【国等の委託研究の成果に係る記載事項】(出願人による申告)平成25年度、国立研究開発法人科学技術振興機構、戦略的創造研究推進事業(ACCEL)、「エレクトライドの物質科学と応用展開」、産業技術力強化法第19条の適用を受ける特許出願
(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0019】
本発明について以下に詳細に説明する。
<金属担持物>
本発明の金属担持物は、遷移金属と該遷移金属を担持する担体とを含み、前記担体が、下記一般式(1)で表わされる金属水素化物である。
[数2]
XH
n ・・・(1)
(前記一般式(1)において、Xは周期表第2族原子、第3族原子、又はランタノイド原子から選ばれる少なくとも1種を表わし、nは、2≦n≦3で表わされる数を表す。)
(金属水素化物)
本発明で用いられる前記担体は、金属元素Xの水素化物(ハイドライド)である。
【0020】
前記一般式(1)において、Xは、周期表第2族原子、第3族原子、又はランタノイド原子から選ばれる少なくとも1種を表わす。
前記Xに用いられる原子は、特に限定されないが、1種類であっても2種類以上の元素が含まれていてもよい。2種類以上の元素が含まれるときは、特に限定されないが、同じ族の原子同士、又はランタノイド原子同士が含まれるほうが好ましい。
【0021】
周期表第2族原子(以下、単に第2族原子といい、AEと略すことがある。)としては、特に限定はされないが、好ましくはMg、Ca、Sr、Baであり、より好ましくは、金属担持物を後述する担持金属触媒として用いた際の活性が高いことからCa,Srであり、さらに好ましくは、金属担持物を後述する担持金属触媒として用いた際の活性が高いことからCaである。
【0022】
周期表第3族原子(以下、第3族原子という。)としては、特に限定はされないが、好ましくは、より存在量が多い元素であることからYである。
ランタノイド原子としては、特に限定はされないが、好ましくは、より汎用的な材料であることから、La、Ce、Pr、Nd、Sm、Eu、Pr、Ybであり、より好ましくは、存在量が比較的多いLa、Ce、Nd、Smであり、さらに好ましくは、金属担持物を後述する担持金属触媒として用いた際の活性が高いことからLa、Ceである。
Xがランタノイド原子の場合、複数のランタノイド原子を含んでいてもよく、具体的には、ミッシュメタル(Misch Metal)であってもよい。ミッシュメタルとは、複数の希土類元素(レアアース)が含まれた合金の通称であり、一般的にはCeをその含有成分として多く含む合金として知られている。
なお前記第3族原子とランタノイド原子を総称して、以下REと略すことがある。
前記Xとして好ましくは、元素の存在量が多く、金属担持物を後述する担持金属触媒として用いた際の活性が高い第2族原子、又はランタノイド原子であり、より好ましくは、元素の存在量が多い点で第2族原子である。
また前記Xとして好ましくは、Ca、Mg、Sr、Ba、Y、又はランタノイド原子であり、より好ましくは、Ca、Mg、Sr、Ba、Y、La、Ce、Pr、Nd、Sm、Eu、Pr、Ybであり、であり、さらに好ましくは、Caである。
【0023】
前記一般式(1)におけるnは、2≦n≦3の数値を表わす。
前記nは、Xが第2族原子であるときは、特に限定はされないが、好ましくは2である。
前記nは、Xが第3族原子、又はランタノイド原子のときは、通常2から3の任意の数値を表わし、好ましくは2又は3である。
【0024】
前記AE及び前記REは、通常イオン結合型水素化物を形成する。イオン結合型水素化物は、水素はヒドリドイオン(H
−イオン)として存在し、水や酸との接触で水素(H
2)と水酸化物イオン(OH
−)を生成する。
前記REの水素化物(以下、REH
nという)は、一般的な水素化物である2水素化物と、高密度水素化物である3水素化物が知られている。そして、2水素化物と3水素化物の間の値を有する、高密度金属水素化物を形成することができ、2水素化物と3水素化物の間の値を連続的に変化することが可能である。
