動作において各アクチュエータが位置決めする順番を表す。XYステージ34の軌跡は、XYステージ34が滑らかに移動するように、円弧を持った軌跡にする。
【0056】
動作指令生成手段65は、コーナー領域LCにおいて分割した各区間を移動する際の直動機構31の各軸の移動量(X,Y,Z)とパラレルリンク機構1を構成するアクチュエータ53,54,55の移動量β1 、β2 、β3 を各区間ごとに算出する。なお、3次元直交座標(XYZ平面座標)上の移動量と、パラレルリンク機構1の各アクチュエータ53〜55の移動量β1,β2,β3との関係については、後述する。
また、動作指令生成手段65は、指定した速度でエンドエフェクタ29が対象ワークW側面上を通過するように、各区間ごとに移動量β1 、β2 、β3 および、直動機構31の各軸の移動速度を算出する。この算出方法は後述する。
【0057】
例えば、動作の開始点Aをコーナー領域LC1の始点Aとすると、一連動作は次のようになる。初めに、エンドエフェクタ29がコーナー領域LC1の始点Aを指すように直動機構31(XYステージ34,ワーク台39)及びパラレルリンク機構1が移動する。その後、エンドエフェクタ29を起動すると同時に、各アクチュエータ53〜55,35〜37が先に求めた移動量(β1 、β2 、β3 、X、Y、Z)および速度で、コーナー領域LC1の終点Eまで、各区間ごとに加減速なしの連続位置決め動作を行う。
【0058】
コーナー領域LC1の終点Eまで移動が完了したら、パラレルリンク機構1の姿勢はそのままで直動機構31のX軸のみがコーナー領域LC2の始点Aまで動作する。ここで、コーナー領域LCと直線領域LSの繋ぎ目においては、各アクチュエータ53〜55,35〜37を加減速なしで連続動作するものとする。以下、上記と同様の動作をコーナー領域LC2、コーナー領域LC3、コーナー領域LC3と繰返し、エンドエフェクタ29の作用がコーナー領域LC1の始点Aまで完了したら、エンドエフェクタ29を停止させる。
【0059】
ここで、コーナー領域LCの始点A(丸プロット1)からコーナーエッジ(丸プロット5)までの距離および、コーナーエッジからコーナー終点E(丸プロット9)までの距離を“コーナー長さ”と定義する。領域分割部67は、以下の方法により最適なコーナー領域LCを算出する。ここで、コーナー領域LCにおけるXYステージ34の軌跡は、コーナー領域LCの始点Aからワーク側面に対して垂直方向に引いた線と、コーナー領域LCの終点Eからワーク側面に対して垂直方向に引いた線の交点を中心とし、コーナー領域LCの始点Aから終点Eまで移動する円弧(四角プロット1〜9)とする。また、パラレルリンク機構1とターゲットポイントP(
図2参照)との距離は、エンドエフェクタ29がターゲットポイントに対して作用できる最適な距離とする。
【0060】
コーナー長さが短い場合、各コーナーにおいてXYステージ34の移動速度が過大になり、コーナー部において振動が発生する恐れがある。そこで、
図5に示すフローチャートの手順により、コーナー領域動作指令生成部69は、最適なコーナー長さLを算出する。コーナー長さLの算出において、コーナー領域動作指令生成部69は、基準となる最小のコーナー長さをLint とし(ステップT1)、Lint におけるコーナー領域LCの始点Aから終点Eまでの経路を通過点F で複数の区間に分割する(ステップ2)。ここで、分割数をDとし、Dは予め計算パラメータとして持つ値とする。
【0061】
ステップT1では、分割した各ポイントにおける対象ワークWのnポイント目(n:自然数)の直交座標を(WXn,WYn)とし、n+1ポイント目のワーク直交座標を(WXn+1,WYn+1)とする。同様に各ポイントにおけるステージのnポイント目の直交座標を(SXn,SYn)とし、n+1ポイント目のステージ直交座標を(SXn+1,SYn+1)とする。コーナー領域動作指令生成部69は、各区間におけるステージ座標および、ワーク座標の移動量(SX,SY,WX,WY,WZ)を計算し、それらの値と指定された目標移動速度から、各ポイントにおけるXステージ33、Yステージ(XYステージ34のY軸方向)の移動速度をそれぞれ算出する。また、コーナー領域動作指令生成部69は、ステップT1においてVmaxを0にし、ステップT2において、nを1にする。
