特許第6801287号(P6801287)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ジェイテクトの特許一覧

<>
  • 特許6801287-モータ制御装置 図000002
  • 特許6801287-モータ制御装置 図000003
  • 特許6801287-モータ制御装置 図000004
  • 特許6801287-モータ制御装置 図000005
  • 特許6801287-モータ制御装置 図000006
  • 特許6801287-モータ制御装置 図000007
  • 特許6801287-モータ制御装置 図000008
  • 特許6801287-モータ制御装置 図000009
  • 特許6801287-モータ制御装置 図000010
  • 特許6801287-モータ制御装置 図000011
  • 特許6801287-モータ制御装置 図000012
  • 特許6801287-モータ制御装置 図000013
  • 特許6801287-モータ制御装置 図000014
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6801287
(24)【登録日】2020年11月30日
(45)【発行日】2020年12月16日
(54)【発明の名称】モータ制御装置
(51)【国際特許分類】
   B62D 6/00 20060101AFI20201207BHJP
   B62D 5/04 20060101ALI20201207BHJP
【FI】
   B62D6/00
   B62D5/04
【請求項の数】3
【全頁数】25
(21)【出願番号】特願2016-157635(P2016-157635)
(22)【出願日】2016年8月10日
(65)【公開番号】特開2018-24335(P2018-24335A)
(43)【公開日】2018年2月15日
【審査請求日】2019年7月16日
(73)【特許権者】
【識別番号】000001247
【氏名又は名称】株式会社ジェイテクト
(74)【代理人】
【識別番号】100105957
【弁理士】
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【弁理士】
【氏名又は名称】恩田 博宣
(72)【発明者】
【氏名】藤田 祐志
(72)【発明者】
【氏名】河村 洋
(72)【発明者】
【氏名】酒井 厚夫
【審査官】 内山 隆史
(56)【参考文献】
【文献】 特開2004−010024(JP,A)
【文献】 国際公開第2005/069095(WO,A1)
【文献】 特開2009−208718(JP,A)
【文献】 特開昭54−17217(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B62D 6/00
B62D 5/04
(57)【特許請求の範囲】
【請求項1】
ステアリングホイールの操作に基づいて転舵輪を転舵させる操舵系に対して運転者によるステアリングホイールの操作を補助するアシストトルクを付与するように電動パワーステアリング装置が有する2系統巻線モータの各系統のモータコイルを駆動するモータ制御装置であって、
前記各系統が、対応する前記モータコイルを駆動するモータ駆動部と、前記モータ駆動部の制御に必要なパラメータを出力するパラメータ出力部と、パラメータに基づき、制御量を演算する制御演算部と、を含み、
前記パラメータ出力部は、
運転者によるステアリングホイールの操作に際して前記操舵系に付与される操舵トルクを検出するトルクセンサと、
前記2系統巻線モータの回転角を検出する回転角センサと、
前記モータコイルの各相に流れるモータ電流を検出する電流センサと、を含み、
前記制御量は、
前記モータコイルに対して前記モータ駆動部が供給する駆動電力の基となる制御信号と、
前記制御信号の基となるアシスト制御量と、を含み、
前記制御演算部は、
前記操舵トルクを含む一部のパラメータに基づいて前記アシスト制御量を演算するアシスト制御部と、
前記アシスト制御量と前記回転角及び前記モータ電流を含む一部のパラメータとに基づいて前記制御信号を演算する電流制御部と、を含み、
前記アシスト制御部は、前記アシスト制御量を演算する際、前記パラメータ出力部が正常な場合には、いずれか一方の系統の少なくとも前記操舵トルクを含む一部のパラメータを共用して、または両系統の少なくとも前記操舵トルクを含む一部のパラメータを平均化したものを用いるように構成され
前記電流制御部は、前記制御信号を演算する際、前記パラメータ出力部が正常な場合には、自身の系統の前記回転角及び前記モータ電流を含む一部のパラメータを用いるように構成され、
前記各系統のモータ駆動部は、自身の系統の前記電流制御部が演算した前記制御信号に基づいて前記モータコイルを駆動するモータ制御装置。
【請求項2】
前記アシスト制御部は、前記アシスト制御量の演算の際、前記一方の系統のパラメータ出力部が異常となった場合には、残った他方の系統の少なくとも前記操舵トルクを含む一部のパラメータを共用する請求項1に記載のモータ制御装置。
【請求項3】
2系統巻線モータの各系統のモータコイルを駆動するモータ制御装置であって、
前記各系統が、対応する前記モータコイルを駆動するモータ駆動部と、前記モータ駆動部の制御に必要なパラメータを出力するパラメータ出力部と、パラメータに基づき、制御量を演算する制御演算部と、を含み、
いずれか一方の系統の少なくとも一部のパラメータを共用して、または両系統の少なくとも一部のパラメータを平均化したものに基づいて前記制御演算部が制御量を演算し、或いはいずれか一方の系統の制御演算部の制御量を共用することにより、
前記各系統のモータ駆動部がその制御量に基づいて前記モータコイルを駆動するものであり、
前記パラメータ出力部が正常時には、前記各系統では、自身の系統に属する制御演算部は、自身の系統に属するパラメータ出力部のパラメータに基づいて制御量を演算し、前記各系統のモータ駆動部が自身の系統に属する前記制御演算部で演算されたその制御量に基づいて前記モータコイルを駆動し、
自身の系統に属するパラメータ出力部が異常時には、自身の系統外の制御演算部の制御量を共用することにより、前記各系統のモータ駆動部がその制御量に基づいて前記モータコイルを駆動するモータ制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、モータ制御装置に関する。
【背景技術】
【0002】
モータ制御装置として、例えば、車両の電動パワーステアリング装置(EPS)が知られている。電動パワーステアリング装置は、トルクセンサにて操舵時のステアリングシャフトに加わった操舵トルクを検出し、該操舵トルクに基づき、または該操舵トルク及び車速センサからの車速に基づき、アシスト制御部にて電動モータ(以下、モータという)の制御目標値であるアシスト制御量を演算するようにしている。
【0003】
そして、電動パワーステアリング装置は、モータ制御部にてアシスト制御量に基づいてモータ電流指令値を算出し、モータドライバがモータ電流指令値に基づくモータ電流をモータに出力することにより、該モータを駆動するようにしている。また、近年の車両には、ADAS(Advanced Driver Assistance Systems:先進運転支援システム)などの運転者の運転を支援する自動操舵システムが搭載されている。このような自動操舵システムでは、運転者の操舵感の向上や自動操舵を行うために、運転者の操舵に基づく制御量や、カメラやレーダーなどの計測手段が計測する自車両の周辺環境に基づく制御量などに基づいて、EPSのモータを制御している。
【0004】
また、上記のような自動運転対応等のために、電動パワーステアリング装置では、上記したセンサ、アシスト制御部、モータ制御部、モータドライバ、及びモータを1系統として、2系統を備えて冗長化したシステム構成も提案されている(特許文献1)。このように冗長化することにより、より安定したモータ制御が可能となる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2004−10024号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところが、単にシステムを冗長化したとしても、各系統のセンサが検出した操舵トルクや車速等が異なると、各系統において算出されるアシスト電流指令値等の制御量に基づいて、各系統のモータに対して異なるモータ電流指令値が出力されてしまうこととなる。このようにして、両系統間では、制御量の系統間の誤差があると、好ましくない。
【0007】
本発明の目的は、モータ制御に要するパラメータを出力するパラメータ出力部が異常な場合、各系統間で制御量の系統間の誤差を一致させることができ、独立して各系統がモータを制御する場合と異なり、モータのトルクリプルやNV(騒音振動)性能が向上することができるモータ制御装置を提供することにある。