【0025】
前記Xは、本発明の効果を損ねない限り、その一部が、さらにX以外の原子を含んでいてもよく、具体的には、少なくとも1種類のアルカリ金属原子含んでいてもよい。
【0026】
本発明で用いられる金属水素化物は、特に限定はされず、市販の試薬や工業原料を使用しても、対応する金属を水素雰囲気下で加熱する等の既知の方法で合成して用いてもよい。
【0027】
(遷移金属)
本発明において用いられる遷移金属は、特に限定されるものではないが、通常、周期表第6族、7族、8族、9族、10族の遷移金属であり、好ましくは、第6族、8族、又は9族の遷移金属であり、より好ましくは第8族又は9族金属である。
また具体的な金属元素としては、特に限定はされないが、通常、Cr、Mo、Mn、Re、Fe、Ru、Os、Co、Rh、Ni、Pd、Ptであり、好ましくは、窒素との結合エネルギーが高い点でMo、Re、Fe、Ru、Os、Co、であり、より好ましくは、金属担持物を担持金属触媒として用いた際に、アンモニア合成活性を有する点で、Ru、Co又はFeであり、更に好ましくは、最も高い触媒活性を有する点でRuである。
前記の各元素は単独で用いても、2種類以上を組み合わせて用いてもよい。またこれらの元素の金属間化合物、例えば、Co3Mo3N、Fe3Mo3N、Ni2Mo3N、Mo2N等を用いることもできる。好ましくは各元素を単独又は2種類以上の組み合わせであり、より好ましくは、単独で用いることがコストの面で有利である。
【0028】
(金属担持物の組成)
本発明の金属担持物における、前記金属水素化物に対する前記遷移金属の担持量は、特に限定はされないが、通常、0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上であり、通常30質量%以下、好ましくは20質量%以下、より好ましくは15質量%以下である。前記下限値以上であれば、本発明の効果が得られ、前記上限値以下であれば、担持量とコストの見合った本発明の効果が得られる。
本発明の金属担持物の比表面積は、特に限定はされないが、通常0.1m
2/g以上であり、好ましくは1m
2/g以上であり、好ましくは3m
2/g以上である。
【0029】
(金属担持物の形状)
本発明の金属担持体の形状は、特に限定はされず、具体的には塊状、粉末状、被膜状等のいずれの形状でもよいが、通常は粉末状である。粉末状の金属担持体の粒子径は特に限定はされないが、通常、10nm以上、50μm以下である。
本発明の金属担持体における遷移金属の粒子径は、特に限定はされないが、通常、1nm以上、100nm以下である。好ましくは、アンモニア合成用触媒として使用した際に、窒素解離の活性点であるステップサイト数が多くなる点で有利な10nm以下、より好ましくは5nm以下である。
【0030】
(金属担持物の製造方法)
本発明の金属担持物は、前記金属水素化物に、前記遷移金属を担持させて製造する。製造方法は特に限定されないが、通常は、金属水素化物に対し、遷移金属、又は遷移金属の前駆体となる化合物(以下、遷移金属化合物)を担持させて製造する。
【0031】
本発明の金属担持物の原料となる、前記金属水素化物は、市販の試薬や工業原料を用いても、対応する金属から既知の方法により得られたものを使用してもよい。通常、金属水素化物は、対応する金属を水素雰囲気下で加熱することにより得られる。
例えば水素化カルシウム(CaH
2)は、金属カルシウムを水素雰囲気中で、400℃程度に加熱することで得られる。
また例えば水素化セリウム(CeH
2)分は、金属セリウムを水素雰囲気中700〜800 ℃程度に加熱することにより得られる。
【0032】
本発明で用いられる前記金属水素化物に、前記遷移金属を担持させる方法は、特に限定されず、既知の方法を用いることができる。通常は、担持する遷移金属の化合物であって、還元や熱分解等により遷移金属に変換することができる遷移金属化合物を、前記金属水素化物に担持させた後、遷移金属に変換する方法が用いられる。
【0033】