【0062】
ステップT3では、コーナー領域動作指令生成部69は、分割した各ポイントにおけるステージ座標および、ワーク座標を取得する。そして、コーナー領域動作指令生成部69は、Xステージ33の移動速度Vx を下記の(7)式 より算出する。コーナー領域動作指令生成部69は、分割した全ての区間においてVx を算出し、その中で最大のVx をVxmaxとする(ステップT4〜T7)。
【0064】
具体的には、コーナー領域動作指令生成部69は、ステップT3にて算出されたXステージ33の移動速度Vxと、Xステージ33の移動速度Vxの最大値Vxmaxとを比較する(ステップT4)。そして、移動速度Vxが、最大値Vxmaxよりも大きい場合には(ステップT4でYes)、最大値VmaxをVxとする(ステップT5)。そして、コーナー領域動作指令生成部69は、nをn+1へとインクメントする(ステップT6)。コーナー領域動作指令生成部69は、移動速度Vxが、最大値Vxmaxよりも以下である場合には(ステップT4でNo)、ステップT6へと進む。
【0065】
そして、コーナー領域動作指令生成部69は、nと分割数Dとを比較する(ステップT7)。分割数Dがnよりも大きい場合には(ステップT7でYes)、ステップT3へと戻る。nが分割数D以上である場合には(ステップT7でNo)、ステップT8へと巣進む。
【0066】
次に、コーナー領域動作指令生成部69は、Vxmaxとあらかじめ計算パラメータとして持つXステージ33の制限速度Vxlmtを比較し(ステップT8)、VxmaxがVxlmtより大きい場合(ステップT8でYes)、つまりXステージ33の移動速度がXステージ33の制限速度を超える速度になった場合は、コーナー長さLをL=L+Lplusとし(ステップT9)、ステップT2に戻り、再度Lにおけるコーナー領域LCの始点Aから終点Eまでの経路を通過点Fで複数の区間に分割する。Lplusは、あらかじめ計算パラメータとして持つコーナー長さの加算量である。以下、上記と同様の計算を行い、VxmaxがVxlmt以下になった場合(ステップT8でNo)のLを最終的なコーナー長さLx とする(ステップT10)。
【0067】
コーナー領域動作指令生成部69は、XYステージ34のY軸方向の速度についても、Xステージ33場合と同様の計算を行い、最終的なコーナ長さLyを算出する。そして、コーナー領域動作指令生成部69は、LxとLyとを比較し、大きい方を最終的なコーナー長さLとする。
【0068】
このような構成によれば、被作業平面Sの急峻な角度を有する境界面B上をエンドエフェクタ29が連続的に作用する動作において、エンドエフェクタ29の作用点Pが実質的に等速で動作することができ、前記エンドエフェクタ29による作業のムラをなくすことができる。エンドエフェクタ29として、例えば、レーザ、ディスペンサ、インクジェット、または溶接等をリンクに取付けて作業を行う際、レーザの加工ムラやディスペンサ、インクジェットによる塗布ムラや、溶接による溶接ムラをなくすことができる。
領域分割部67が、直線領域LSとコーナー領域LCとに分け、コーナー領域LCのみ協調動作させるため、協調動作させる指令の生成が、効率良く短時間で行える。また、直動領域LSではパラレルリンク機構1は直動機構31のみを動作させるため、高速で動作させることができ、またエンドエフェクタ29の姿勢が変化しないため、作業の品質の面からも好ましい。
【0069】
図6は、対象ワークWの被作業平面Sが直方体側面の内周面に対してエンドエフェクタ9を作用させる場合の例を示す。同図は、
図2の構成を上面から見た概略図である。
図4に示す外周の場合と同様に、領域分割部67が、直方体の内周のラインLを、直線領域LSとコーナー領域LC(LC1〜LC4)に分け、コーナー領域動作指令生成部69が、コーナー領域LCにおいて、コーナー領域LCの始点Aから終点Eまでの経路を通過点Fで複数の区間に分割する。
【0070】