【課題を解決するための手段】
【0008】
上記問題点を解決するために、本発明のモータ制御装置は、2系統巻線モータの各系統のモータコイルを駆動するモータ制御装置であって、前記各系統が、対応する前記モータコイルを駆動するモータ駆動部と、前記モータ駆動部の制御に必要なパラメータを出力するパラメータ出力部と、パラメータに基づき、制御量を演算する制御演算部と、を含み、いずれか一方の系統の少なくとも一部のパラメータを共用して、または両系統のパラメータの少なくとも一部を平均化したものに基づいて前記制御演算部が制御量を演算し、或いはいずれか一方の系統の制御演算部の制御量を共用することにより、前記各系統のモータ駆動部がその制御量に基づいて前記モータコイルを駆動するものである。
【0009】
上記構成により、両系統間では、制御量の系統間の誤差を一致させることが可能となる。従って、冗長化システムにおいて、完全に独立した構成を有する場合と異なり、モータのトルクリプルやNV(騒音振動)性能が向上する。
【0010】
また、前記共用したいずれか一方の系統のパラメータに基づいて、または両系統のパラメータを平均化したものに基づいて、前記制御演算部が制御量を演算することにより、前記各系統のモータ駆動部がその制御量に基づいて前記モータコイルを駆動することは、前記パラメータ出力部が正常の場合に行い、前記一方の系統のパラメータ出力部が異常となった場合には、残った他方の系統のパラメータ出力部のパラメータを両系統の制御演算部が共用して制御量を演算して両系統のモータ駆動部が該制御量に基づき前記モータコイルを駆動するようにしてもよい。
【0011】
上記構成により、一方の系統のパラメータ出力部が正常時及び異常時のいずれの場合も、両系統間では、制御量の系統間の誤差を一致させることが可能となる。従って、冗長化システムにおいて、完全に独立した構成を有する場合と異なり、モータのトルクリプルやNV(騒音振動)性能が向上する。
【0012】
さらに、前記パラメータ出力部が正常時も異常時も、モータの出力が減少することがなく、正常時と同じモータの出力の保持が可能となる。
また、前記パラメータ出力部が正常時には、前記各系統では、自身の系統に属する制御演算部は、自身の系統に属するパラメータ出力部のパラメータに基づいて制御量を演算し、自身の系統に属するパラメータ出力部が異常時には、自身の系統外の制御演算部の制御量を共用することにより、前記各系統のモータ駆動部がその制御量に基づいて前記モータコイルを駆動するようにしてもよい。
【0013】
上記構成により、自身の系統のパラメータ出力部が正常時は勿論のこと、異常時にも、前記パラメータ出力部が正常時と同様に、両系統間では、制御量の系統間の誤差を一致させることが可能となり、このため、冗長化システムにおいて、完全に独立した構成を有する場合と異なり、モータのトルクリプルやNV(騒音振動)性能を向上させる。
【0014】
また、モータ制御装置が、前記2系統巻線モータの各系統のモータコイルを駆動することにより操舵系にアシストトルクを付与する電動パワーステアリング装置であって、前記パラメータ出力部は、前記操舵系に含まれるステアリングシャフトに印加された操舵トルクを検出するトルクセンサを少なくとも含み、前記制御演算部は、前記操舵トルクに基づいて制御量としてのアシスト制御量を演算するものとしてもよい。
【0015】
上記構成により、自身の系統のトルクセンサが異常時には、前記パラメータ出力部が正常時と同様に、両系統間では、アシスト制御量の系統間の誤差を一致させることが可能となり、このため、冗長化システムにおいて、完全に独立した構成を有する場合と異なり、モータのトルクリプルやNV(騒音振動)性能を向上する。
【0016】
また、モータ制御装置が、前記2系統巻線モータの各系統のモータコイルを駆動することにより操舵系にアシストトルクを付与する電動パワーステアリング装置であって、前記2系統巻線モータは複数相のモータコイルを備えており、前記パラメータ出力部は、前記2系統巻線モータの回転角を検出する回転角センサ、前記モータコイルの各相に流れるモータ電流を検出する電流センサを含み、前記制御演算部は、前記操舵系のステアリングシャフトに印加された操舵トルクに基づいてアシスト制御量を演算するアシスト制御部と、前記アシスト制御量、前記回転角及び各相に流れるモータ電流に基づいて相電圧指令値を演算する相電圧指令部、及び前記相電圧指令値に基づいて制御量としてのデューティ指令値を演算するデューティ出力部とを含むものとしてもよい。
【0017】
上記の構成により、自身の系統の回転角センサ、または電流センサが異常時には、両系統間では、アシスト制御量の系統間の誤差を一致させることが可能となり、このため、冗長化システムにおいて、完全に独立した構成を有する場合と異なり、モータのトルクリプルやNV(騒音振動)性能を向上させる。
【発明の効果】
【0018】
本発明によれば、各系統間で制御量の系統間の誤差を一致させることができ、独立して各系統がモータを制御する場合と異なり、モータのトルクリプルやNV(騒音振動)性能が向上することができる。
【図面の簡単な説明】
【0019】
図1】電動パワーステアリング装置の概略構成を示すブロック図。
図2】第1実施形態のモータ制御装置のブロック図。
図3】(a)、(b)は、系統30のアシスト制御部33が実行するフローチャート。
図4】(a)、(b)は、系統40のアシスト制御部43が実行するフローチャート。
図5】(a)、(b)は、第1実施形態の変形例1における系統30、40のアシスト制御部33、43が実行するフローチャート。
図6】(a)、(b)は、第1実施形態の変形例2における系統30、40のアシスト制御部33、43が実行するフローチャート。
図7】第2実施形態のモータ制御装置のブロック図。
図8】第3実施形態のモータ制御装置のブロック図。
図9】切換部37が実行するフローチャート。
図10】切換部47が実行するフローチャート。
図11】第4実施形態のモータ制御装置のブロック図。
図12】電流制御部34が実行するフローチャート。
図13】電流制御部44が実行するフローチャート。
【発明を実施するための形態】
【0020】
<第1実施形態>
図1図4を参照して、モータ制御装置の一実施形態について説明する。まず、本実施形態のモータ制御装置を適用した電動パワーステアリング装置の概要について説明する。
【0021】
図1に示すように、電動パワーステアリング装置は、運転者のステアリングホイール10の操作に基づいて転舵輪3を転舵させる操舵系としての操舵機構1、及び運転者のステアリング操作を補助するアシスト機構2を備えている。
【0022】
操舵機構1は、ステアリングホイール10の回転軸となるステアリングシャフト11、及びその下端部にラックアンドピニオン機構12を介して連結されたラックシャフト13を備えている。操舵機構1では、運転者のステアリングホイール10の操作に伴いステアリングシャフト11が回転すると、その回転運動がラックアンドピニオン機構12を介してラックシャフト13の軸方向の往復直線運動に変換される。このラックシャフト13の往復直線運動がその両端に連結されたタイロッド14を介して転舵輪3に伝達されることにより転舵輪3の転舵角が変化し、車両の進行方向が変更される。
【0023】
アシスト機構2は、ステアリングシャフト11にアシストトルクを付与するモータ17を備えている。モータ17の回転が減速機21を介してステアリングシャフト11に伝達されることでステアリングシャフト11にアシストトルクが付与され、ステアリング操作が補助される。
【0024】
モータ17は、いわゆるSPMモータ(Surface Permanent Magnet Motor)である。なお、モータ17は、SPMモータに限定するものではなく、IPMモータ(Interior Permanent Magnet Motor)であってもよい。また、モータ17は、ブラシレスの2系統巻線の3相モータであって、図示しないステータとロータ18(図2参照)とを備えている。なお、モータ17は、2系統巻線モータの一例である。ロータ18は、その表面において円周方向に複数の永久磁石(図示しない)が露出して配置されており、各永久磁石は、ロータの半径方向に沿って着磁されるとともに、ロータ18の円周方向において互いに隣り合う2つの永久磁石の着磁の向きが互いに反対になるように設けられている。
【0025】