前記遷移金属化合物は特に限定されないが、熱分解し易い遷移金属の無機化合物又は有機遷移金属錯体等を用いることができる。具体的には遷移金属の錯体、遷移金属の酸化物、硝酸塩、塩酸塩等の遷移金属塩等を用いることができる。
例えばRu化合物としては、トリルテニウムドデカカルボニル[Ru
3(CO)
12]、ジクロロテトラキス(トリフェニルホスフィン)ルテニウム(II)[RuCl
2(PPh
3)
4]、ジクロロトリス(トリフェニルホスフィン)ルテニウム(II)[RuCl
2(PPh
3)
3]、トリス(アセチルアセトナト)ルテニウム(III)[Ru(acac)
3]、ルテノセン[Ru(C
5H
5)]、ニトロシル硝酸ルテニウム[Ru(NO)(NO
3)
3]、ルテニウム酸カリウム、酸化ルテニウム、硝酸ルテニウム、塩化ルテニウム等が挙げられる。
【0034】
Fe化合物としては、ペンタカルボニル鉄[Fe(CO)
5]、ドデカカルボニル三鉄[Fe
3(CO)
12]、ノナカルボニル鉄[Fe
2(CO)
9]、テトラカルボニル鉄ヨウ化物[Fe(CO)
4I
2]、トリス(アセチルアセトナト)鉄(III) [Fe(acac)
3]、フェロセン[Fe(C
5H
5)
2]、酸化鉄、硝酸鉄、塩化鉄(FeCl
3)等が挙げられる。
【0035】
Co化合物としては、コバルトオクタカルボニル[Co
2(CO)
8]、トリス(アセチルアセトナト)コバルト(III)[Co(acac)
3]、コバルト(II) アセチルアセトナト[Co(acac)
2]、コバルトセン[Co(C
5H
5)
2]、酸化コバルト、硝酸コバルト、塩化コバルト等が挙げられる。
これらの遷移金属化合物のうち、[Ru
3(CO)
12]、[Fe(CO)
5]、[Fe
3(CO)
12]、[Fe
2(CO)
9]、[Co
2(CO)
8]等の遷移金属のカルボニル錯体は、担持した後、加熱することにより、遷移金属が担持されることから、本発明の金属担持物を製造する上で、後述する還元処理を省略できる点で好ましい。
【0036】
前記遷移金属化合物の使用量は、特に限定はされず、所望の担持量を実現するための量を適宜使用することができるが、通常は、用いる前記金属水素化物の質量に対して、通常、0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上であり、通常30質量%以下、好ましくは20質量%以下、より好ましくは15質量%以下である。
【0037】
前記遷移金属化合物を金属水素化物に担持させる方法としては、具体的には例えば、含浸法、物理的混合法、CVD法(化学蒸藩法)、スパッタ法等の方法を使用できる。
【0038】
含浸法としては、次の工程を採用できる。例えば、前記金属水素化物を、前記遷移金属化合物の溶液、に加えて撹拌する。このときの溶媒は特に限定はされず、水や各種有機溶媒を用いることができるが、好ましくは前記金属水素化物の分解を抑えるため有機溶媒がよい。また前記遷移金属化合物は、溶媒に溶解させても、分散させてもよい。
次に窒素、アルゴン、ヘリウム等の不活性ガス気流中、又は真空下で加熱し、乾固する。このときの加熱温度は特に限定はされないが、通常50℃以上、300℃以下である。加熱時間は特に限定はされないが、通常30分以上、20時間以下である。
【0039】
ここで熱分解により遷移金属に変換される遷移金属化合物であれば、この段階で通常、遷移金属が、担持され、本発明の金属担持体となる。
熱分解により遷移金属に変換される遷移金属化合物以外のものを用いた場合は、乾固した遷移金属化合物を、通常還元することにより、本発明の金属担持体となる。
前記遷移金属化合物を還元する方法(以下、還元処理という)は、本発明の目的を阻害しない限りにおいて特に限定されないが、例えば、還元性ガスを含む雰囲気下で行なう方法や、前記遷移金属化合物を含む溶液に、NaBH
4、NH
2NH
2又は、ホルマリン等の還元剤を加えて前記金属水素化物の表面に析出させる方法が挙げられるが、好ましくは還元性ガスを含む雰囲気下で行なう。前記還元性ガスとしては水素、アンモニア、メタノール(蒸気)、エタノール(蒸気)、メタン、エタン等が挙げられる。