分割した各ポイントにおける直動機構31の各軸の座標位置は、例えば次のように決定する。始点A(丸プロット1)および終点E(丸プロット9)での直動機構31の位置は、エンドエフェクタ29が内側から始点Aおよび終点Eを指す方向で、ワーク側面に垂直なライン上に位置する(四角プロット1、四角プロット9)。コーナーエッジ点(丸プロット5)での直動機構31(XYステージ34)の位置は、エンドエフェクタ29が内側からコーナーエッジ点を指す方向で、コーナー角度の2等分線上に位置する(四角プロット5)。パラレルリンク機構1と分割したターゲットポイントとの距離は、エンドエフェクタ29がターゲットポイントに対して作用できる最適な距離とする。
【0071】
始点Aおよび、コーナーエッジ点(境界面B上の点)、終点E以外の各ポイントでの直動機構31(XYステージ34)の位置は、始点Aおよび、コーナーエッジ点、終点Eでの直動機構31(XYステージ34)の位置(四角プロット1、四角プロット5、四角プロット9)を結ぶ直線上に設定する。丸プロットは、ワークの直交座標系においてエンドエフェクタ29が作用する座標(ワーク座標:WX,WY,WZ)を表し、四角プロットは直動機構31の直交座標系においてXYステージ34が移動する座標(ステージ座標:SX,SY )を表す。ここでは、ワーク座標とステージ座標の原点は同じ位置とする。四角プロットから丸プロットへの矢印は、エンドエフェクタ29が対象ワークに対して作用する方向を表す。丸プロットおよび四角プロット内の数字は、一連動作において各アクチュエータが位置決めする順番を表す。
一連の動作およびコーナー長さについては、
図4と共に説明した外周の場合と同様とする。
【0072】
このように、対象ワークWの被作業面Sが直方体側面の内周面である場合も、外周面である場合と同様に、対象ワークWの表面の急峻な角度を有する境界面Bに対して、エンドエフェクタ29が境界面Bを実質的に等速に移動しながら作業を行うことができて、前記境界面Bでムラを生じることなく作業を行うことができる。
【0073】
次に、3次元直交座標(XYZ平面座標)上の移動量と、パラレルリンク機構1の各アクチュエータ53〜55の移動量β1,β2,β3との関係を説明する。
図12に3次元直交座標(XYZ平面座標)から先端側のリンクハブ3の姿勢(折れ角θ、旋回角φ)を求める計算フローチャートと計算式を示す。同図の計算は、最小自乗法による収束演算で行うようにしている。
下記の式(1)に示すように、高さZ上の平面の原点O’と目標座標T(x,y,z)との距離をrとすると、rは目標座標Tのx,y座標から求められる。
【0075】
また、基端側のリンクハブ2の回転中心から目標座標Tまでの高さh’(
図13参照)は、リンク球面中心間距離d及び、基準平面から基端側リンク球面中心までの高さh、目標座標Tの高さzで表すと、式(2)のように表される。
【0077】
ここでd及びhは、リンク寸法及び装置寸法により決定される固定値である。また、前述した式(2)を用いて、O’と目標座標Tとの距離は式(3)に示すように、θに関係する式からr’として求められる。よって、式(4)に示すようにr(目標座標Tのx,yから算出)とr’(折れ角θから算出)との差が最小となる折れθを探索することで折れ角θを得る。
【0078】
【数4】
として、drが最小となるθを探索する。
θの範囲は0 °〜90°未満でリンクの仕様により最大角は変わる。
【0079】
図12の計算フローチャートについて説明する。
まず、式(1)からrを求める(ステップS1)。次に、計算フローの初期設定として、現在の繰返し回数jをゼロリセットし、折れ角θを探索する際の初期設定値θ’と、探索の繰返し回数Nを設定する。例えば、θ’は最大折れ角の半分の値に設定する。繰返し回数Nは、値が大きいほど最終的に得られる折れ角θの精度は良くなるが、計算フローの処理時間は長くなる。折れ角θの精度と、許容される処理時間の関係から最適なNを決定する。
【0080】
次に、θ=θ’として、式(1)でh’、r ’、drを計算する(ステップS2)。
また、ここでθ’=θ’/2とする(ステップS3)。
【0081】