前記ステータは、図示しないステータコアに巻回された複数のモータコイル15u、15v、15w、16u、16v、16wを有している。前記モータコイルは、2つのモータコイル群に分類され、各モータコイル群は、それぞれデルタ結線されたU相、V相、W相の3相分のモータコイル15u、15v、15w、16u、16v、16wを含み、両モータコイル群が駆動されると、共通のロータ18を回転させる。また、一方のモータコイル群(例えば、モータコイル15u、15v、15w、或いはモータコイル16u、16v、16w)のみが駆動された場合は、両モータコイル群がそれぞれ駆動された場合のモータの出力に比して半分となっている。なお、各モータコイル群は、デルタ結線の代わりにスター結線としてもよい。
【0026】
電動パワーステアリング装置には、ステアリングホイール10の操作量や車両の状態量を検出する各種センサが設けられている。各種センサについては後述する。
(モータ制御装置4の構成)
次に、モータ17を制御するモータ制御装置4を説明する。
【0027】
図2に示すように、モータ制御装置4は、相互に同一構成の系統30、40の2つの制御系からなる冗長化システムを構成している。同一構成とは、同一規格・同一仕様を含む趣旨である。
【0028】
系統30は、第1制御演算部31及び三相(U相、V相、W相)のインバータ回路からなる第1モータ駆動部32を備えている。第1制御演算部31は、マイクロプロセスユニット(MPU)からなり、制御プログラムが実行されることによりアシスト制御部33、電流制御部34及び異常検出部35の機能を有する。
【0029】
アシスト制御部33は、後述する各種パラメータ(操舵トルク、車速)を入力して、これらパラメータに基づいて、アシストマップ等を用いて制御量としてのアシスト制御量(アシスト電流指令値)を演算する。なお、アシスト制御部33の作用の詳細については後述する。
【0030】
電流制御部34は、前記アシスト制御量(アシスト電流指令値)、回転角θm1及び各相のモータ電流を入力する。電流制御部34は、回転角θm1を用いて各相の相電流をd/q座標系のd軸電流値及びq軸電流値に変換し、d軸電流値及びq軸電流値に追従させる電流フィードバック制御を行うことによりd軸電圧指令値及びq軸電圧指令値を算出する。そして、電流制御部34は、回転角θm1を用いてd軸電圧指令値及びq軸電圧指令値を各相の相電圧指令値に変換する。
【0031】
さらに、電流制御部34は、この各相の相電圧指令値に基づいて、各相のデューティ値を求め、各相のデューティ値に基づいて各相の制御信号I*1を第1モータ駆動部32に出力することにより、第1モータ駆動部32をPWM駆動させる。制御信号I*1は、モータ駆動指令に相当する。
【0032】
これにより、前記制御信号I*1に応じた駆動電力が第1モータ駆動部32からモータコイル15u、15v、15wに供給される。
また、第1制御演算部31は自身の状態を監視する自己監視機能を有しており、自己監視の結果、正常でない場合には、第1モータ駆動部32への電源供給を遮断するようにしている。
【0033】
異常検出部35は、後述するトルクセンサ5a、5bから入力された操舵トルクTh1、Th2の異常検出、及び後述する車速センサ6a、6bから入力された車速S1、S2の異常検出を行う。なお、本明細書では、パラメータが異常とは、パラメータ出力部(すなわち、センサ)の異常を指し、パラメータが正常とは、パラメータ出力部が正常であることを指す。
【0034】
異常検出部35は、操舵トルクに関して異常検出の結果、異常でない(すなわち、正常)の操舵トルクTh1、Th2のみをアシスト制御部33に入力する。また、異常検出部35は、車速に関して異常検出の結果、異常でない(すなわち、正常)の車速のみをアシスト制御部33に入力する。
【0035】
なお、異常検出部35の異常検出方法は、公知の方法でよい。例えば、異常検出部35に入力した値(操舵トルク、車速)が、それぞれ予め設定された閾値と比較して異常か否かを判定してもよい。或いは、各操舵トルクの前回値と今回値の差を比較し、その差が判定閾値以内であれば、正常であり、判定閾値を超えている場合には、異常と判定してもよい。また、車速についても、各車速の前回値と今回値の差を比較し、その差が判定閾値以内であれば、正常であり、判定閾値を超えている場合には、異常と判定してもよい。
【0036】
系統40は、第2制御演算部41及び三相(U相、V相、W相)のインバータ回路からなる第2モータ駆動部42を備えている。第2制御演算部41は、マイクロプロセスユニット(MPU)からなり、アシスト制御部43及び電流制御部44を備えている。
【0037】
第2制御演算部41は、マイクロプロセスユニット(MPU)からなり、アシスト制御部43、電流制御部44及び異常検出部45を備えている。
アシスト制御部43は、後述する各種パラメータ(操舵トルク、車速)を入力して、これらパラメータに基づいて、アシストマップ等を用いてアシスト制御量(アシスト電流指令値)を演算する。なお、アシスト制御部43が採用するアシストマップは、アシスト制御部33が採用するアシストマップと同じものである。アシスト制御部43の作用の詳細については後述する。
【0038】
電流制御部44は、アシスト制御部43から出力された前記アシスト制御量(アシスト電流指令値)、回転角θm2及び各相のモータ電流を入力する。電流制御部44は、回転角θm2を用いて各相のモータ電流をd/q座標系のd軸電流値及びq軸電流値に変換し、d軸電流値及びq軸電流値に追従させる電流フィードバック制御を行うことによりd軸電圧指令値及びq軸電圧指令値を算出する。
【0039】
そして、電流制御部44は、回転角θm2を用いてd軸電圧指令値及びq軸電圧指令値を各相の相電圧指令値に変換する。さらに、電流制御部44は、この各相の相電圧指令値に基づいて、各相のデューティ値を求め、各相のデューティ値に基づいて制御信号I*2を第2モータ駆動部42に出力することにより、第2モータ駆動部42をPWM駆動させる。制御信号I*2はモータ駆動指令に相当する。
【0040】
これにより、前記制御信号I*2に応じた駆動電力が第2モータ駆動部42からモータコイル16u、16v、16wに供給される。
また、系統30、40は、基本周波数のクロックを発信する発振器26、28をそれぞれ有しており、系統30の第1制御演算部31、及び系統40の第2制御演算部41は、発振器26、28の前記基本周波数のクロックに基づいて、同期して、前記アシスト制御量等の演算、及び演算結果の出力を行うようにしている。
【0041】
また、第2制御演算部41は自身の状態を監視する自己監視機能を有しており、自己監視の結果、正常でない場合には、第2モータ駆動部42への電源供給を遮断するようにしている。
【0042】
異常検出部45は、異常検出部35と同様に後述するトルクセンサ5a、5bから入力された操舵トルクTh1、Th2の異常検出、及び後述する車速センサ6a、6bから入力された車速S1、S2の異常検出を行う。
【0043】
異常検出部45は、異常検出部35と同様に操舵トルクに関して異常検出の結果、異常でない(すなわち、正常)の操舵トルクTh1、Th2のみをアシスト制御部43に入力する。また、異常検出部45は、異常検出部35と同様に車速に関して異常検出の結果、異常でない(すなわち、正常)の車速のみをアシスト制御部43に入力する。
【0044】
(センサについて)
本実施形態では、系統30、40毎に相互に同一構成の各種センサが設けられている。
図1に示すように、具体的には、ステアリングシャフト11には、運転者のステアリング操作に際してステアリングシャフト11に付与される操舵トルクTh1、Th2を検出するトルクセンサ5a、5bが設けられている。トルクセンサ5aが検出した操舵トルクTh1は、第1制御演算部31の異常検出部35に入力され、トルクセンサ5bが検出した操舵トルクTh2は、第2制御演算部41の異常検出部45に入力される。
【0045】
また、車両には、その車速を検出する車速センサ6a、6bが設けられている。車速センサ6aが検出した車速S1は第1制御演算部31の異常検出部35に入力され、車速センサ6bが検出した車速S2は、第2制御演算部41の異常検出部45に入力される。
【0046】
また、本実施形態においては、第1制御演算部31に入力された操舵トルクTh1及び車速S1は、SPIやLIN等のマイコン間通信にて、第2制御演算部41の異常検出部45にも入力される。また、第2制御演算部41に入力された操舵トルクTh2及び車速S2は、マイコン間通信にて、第1制御演算部31の異常検出部35にも入力される。
【0047】
また、図1図2に示すように、モータ17には、その回転角(電気角)θm1、θm2を検出する回転角センサ8a、8bが設けられている。回転角センサ8aは、系統30の電流制御部34に入力され、回転角センサ8bは、系統40の電流制御部44に入力される。
【0048】
図2に示すように、系統30の第1モータ駆動部32は、第1モータ駆動部32と各相のモータコイル15u、15v、15wとの間の給電経路に生じる各相のモータ電流を検出する電流センサ7aが設けられている。
【0049】
また、図2に示すように、系統40の第2モータ駆動部42は、第2モータ駆動部42と各相のモータコイル16u、16v、16wとの間の給電経路に生じる各相のモータ電流を検出する電流センサ7bが設けられている。
【0050】
本実施形態では、トルクセンサ5a、5b、車速センサ6a、6b及び電流センサ7a、7bはパラメータ出力部に相当し、これらのセンサが検出する検出信号は、パラメータに相当する。
【0051】
(実施形態の作用)
上記のように構成されたモータ制御装置4の作用を説明する。なお、説明の便宜上、第1制御演算部31及び第2制御演算部41のそれぞれの自己監視機能では、第1制御演算部31及び第2制御演算部41は、正常であるとする。
【0052】
(系統30について)
図3(a)、及び図3(b)は系統30のアシスト制御部33がアシスト制御量の演算プログラムに従って実行するフローチャートである。
【0053】
S8では、アシスト制御部33は、アシスト制御が可能か否かを判定する。ここで、アシスト制御が可能でない場合とは、下記の(1)〜(3)の場合を含む。
(1)系統30、40のパラメータ(操舵トルク、車速)の全部が入力されていない場合
(2)系統30、40の両系統の操舵トルクのいずれもが入力されていない場合
(3)系統30、40の両系統の車速のいずれもが入力されていない場合
上記(1)〜(3)のいずれかの場合には、アシスト制御部33は、ここでの判定を「YES」とし、S9に移行してアシスト制御を停止することによりモータ17を停止する。
【0054】
上記(1)〜(3)のいずれにも該当しない場合は、アシスト制御部33は、S10に移行する。
S10では、アシスト制御部33は、系統30、40のパラメータが全て正常か否かを判定する。具体的には、操舵トルクTh1、Th2及び車速S1、S2が全て入力されている場合は、アシスト制御部33は、系統30、40からのパラメータが全て正常であると判定し、S11に移行する。
【0055】
また、アシスト制御部33は、系統30、40のパラメータ(操舵トルクTh1、Th2、車速S1、S2)の全部が正常でない場合には、S12に移行する。
S11では、アシスト制御部33は、操舵トルクTh1、Th2を相加平均とする平均化演算を行い、その演算結果を操舵トルクThとしてセットする。また、アシスト制御部33は、車速S1、S2を相加平均とする平均化演算を行い、その演算結果を車速Sとしてセットした後、S23に移行する。
【0056】
S12では、アシスト制御部33は、系統30のパラメータ(操舵トルクTh1、車速S1)が異常か否かを判定する。アシスト制御部33は、系統30のパラメータ(操舵トルクTh1、車速S1)が異常の場合、すなわち、系統30のパラメータ(操舵トルク、車速)の1つ、または2つが入力されていない場合、ここでの判定を「YES」とした場合は、S13に移行する。
【0057】
また、系統40のパラメータ(操舵トルクTh2、車速S2)が異常の場合はS18に移行する。
S13では、アシスト制御部33は、操舵トルクTh1及び車速S1のうちいずれか一方が異常か両方が異常か否かを判定する。アシスト制御部33は、操舵トルクTh1及び車速S1のうちいずれか一方が異常の場合は、S14に移行し、両方が異常の場合は、S17に移行する。
【0058】
S14では、アシスト制御部33は、操舵トルクTh1が異常か否かを判定し、操舵トルクTh1が異常の場合は、S15に移行し、操舵トルクTh1は正常で車速S1が異常の場合は、S16に移行する。
【0059】
S15では、アシスト制御部33は、後述するS23で行う系統30のアシスト制御量(アシスト電流指令値)の演算に使用する操舵トルクThとして操舵トルクTh2をセットする。また、アシスト制御部33は、車速S1、S2を相加平均とする平均化演算を行い、その演算結果を車速Sとしてセットした後、S23に移行する。
【0060】
S16では、アシスト制御部33は、後述するS23で行う系統30のアシスト制御量(アシスト電流指令値)の演算に使用する車速Sとして車速S2をセットする。また、アシスト制御部33は、操舵トルクTh1、Th2を相加平均とする平均化演算を行い、その演算結果を操舵トルクThとしてセットした後、S23に移行する。
【0061】
S17では、アシスト制御部33は、後述するS23で行う系統30のアシスト制御量(アシスト電流指令値)の演算に使用する操舵トルクTh及び車速Sとして操舵トルクTh2及び車速S2をセットし、S23に移行する。
【0062】
S18では、アシスト制御部33は、操舵トルクTh2及び車速S2のうちいずれか一方が異常か両方が異常か否かを判定する。アシスト制御部33は、操舵トルクTh2及び車速S2のうちいずれか一方が異常の場合は、S19に移行し、両方が異常の場合は、S22に移行する。
【0063】
S19では、アシスト制御部33は、操舵トルクTh2が異常か否かを判定し、操舵トルクTh2が異常の場合は、S20に移行し、操舵トルクTh2は正常で車速S2が異常の場合は、S21に移行する。
【0064】
S20では、アシスト制御部33は、後述するS23で行う系統30のアシスト制御量(アシスト電流指令値)の演算に使用する操舵トルクThとして操舵トルクTh1をセットする。また、アシスト制御部33は、車速S1、S2を相加平均とする平均化演算を行い、その演算結果を車速Sとしてセットした後、S23に移行する。
【0065】
S21では、アシスト制御部33は、後述するS23で行う系統30のアシスト制御量(アシスト電流指令値)の演算に使用する車速Sとして車速S1をセットする。また、アシスト制御部33は、操舵トルクTh1、Th2を相加平均とする平均化演算を行い、その演算結果を操舵トルクThとしてセットした後、S23に移行する。
【0066】
S22では、アシスト制御部33は、後述するS23で行う系統30のアシスト制御量(アシスト電流指令値)の演算に使用する操舵トルクTh及び車速Sとして操舵トルクTh1及び車速S1をセットする。
【0067】
S23では、S11、S15、S16、S17、S20、S21、またはS22においてセットされた操舵トルクTh及び車速Sに基づき、アシストマップ等を用いてアシスト制御量(アシスト電流指令値)の演算を行う。
【0068】
図2に示す電流制御部34は、このアシスト制御量に基づいて、既に述べた作用により演算した結果の制御信号I*1を第1モータ駆動部32に出力することにより、第1モータ駆動部32をPWM駆動させる。これにより、前記制御信号I*1に応じた駆動電力が第1モータ駆動部32からモータコイル15u、15v、15wに供給される。
【0069】
(系統40について)
図4(a)、図4(b)は系統40のアシスト制御部43がアシスト制御量の演算プログラムに従って実行するフローチャートである。
【0070】
S108〜S114、S118、S119は、図3のフローチャートのS8〜S14、S18、S19において、アシスト制御部33が実行する処理と同様であり、上記したS8〜S14、S18、S19の説明中、「アシスト制御部33」を「アシスト制御部43」で置き換えることにより代替できるため、詳細な説明を省略する。また、S115〜S117、及びS120〜S122は、上記S15〜S17、及びS20〜S22の説明中、「アシスト制御部33」及び「系統30」を、それぞれ「アシスト制御部43」及び「系統40」に読み替えれば、系統40のアシスト制御部43が実行する処理の説明となるため、それらの詳細な説明を省略する。
【0071】
S123では、S111、S115、S116、S117、S120、S121、またはS122において演算され、或いはセットされた操舵トルク及び車速に基づき、アシストマップ等を用いてアシスト制御量(アシスト電流指令値)の演算を行う。
【0072】
図2に示す電流制御部44は、このアシスト制御量に基づいて、既に述べた作用により演算した結果の制御信号I*2を第2モータ駆動部42に出力することにより、第2モータ駆動部42をPWM駆動させる。これにより、前記制御信号I*2に応じた駆動電力が第2モータ駆動部42からモータコイル16u、16v、16wに供給される。
【0073】
本実施形態では、下記の特徴を有する。
(1)本実施形態のモータ制御装置4は、系統30、40が、対応するモータコイル15u等を駆動する第1モータ駆動部32及び第2モータ駆動部42を備えている。また、モータ制御装置4は、第1モータ駆動部32及び第2モータ駆動部42の制御に必要な操舵トルク及び車速(パラメータ)を出力する車速センサ6a、6b及び電流センサ7a、7b(パラメータ出力部)と、パラメータに基づき、アシスト制御量(制御量)を演算する第1制御演算部31及び第2制御演算部41を備えている。
【0074】