次にステップS4でdrの判定を行う。0<drなら、θ=θ+θ’とし(ステップS5)、0>drなら、θ=θ−θ’とする(ステップS6)。この後、j=j+1とインクリメントする(ステップS7)。また、0=drなら、解Ansθとして、θ=θとする(ステップS9)。
【0082】
ステップS8で、で現在の繰返し回数jが設定された繰返し回数Nに達していないときは、ステップS3へ戻る。このフローを繰返し回数Nまで繰り返し、最後に得られたAnsθが、求める折れ角θとなる。折れ角を求めた後、式(5)、(6)に示すように旋回角を求める。
【0084】
このように求められた折れ角θおよび旋回角φにより、目標とする先端姿勢が規定される。上記のように、最小二乗法による収束演算により、現在の座標位置を基準にその近辺から順に探索して折れ角θを求めると、演算回数を減らすことができる。
【0085】
上記のように求めた折れ角θおよび旋回角φから、パラレルリンク機構11の各アクチュエータ53〜55を動作させる移動量(以下の説明では「回転角」称す)βn(n:1〜3)を、次のように求めることができる。なお、回転角βnは、
図7と同じパラレルリンク機構1を示す
図13に図示し、説明に必要な各量を示した。
回転角βnは、例えば、次の式(8)を逆変換することで求められる。逆変換とは、折れ角θおよび旋回角φから回転角βnを算出する変換のことである。折れ角θおよび旋回角φと、回転角βnとは相互関係があり、一方の値から他方の値を導くことができる。
cos (θ/2)sin βn−sin (θ/2)sin (φ+δn)cos βn+sin (γ/2)=0 …(8)
ただし、n=1,2,3
ここで、γは、基端側の端部リンク部材5に回転自在に連結された中央リンク部材7の連結端軸と、先端側の端部リンク部材6に回転自在に連結された中央リンク部材7の連結端軸とが成す角度である。δnは、基準となる基端側の端部リンク部材5に対する各基端側の端部リンク部材5の円周方向の離間角である。
【0086】
なお、必要時に式(8)を逆変換して回転角βnを求めてもよいが、事前に、先端位置姿勢と回転角βnとの関係を示すテーブル(図示せず)を作成しておいても良い。
【0087】
次に移動速度について説明する。
パラレルリンク機構1の単独での移動速度について説明する。簡明化のため、
図14に示す平面図で説明する。同図に示すように、エンドエフェクタ29が平面の被作業面S上の各ポイントを指定された目標移動速度Vでなぞる動作において、nポイント目の直交座標を(Xn、Yn)とし、n−1ポイント目の直交座標を(Xn−1、Yn−1)とし、n−1ポイント目からnポイント目へのβ1軸、β2軸、β3軸の各移動量をΔβ1、Δβ2、Δβ3とすると、Nポイント目に移動する際の各軸の移動速度V1n、V2n、V3nは次の式で表せる。
【0089】
パラレルリンク機構1の3軸(β1 軸、β2 軸、β3 軸)と、直動機構31とからなる場合の、エンドエフェクタ29が被作業平面S上の各ポイントを指定された速度Vで等速移動する際の合成速度Vn″について示す。ここでは、Z軸の移動がない場合について説明する。
対象ワークWの直交座標は、
図14と同様に、nポイント目の直交座標を(Xn、Yn)とし、n−1ポイント目の直交座標を(Xn−1、Yn−1)とする。n−1ポイント目からnポイント目へのβ1軸、β2軸、β3軸、X軸、Y軸の各移動量をΔβ1、Δβ2、Δβ3、Δx、Δyとすると、nポイント目に移動する際の各軸の移動速度V1n″、V2n”、V3n”、Vxn”、Vyn”は次の式で表せる。β1軸、β2軸、β3軸の移動速度は、回転角の移動速度である。
【0091】
以上のように、この実施形態に係るリンク作動装置の制御装置61および制御方法によると、対象ワークWの表面の急峻な角度を有する境界面Bに対して、エンドエフェクタ29が境界面Bを実質的に等速に移動しながら作業を行うことができて、前記境界面Bでムラを生じることなく作業が行える。
【0092】
以上、実施形態に基づいてこの発明を実施するための形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。