そして、モータ制御装置4は、パラメータ出力部が正常な場合、両系統のパラメータを平均化したものに基づいて第1制御演算部31、第2制御演算部41がアシスト制御量を演算する。この演算により、各系統の第1モータ駆動部32及び第2モータ駆動部42がそのアシスト制御量に基づいてモータコイル15u等を駆動する。
【0075】
この結果、系統30、40のトルクセンサ、車速センサの両方がそれぞれ正常な場合は、操舵トルクTh1、Th2の平均値と、車速S1、S2の平均値に基づいて、アシスト制御量を演算するため、アシスト制御のトルクセンサ及び車速センサの入力値のバラツキによるアシスト制御量の系統間の誤差を一致させることができる。このため、完全に独立した系統で構成された冗長化システムに比して、本実施形態の冗長化システムは、モータ17のトルクリプルやNV(騒音振動)性能を向上させることができる。
【0076】
(2)本実施形態のモータ制御装置4は、系統30、40のうち、いずれか一方の系統のパラメータが異常となった場合、残った他方の系統のパラメータ出力部のパラメータを両系統の第1制御演算部31、第2制御演算部41が共用してアシスト制御量(制御量)を演算する。そして、両系統の第1モータ駆動部32、第2モータ駆動部42が該アシスト制御量に基づきモータコイル15u、15v、15w、16u、16v、16wを駆動する。
【0077】
従来は、センサ異常等に伴う、いずれか一方の系統に関するトルクセンサ、または車速センサ(パラメータ出力部)が異常の場合、その系統の制御対象であるモータコイルの駆動を停止していることにより、アシストトルクの操舵系に付与するアシストトルクを半減させている。
【0078】
これに対して、本実施形態のモータ制御装置4では、いずれか一方の系統に関する操舵トルク、または車速(パラメータ)を検出するセンサが異常の場合、センサが正常である他系統が演算したアシスト制御量(制御量)を共用することにより、センサが異常であった系統の制御対象であるモータコイルの駆動を停止することがない。この結果、本実施形態によれば、センサ異常等に伴う、いずれか一方の系統に関する操舵トルク、または車速(パラメータ)を検出するセンサが異常の場合であっても、正常時と同様のアシストトルクを操舵系に付与することができる。
【0079】
<第1実施形態の変形例1>
図5(a)、(b)を参照して第1実施形態の変形例1を説明する。
本実施形態のモータ制御装置4のハード構成は、第1実施形態と同一構成のため、その説明を省略し、第1実施形態と異なるアシスト制御部33、43の処理について説明する。なお、本実施形態を含めて、以下の各実施形態では、第1実施形態の構成と同じ構成については同一符号を付して、その説明を省略する。
【0080】
図5(a)、(b)は、アシスト制御部33、43がそれぞれ同期して実行するアシスト制御量の演算プログラムに従ってフローチャートである。説明の便宜上、以下の説明では、アシスト制御部33が実行するものとして説明する。
【0081】
S30、S31は、第1実施形態のS8及びS9とそれぞれ同じ処理である。
S32では、アシスト制御部33は、系統30のパラメータが全て正常か否かを判定する。具体的には、操舵トルクTh1及び車速S1が全て入力されている場合は、アシスト制御部33は、系統30のパラメータが全て正常である、すなわち、パラメータ出力部が正常であると判定し、S33に移行する。
【0082】
また、アシスト制御部33は、系統30のパラメータ(操舵トルクTh1、車速S1)の全部が正常でない場合、すなわち、パラメータ出力部が正常でない場合には、S34に移行する。
【0083】
S33では、アシスト制御部33は、操舵トルクTh1をアシスト制御量演算に使用する操舵トルクThにセットするとともに車速S1をアシスト制御量演算に使用する車速Sにセットし、S39に移行する。
【0084】
S34では、アシスト制御部33は、操舵トルクTh1及び車速S1のうちいずれか一方が異常か両方が異常か否かを判定する。アシスト制御部33は、操舵トルクTh1及び車速S1のうちいずれか一方が異常の場合は、S35に移行し、両方が異常の場合は、S38に移行する。
【0085】
S35では、アシスト制御部33は、操舵トルクTh1が異常か否かを判定し、操舵トルクTh1が異常の場合は、S36に移行し、操舵トルクTh1は正常で車速S1が異常の場合は、S37に移行する。
【0086】
S36では、アシスト制御部33は、S39で行う系統30のアシスト制御量(アシスト電流指令値)の演算に使用する操舵トルクThとして操舵トルクTh2をセットする。また、アシスト制御部33は、アシスト制御量(アシスト電流指令値)の演算に使用する車速Sとして車速S1をセットし、S39に移行する。
【0087】
S37では、アシスト制御部33は、S39で行う系統30のアシスト制御量(アシスト電流指令値)の演算に使用する操舵トルクThとして操舵トルクTh1をセットする。また、アシスト制御部33は、アシスト制御量(アシスト電流指令値)の演算に使用する車速Sとして車速S2をセットし、S39に移行する。
【0088】
S38では、アシスト制御部33は、S39で行う系統30のアシスト制御量(アシスト電流指令値)の演算に使用する操舵トルクTh及び車速Sとして操舵トルクTh2及び車速S2をそれぞれセットし、S39に移行する。
【0089】
S39では、S33、S36、S37、またはS38においてセットされた操舵トルクTh及び車速Sに基づき、アシストマップ等を用いてアシスト制御量(アシスト電流指令値)の演算を行う。
【0090】
本実施形態では、下記の特徴を有する。
(1)本実施形態のモータ制御装置4は、いずれか一方の系統の少なくとも一部のパラメータを共用し、このパラメータに基づいて第1制御演算部31、第2制御演算部41(制御演算部)がアシスト制御量(制御量)を演算する。このことにより、各系統のモータ駆動部(第1モータ駆動部32、第2モータ駆動部42)がそのアシスト制御量に基づいてモータコイル15u等を駆動する。
【0091】
具体的には本実施形態では、系統30、40のトルクセンサ、車速センサの両方がそれぞれ正常な場合においては、操舵トルクTh1と、車速S1に基づいて、両系統30、40では、アシスト制御部33、43がアシスト制御量を演算する。このため、アシスト制御のトルクセンサ、及び車速センサの入力値のバラツキによるアシスト制御量の系統間の誤差を一致させることができる。このため、完全に独立した系統で構成された冗長化システムに比して、本実施形態の冗長化システムは、モータ17のトルクリプルやNV(騒音振動)性能を向上させることができる。
【0092】
また、一方の系統に関してパラメータ出力部(トルクセンサ、車速センサ)が異常の場合においても、他方の系統のパラメータを代替して共用しているため、上記効果を容易に実験することができる。
【0093】
<第1実施形態の変形例2>
図6(a)、図6(b)を参照して第1実施形態の変形例2を説明する。
本実施形態のモータ制御装置4のハード構成は、変形例1と同一構成のため、その説明を省略し、変形例1と異なるアシスト制御部33、43の処理について説明する。
【0094】
図6(a)、(b)は、アシスト制御部33、43がアシスト制御量の演算プログラムに従ってそれぞれ同期して実行するフローチャートである。説明の便宜上、以下の説明では、アシスト制御部33が実行するものとして説明する。
【0095】
S40、S41は、第1実施形態のS8及びS9とそれぞれ同じ処理である。
S42では、アシスト制御部33は、系統40のパラメータが全て正常か否かを判定する。具体的には、操舵トルクTh2及び車速S2が全て入力されている場合は、アシスト制御部33は、系統40のパラメータ出力部が全て正常であると判定し、S43に移行する。
【0096】
また、アシスト制御部33は、系統40のパラメータ(操舵トルクTh2、車速S2)の全部が正常でない、すなわち、パラメータ出力部が正常でない場合には、S44に移行する。
【0097】
S43では、アシスト制御部33は、操舵トルクTh2をアシスト制御量演算に使用する操舵トルクThにセットするとともに車速S2をアシスト制御量演算に使用する車速Sにセットし、S49に移行する。
【0098】
S44では、アシスト制御部33は、操舵トルクTh2及び車速S2のうちいずれか一方が異常か両方が異常か否かを判定する。アシスト制御部33は、操舵トルクTh2及び車速S2のうちいずれか一方が異常の場合は、S45に移行し、両方が異常の場合は、S48に移行する。
【0099】
S45では、アシスト制御部33は、操舵トルクTh2が異常か否かを判定し、操舵トルクTh2が異常の場合は、S46に移行し、操舵トルクTh2は正常で車速S2が異常の場合は、S47に移行する。
【0100】
S46では、アシスト制御部33は、S49で行う系統30のアシスト制御量(アシスト電流指令値)の演算に使用する操舵トルクThとして操舵トルクTh1をセットする。また、アシスト制御部33は、アシスト制御量(アシスト電流指令値)の演算に使用する車速Sとして車速S2をセットし、S49に移行する。
【0101】
S47では、アシスト制御部33は、S49で行う系統30のアシスト制御量(アシスト電流指令値)の演算に使用する操舵トルクThとして操舵トルクTh2をセットする。また、アシスト制御部33は、アシスト制御量(アシスト電流指令値)の演算に使用する車速Sとして車速S1をセットし、S49に移行する。
【0102】
S48では、アシスト制御部33は、S49で行う系統30のアシスト制御量(アシスト電流指令値)の演算に使用する操舵トルクTh及び車速Sとして操舵トルクTh1及び車速S1をそれぞれセットし、S49に移行する。
【0103】
S49では、S43、S46、S47、またはS48においてセットされた操舵トルクTh及び車速Sに基づき、アシストマップ等を用いてアシスト制御量(アシスト電流指令値)の演算を行う。
【0104】
この結果、本実施形態においても、上記変形例1と同様の効果を奏することができる。
<第2実施形態>
図7を参照して第2実施形態のモータ制御装置4を説明する。なお、本実施形態と、第1実施形態とは、下記のようにハード構成が異なるだけで、他の構成は同一であるため、異なる構成について説明する。
【0105】
第1実施形態では、異常検出部35、45がMPUの制御プログラムの実行により機能しているのに対して、本実施形態では、ハード構成の異常検出部36、46が設けられているところが異なっている。
【0106】
具体的には、異常検出部36は、センサ(トルクセンサ5a及び車速センサ6a、並びにトルクセンサ5b及び車速センサ6b)の検出信号(操舵トルクTh1、Th2、車速S1、S2)を入力して異常の有無を検出し、正常の検出信号のみを第1制御演算部31のアシスト制御部33に入力する。
【0107】
また、異常検出部46は、センサ(トルクセンサ5a及び車速センサ6a、並びにトルクセンサ5b及び車速センサ6b)の検出信号(操舵トルクTh1、Th2、車速S1、S2)を入力して異常の有無を検出し、正常の検出信号のみを第2制御演算部41のアシスト制御部43に入力する。
【0108】
本実施形態における第1制御演算部31のアシスト制御部33及び第2制御演算部41のアシスト制御部43は、図3(a)、図3(b)、図4(a)、図4(b)のフローチャートをそれぞれ実行する。
【0109】
このため、本実施形態においても第1実施形態と同様の効果を奏する。
なお、本実施形態の変形例1として、第1制御演算部31のアシスト制御部33及び第2制御演算部41のアシスト制御部43が、第1実施形態の変形例1と同様に、図5(a)、図5(b)のフローチャートを実行してもよい。
【0110】
また、本実施形態の変形例2として、第1制御演算部31のアシスト制御部33及び第2制御演算部41のアシスト制御部43が、第1実施形態の変形例2と同様に、図6(a)、図6(b)のフローチャートを実行してもよい。
【0111】
<第3実施形態>
図8を参照して第3実施形態のモータ制御装置4を説明する。
本実施形態は、第1実施形態の構成中、異常検出部35、45が省略されて、トルクセンサ5aの操舵トルクTh1及び車速センサ6aの車速S1が、アシスト制御部33に入力されるとともに、トルクセンサ5bの操舵トルクTh2及び車速センサ6bの車速S2が、アシスト制御部43に入力されているところが第1実施形態と異なる。
【0112】
また、系統30のアシスト制御部33が演算したアシスト制御量は、系統30の第1制御演算部31及び第2制御演算部41にそれぞれ設けられた切換部37、47に入力される。切換部37、47は、第1制御演算部31及び第2制御演算部41を構成する各MPUが実行する制御プログラムによって機能する構成である。
【0113】
また、系統40のアシスト制御部43が演算したアシスト制御量は、切換部37、47に入力される。なお、アシスト制御部33で演算されたアシスト制御量の切換部47に対する入力と、アシスト制御部43で演算されたアシスト制御量の切換部37に対する入力はそれぞれマイコン間通信で行われる。
【0114】
切換部37は、アシスト制御部33またはアシスト制御部43のいずれか一方が演算したアシスト制御量を、電流制御部34に出力するようになっている。また、切換部47は、アシスト制御部33またはアシスト制御部43のいずれか一方が演算したアシスト制御量を、電流制御部44に出力するようになっている。
【0115】
図8に示すように、本実施形態では、トルクセンサ5a、及び車速センサ6aにそれぞれ異常があるか否かを判定するセンサ異常判定部38と、トルクセンサ5b、及び車速センサ6bにそれぞれ異常があるか否かを判定するセンサ異常判定部48を有している。センサ異常判定部38、48の判定結果は、それぞれ切換部37、47に入力される。
【0116】
(第3実施形態の作用)
図9及び図10のフローチャートを参照して、本実施形態の作用について説明する。
なお、系統30、40のアシスト制御部33、43は、センサ(トルクセンサ5a、車速センサ6a、または、トルクセンサ5b、車速センサ6b)に基づいてアシスト制御量を演算しているものとする。
【0117】
図9は、系統30の切換部37が切換プログラムに従って実行するフローチャートである。
S50では、切換部37は、センサ異常判定部38、48の判定結果に基づいて、アシスト制御が可能か否かを判定する。
【0118】
ここで、アシスト制御が可能でない場合とは、下記の(1)〜(3)の場合を含む。
(1)トルクセンサ5a、車速センサ6a、トルクセンサ5b、及び車速センサ6bの全部が異常であるとする判定結果が、センサ異常判定部38、48から入力されている場合
(2)トルクセンサ5a、5bのいずれもが異常であるとする判定結果が、センサ異常判定部38、48から入力されている場合
(3)車速センサ6a、6bいずれもが異常であるとする判定結果が、センサ異常判定部38、48から入力されている場合
上記(1)〜(3)の場合には、系統30、40のアシスト制御部33、43が適正なアシスト制御量を演算できず、アシスト制御が可能でないためである。
【0119】
上記(1)〜(3)のいずれかの場合には、切換部37は、ここでの判定を「NO」とし、S51に移行する。S51に移行すると、第1制御演算部31はアシスト制御を停止することによりモータコイル15u、15v、15wの駆動を停止する。
【0120】
また、切換部37は、上記(1)〜(3)のいずれにも該当しない場合は、S52に移行する。
S52では、切換部37は、センサ異常判定部38、48の判定結果に基づいて少なくとも系統40のセンサ(トルクセンサ5b、及び車速センサ6b)が正常か、否かについて判定する。この判定には、系統40のセンサ(トルクセンサ5b、及び車速センサ6b)が全て正常か、或いは系統30のセンサ(トルクセンサ5b、及び車速センサ6b)が全て正常か否かの判定も含む。なお、この場合、系統30のセンサの全てが正常の場合においても、系統40の前記センサが正常であれば、S53に移行することを含む(以下、この場合を「例外事項」という)。
【0121】
切換部37は、少なくとも系統40のセンサ(トルクセンサ5b、及び車速センサ6b)が全て正常の場合は、S53に移行する。また、前記「例外事項」を除いて、系統30のセンサ(トルクセンサ5a、及び車速センサ6a)が全て正常の場合はS54に移行する。
【0122】
S53では、切換部37は、系統40から入力したアシスト制御量を電流制御部34に出力する。S54では、切換部37は、系統30から入力したアシスト制御量を電流制御部34に出力する。
【0123】
次に、系統40の切換部47の作用について説明する。
図10は、切換部47が切換プログラムに従って実行するフローチャートである。
S60では、切換部47は、センサ異常判定部38、48の判定結果に基づいて、アシスト制御が可能か否かを判定する。
【0124】
ここで、アシスト制御が可能でない場合とは、上記の(1)〜(3)の場合を含む。
上記(1)〜(3)の場合には、系統30、40のアシスト制御部33、43が適正なアシスト制御量を演算できず、アシスト制御が可能でないためである。
【0125】
上記(1)〜(3)のいずれかの場合には、切換部47は、ここでの判定を「NO」とし、S61に移行する。S61に移行すると、第2制御演算部41はアシスト制御を停止することによりモータコイル16u、16v、16wの駆動を停止する。
【0126】
また、切換部47は、上記(1)〜(3)のいずれにも該当しない場合は、S62に移行する。
S62では、切換部47は、センサ異常判定部38、48の判定結果に基づいて少なくとも系統40のセンサ(トルクセンサ5b、及び車速センサ6b)が正常か、否かについて判定する。この判定には、系統40のセンサ(トルクセンサ5b、及び車速センサ6b)が全て正常か、或いは系統30のセンサ(トルクセンサ5b、及び車速センサ6b)が全て正常か否かの判定も含む。なお、この場合、系統30のセンサの全てが正常の場合においても、系統40の前記センサが正常であれば、S63に移行することを含む(以下、この場合を「例外事項」という)。
【0127】
切換部47は、少なくとも系統40のセンサ(トルクセンサ5b、及び車速センサ6b)が全て正常の場合は、S63に移行する。また、前記「例外事項」を除いて、系統30のセンサ(トルクセンサ5a、及び車速センサ6a)が全て正常の場合はS64に移行する。
【0128】
S63では、切換部47は、系統40から入力したアシスト制御量を電流制御部44に出力する。S64では、切換部47は、系統30から入力したアシスト制御量を電流制御部44に出力する。
【0129】
この結果、トルクセンサ5b、及び車速センサ6bが全て正常の場合は、系統30、40では、系統40のアシスト制御部43が演算したアシスト制御量に基づいて、系統30、40のモータコイル15u、15v、15w、16u、16v、16wが駆動される。また、トルクセンサ5b、車速センサ6bのうち、少なくともいずれか一方が異常で、かつ、系統30のセンサ(トルクセンサ5a、及び車速センサ6a)が全て正常の場合は、系統30のアシスト制御部33が演算したアシスト制御量に基づいて、系統30、40のモータコイル15u、15v、15w、16u、16v、16wが駆動される。
【0130】
なお、第3実施形態の変形例として、下記のようにしてもよい。
第3実施形態の図9図10のS52(S62)の判定では、系統30、40のうち、少なくとも系統30のセンサが正常か否かを判定し、系統30のセンサ(トルクセンサ5a、車速センサ6a)が少なくとも正常の場合、S53(S63)においては、系統30から入力したアシスト制御量を34に出力してもよい。そして、S52(S62)において、系統30の前記センサの少なくともいずれか1つが異常で、かつ、系統40のセンサ(トルクセンサ5b、車速センサ6b)がともに正常の場合、S54(S64)では、系統40から入力したアシスト制御量を34に出力してもよい。
【0131】
本実施形態及び変形例は下記の特徴がある。
(1)本実施形態及び変形例のモータ制御装置4は、いずれか一方の系統の制御演算部のアシスト制御量(制御量)を共用することにより、各系統のモータ駆動部(第1モータ駆動部32、第2モータ駆動部42)がそのアシスト制御量に基づいてモータコイル15u等を駆動する。この結果、アシスト制御のトルクセンサ、及び車速センサの入力値のバラツキによるアシスト制御量の系統間の誤差を一致させることができる。このため、完全に独立した系統で構成された冗長化システムに比して、本実施形態及び変形例の冗長化システムは、モータ17のトルクリプルやNV(騒音振動)性能を向上させることができる。
【0132】
(2)本実施形態及び変形例は、一方の系統のトルクセンサ、車速センサのいずれもが正常の場合、両系統は一方の系統のアシスト制御部が演算したアシスト制御量を共用し、前記一方の系統の前記センサの少なくとも1つが異常で、かつ他方の系統のトルクセンサ、車速センサがともに正常の場合は他方の系統のアシスト制御量を共用する。
【0133】
このように、いずれか一方の系統のセンサが異常でも他方の系統のセンサが正常であれば、正常の系統のセンサが出力したパラメータに基づいて演算したアシスト制御量を共用することにより、上記(1)の効果を容易に実現することができる。
【0134】
また、本実施形態及び変形例のモータ制御装置4においても、いずれか一方の系統に関する操舵トルク、または車速(パラメータ)を検出するセンサが異常の場合、センサが正常である他系統が演算したアシスト制御量(制御量)を共用することにより、センサが異常であった系統の制御対象であるモータコイルの駆動を停止することがない。この結果、本実施形態及び変形例によれば、センサ異常等に伴う、いずれか一方の系統に関する操舵トルク、または車速(パラメータ)を検出するセンサが異常の場合であっても、正常時と同様のアシストトルクを操舵系に付与することができる。
【0135】
(3)また、本実施形態及び変形例では、両系統のセンサがともに正常のときは、両系統ともアシスト制御量を常に同期して演算している。そして、後に一方の系統のセンサが異常になった場合、他方の系統が同期して演算したアシスト制御量を使用できるため、制御遅れが生ずることはない。このため、アシスト制御量の切換時に、車両の乗員(例えば、運転者)に違和感を与えることがない。
【0136】
<第4実施形態>
図11図13を参照して第4実施形態のモータ制御装置4を説明する。
図11は本実施形態のモータ制御装置4のブロック図である。
【0137】
本実施形態のモータ制御装置4は、第1実施形態のモータ制御装置4とは、異常検出部35、45が省略されていること、系統30のトルクセンサ5aと車速センサ6aの検出信号が第2制御演算部41に入力されないこと、及び系統40のトルクセンサ5bと車速センサ6bの検出信号が第1制御演算部31に入力されないことが異なる。
【0138】
そして、本実施形態のモータ制御装置4は、各系統の制御演算部の処理が、系統30の電流センサ7a、回転角センサ8a、系統40の電流センサ7b、回転角センサ8bが正常の場合と、異常の場合とで異なる。
【0139】
本実施形態の系統30の電流制御部34は、相電圧指令部50及びデューティ出力部51を備えている。また、系統40の電流制御部44は、相電圧指令部60及びデューティ出力部61を備えている。
【0140】
本実施形態の電流センサ7a、7b及び回転角センサ8a、8bは、パラメータ出力部に相当する。また、モータ電流及び回転角θm1、θm2はパラメータに相当する。
(第4実施形態の作用)
上記のように構成されたモータ制御装置4の作用を説明する。
【0141】
図12は、電流制御部34が電流制御プログラムに従って実行するフローチャートである。
S70では、電流制御部34は、系統30の電流センサ7a及び回転角センサ8aがともに正常か否かを判定する。この判定は、例えば、センサが出力した検出信号(すなわち、モータ電流、回転角)と異常判定閾値(すなわち、モータ電流異常判定閾値、回転角異常判定閾値)との比較や、これらセンサに供給される駆動電力の異常等の検出が、図示しない異常検出部の検出結果に基づいて行われる。
【0142】
S70において、電流制御部34は、系統30の電流センサ7a及び回転角センサ8aがともに正常である場合は、S71に移行し、少なくとも一方が異常である場合には、S72に移行する。
【0143】
S71では、電流制御部34は、電流センサ7a及び回転角センサ8aが検出したモータ電流、及び回転角θm1に基づいて相電圧指令値を求めて、この相電圧指令値に基づいて演算された制御信号I*1を第1モータ駆動部32に出力する。
【0144】
具体的には、電流制御部34の相電圧指令部50は、アシスト制御量(アシスト電流指令値)、回転角θm1及び各相のモータ電流を入力する。そして、相電圧指令部50は、回転角θm1を用いて各相のモータ電流をd/q座標系のd軸電流値及びq軸電流値に変換し、d軸電流値及びq軸電流値に追従させる電流フィードバック制御を行うことによりd軸電圧指令値及びq軸電圧指令値を算出する。そして、相電圧指令部50は、回転角θm1を用いてd軸電圧指令値及びq軸電圧指令値を各相の相電圧指令値に変換し、デューティ出力部51に出力する。
【0145】
デューティ出力部51は、この各相の相電圧指令値に基づいて、各相のデューティ値を求め、各相のデューティ値に基づいて演算された各相の制御信号I*1を第1モータ駆動部32に出力することにより、第1モータ駆動部32をPWM駆動させる。
【0146】
これにより、前記制御信号I*1に応じた駆動電力が第1モータ駆動部32からモータコイル15u、15v、15wに供給される。
S72では、電流制御部34は、系統40からマイコン間通信で相電圧指令値を入力し、この相電圧指令値をデューティ出力部51に出力する。
【0147】
デューティ出力部51は、この相電圧指令値に基づいて、各相のデューティ値を求め、各相のデューティ値に基づいて演算された各相の制御信号I*1を第1モータ駆動部32に出力することにより、第1モータ駆動部32をPWM駆動させる。
【0148】
これにより、前記制御信号I*1に応じた駆動電力が第1モータ駆動部32からモータコイル15u、15v、15wに供給される。
図13は、電流制御部44が電流制御プログラムに従って実行するフローチャートである。
【0149】
S80では、電流制御部44は、系統40の電流センサ7b及び回転角センサ8bがともに正常か否かを判定する。この判定は、例えば、センサが出力した検出信号(すなわち、モータ電流、回転角)と異常判定閾値(すなわち、モータ電流異常判定閾値、回転角異常判定閾値)との比較や、これらセンサに供給される駆動電力の異常等の検出が、図示しない異常検出部の検出結果に基づいて行われる。
【0150】
S80において、電流制御部44は、系統40の電流センサ7b及び回転角センサ8bがともに正常である場合は、S81に移行し、少なくとも一方が異常である場合には、S82に移行する。
【0151】
S81では、電流制御部44は、電流センサ7b及び回転角センサ8bが検出したモータ電流、及び回転角θm2に基づいて相電圧指令値を求めて、この相電圧指令値に基づいて演算された制御信号I*2を第2モータ駆動部42に出力する。
【0152】
具体的には、電流制御部44の相電圧指令部60は、アシスト制御量(アシスト電流指令値)、回転角θm2及び各相のモータ電流を入力する。そして、相電圧指令部60は、回転角θm2を用いて各相のモータ電流をd/q座標系のd軸電流値及びq軸電流値に変換し、d軸電流値及びq軸電流値に追従させる電流フィードバック制御を行うことによりd軸電圧指令値及びq軸電圧指令値を算出する。そして、相電圧指令部60は、回転角θm2を用いてd軸電圧指令値及びq軸電圧指令値を各相の相電圧指令値に変換し、デューティ出力部61に出力する。
【0153】
デューティ出力部61は、この各相の相電圧指令値に基づいて、各相のデューティ値を求め、各相のデューティ値に基づいて演算された各相の制御信号I*2を第2モータ駆動部42に出力することにより、第2モータ駆動部42をPWM駆動させる。
【0154】
これにより、前記制御信号I*2に応じた駆動電力が第2モータ駆動部42からモータコイル16u、16v、16wに供給される。
S82では、電流制御部44は、系統30からマイコン間通信で相電圧指令値を入力し、この相電圧指令値をデューティ出力部61に出力する。デューティ出力部61は、この相電圧指令値に基づいて、各相のデューティ値を求め、各相のデューティ値に基づいて演算された各相の制御信号I*2を第2モータ駆動部42に出力することにより、第2モータ駆動部42をPWM駆動させる。
【0155】
これにより、前記制御信号I*2に応じた駆動電力が第2モータ駆動部42からモータコイル16u、16v、16wに供給される。
このようにして、本実施形態では、系統30、40のいずれか一方の系統の電流センサ、回転角センサが異常な場合には、電流センサ及び回転角センサが正常である残りの他方の系統からマイコン間通信で得られた相電圧指令値を共用する。このことにより、いずれか一方の系統の電流センサ、回転角センサが異常な場合であっても、これらが正常な場合と同一またはほぼ同一のモータ出力を得ることができる。なお、相電圧指令値は、制御演算部の制御量に相当する。
【0156】
本実施形態では、下記の特徴を有する。
(1)本実施形態のモータ制御装置4では、系統30、40のいずれか一方の系統の電流センサ、回転角センサの少なくとも一方が異常な場合には、正常である電流センサ及び回転角センサを備えた系統側のモータ電流、及び回転角を共用して、この共用したパラメータに基づいて求められた相電圧指令値を制御量として共用する。このことにより、いずれか一方の系統の電流センサ、回転角センサが異常な場合であっても、これらが正常な場合と同一、またはほぼ同一のモータ出力を得ることができる。
【0157】
そして、一方の系統の回転角センサ、または電流センサが異常時には、両系統間では、アシスト制御量の系統間の誤差を一致させることが可能となり、このため、冗長化システムにおいて、完全に独立した構成を有する場合と異なり、モータのトルクリプルやNV(騒音振動)性能が向上する。
【0158】
なお、本発明の実施形態は前記実施形態に限定されるものではなく、下記のように変更してもよい。
・第1実施形態では、アシスト制御部43、43は平均化演算を相加平均で行うが、相乗平均としてもよい。
【0159】
・各実施形態では、2系統巻線モータとして3相モータとしたが、3相モータに限定するものではなく、3相以外のモータであってもよい。また、ブラシレスモータに限定するものではなく、ブラシ付きモータでもよい。
【0160】
・第1実施形態、その変形例1、変形例2、並びに第2実施形態、その変形例1、変形例2では、両系統30、40において、いずれか一方の系統(系統30、40)のトルクセンサ、車速センサのうち、少なくともいずれかのセンサが異常な場合、他方の系統(系統40、30)のトルクセンサ、車速センサの検出信号を相互に共用するようにした。この代わりに、一方の系統(例えば、系統30)をマスターとし、他方の系統(例えば系統40)をスレーブとする。そして、マスター側のトルクセンサ、車速センサのうち少なくとも一方(例えば、系統30)が異常な場合のときのみに、スレーブ側(例えば系統40)の正常なトルクセンサ、車速センサの検出信号をスレーブとマスターとで共用してもよい。
【0161】
・第3実施形態及び変形例では、両系統30、40において、いずれか一方の系統(系統30、40)のトルクセンサ、車速センサのうち、少なくともいずれか一方のセンサが異常な場合、他方の系統(系統40、30)のアシスト制御量(制御量)を相互に共用できるようにした。この代わりに、一方の系統(例えば、系統30)をマスターとし、他方の系統(例えば、系統40)をスレーブとする。
【0162】
そして、マスター及びスレーブのトルクセンサ、車速センサがともに正常な場合は、各系統では、自身の系統に属するトルクセンサ、車速センサの検出信号に基づいてアシスト制御量を演算し、そのアシスト制御量を自身の系統の電流制御部に出力する。
【0163】
そして、マスター側のトルクセンサ、車速センサのうち少なくとも一方が異常な場合のときのみに、スレーブ側の正常なトルクセンサ、車速センサの検出信号に基づいて演算されたスレーブ側のアシスト制御量(制御量)を共用してもよい。
【0164】
・第4実施形態では、両系統30、40において、いずれか一方の系統(系統30、40)の電流センサ、回転角センサのうち、少なくともいずれか一方が異常な場合、他方の系統(系統40、30)の相電圧指令部が演算した相電圧指令値を相互に共用できるようにした。この代わりに、一方の系統(例えば、系統30)をマスターとし、他方の系統(例えば系統40)をスレーブとする。そして、マスター側の電流センサ、または回転角センサが異常な場合のときのみに、スレーブ側の相電圧指令値をスレーブとマスターとで共用してもよい。
【0165】
・第4実施形態では、一方の系統の電流センサ、回転角センサの少なくとも一方が異常な場合は、他方の系統の相電圧指令値(制御量)を共用するようにしたが、一方の系統の電流センサ、回転角センサの少なくとも一方が異常な場合は、他方の系統の正常な電流センサ、回転角センサの検出信号を相互に共用してもよい。
【0166】
・第4実施形態を、第1実施形態、第1実施形態の変形例1、変形例2、第2実施形態、第2実施形態の変形例1、変形例2、第3実施形態、第3実施形態の変形例とそれぞれ組み合わせてもよい。
【0167】
・各実施形態では、操舵トルクと車速に基づいてアシスト制御量の演算を行うが、アシスト制御量の演算は少なくとも操舵トルクを含んでいればよい。
・本発明の実施形態は、電動パワーステアリング装置のモータ制御装置に限定するものではなく、電動パワーステアリング装置以外で、共通のロータを回転駆動する複数系統のモータコイルを各系統の制御演算部で、それぞれ制御するモータ制御装置に具体化してもよい。
【符号の説明】
【0168】
1…操舵機構(操舵系)、2…アシスト機構、3…転舵輪、
4…モータ制御装置、5a、5b…トルクセンサ(パラメータ出力部)、
6a、6b…車速センサ(パラメータ出力部)、
7a、7b…電流センサ(パラメータ出力部)、
8a、8b…回転角センサ(パラメータ出力部)、
10…ステアリングホイール、11…ステアリングシャフト、
12…ラックアンドピニオン機構、13…ラックシャフト、
14…タイロッド、15u、15v、15w…モータコイル、
16u、16v、16w…モータコイル、17…モータ、
18…ロータ、21…減速機、26、28…発振器、
30…系統、31…第1制御演算部、32…第1モータ駆動部、
33…アシスト制御部、34…電流制御部、
35、36…異常検出部、37…切替部、38…センサ異常検出部、
40…系統、41…第2制御演算部、42…第2モータ駆動部、
43…アシスト制御部、44…電流制御部、
45、46…異常検出部、47…切替部、48…センサ異常検出部、
50…相電圧指令部、51…デューティ出力部、
60…相電圧指令部、61…デューティ出力部。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13