また前記還元処理の際に、本発明の目的、特にアンモニア合成反応を阻害しない、還元性ガス以外の成分が反応系を共存していてもよい。具体的には、還元処理の際に、水素等の還元性ガスの他に反応を阻害しないアルゴンや窒素といったガスを共存させてもよく、窒素を共存させることが好ましい。
前記還元処理を、水素を含むガス中で行なう場合、水素と共に窒素を共存させることで、後述するアンモニアの製造と並行して行なうことができる。すなわち、本発明の金属担持体を後述するアンモニア合成用触媒として用いる場合は、前記遷移金属化合物を、前記金属水素化物に担持させたものを、アンモニア合成反応の反応条件中に置くことにより、前記遷移金属化合物を還元し、遷移金属に変換してもよい。
【0040】
前記還元処理の際の温度は、特に限定はされないが、通常200℃以上であり、好ましくは300℃以上、通常1000℃以下であり、好ましくは600℃以下で行なう。前記の還元処理温度範囲内で行なうことで、前記遷移金属の成長が十分に、また好ましい範囲で起こるためである。
前記還元処理の際の圧力は、特に限定はされないが、通常、0.01MPa以上、10MPaである。還元処理時の圧力は、後述するアンモニア合成条件と同じ条件にすると、煩雑な操作は不要になり製造効率の面で有利である。
前記還元処理の時間は、特に限定されないが、常圧で実施する場合は、通常1時間以上であり、2時間以上が好ましい。
また反応圧力の高い条件、例えば1MPa以上で行う場合は、1時間以上が好ましい。
【0041】
物理的混合法は、前記金属水素化物と、前記遷移金属化合物とを固相混合した後に窒素、アルゴン、ヘリウム等の不活性ガス気流中、又は真空下で加熱する方法である。加熱温度、加熱時間は、上記含浸法と同様である。前記還元処理をすることによって金属担持体とする。
【0042】
<担持金属触媒>
本発明の金属担持体は、担持金属触媒として用いることができる。
すなわち本発明の担持金属触媒は、遷移金属と該遷移金属を担持する担体とを含み担持金属触媒、前記担体が、下記一般式(1)で表わされる金属水素化物である。
[数3]
XH
n ・・・(1)
(前記一般式(1)において、Xは周期表第2族原子、第3族原子、又はランタノイド原子から選ばれる少なくとも1種を表わし、nは、2≦n≦3で表わされる数を表す。)
前記X及びnは、前記本発明の金属担持体におけるX及びnと同じである。
【0043】
本発明の担持金属触媒は、本発明の金属担持物をそのまま反応に用いても、必要に応じた成型等を行なってもよく、また本発明の効果を損なわない限りにおいて、前記金属水素化物及び前記遷移金属以外の成分を含んでいてもよいが、通常は、本発明の金属担持物をそのまま用いることが好ましい。
【0044】
前記金属水素化物及び前記遷移金属以外の成分としては、SiO
2、Al
2O
3、ZrO
2、MgO、活性炭、グラファイト、SiCなどを前記金属水素化物の担体としてさらに含んでいてもよい。
【0045】
本発明の担持金属触媒における、前記担体に対する前記遷移金属の担持量は、特に限定はされないが、通常、0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上であり、通常30質量%以下、好ましくは20質量%以下、より好ましくは15質量%以下である。前記下限値以上であれば、本発明の効果が得られ、前記上限値以下であれば、担持量とコストの見合った本発明の効果が得られる。
本発明の担持金属触媒の比表面積は、特に限定はされないが、通常0.1m
2/g以上であり、好ましくは1m
2/g以上であり、より好ましくは3m
2/g以上である。
【0046】
本発明の担持金属触媒の形状は、特に限定はされず、具体的には塊状、粉末状、被膜状等のいずれの形状でもよいが、通常は粉末状である。粉末状の金属担持体の粒子径は特に限定はされないが、通常、10nm以上、50μm以下である。
本発明の担持金属触媒における遷移金属の粒子径は、特に限定はされないが、通常、1nm以上、100nm以下である。好ましくは、窒素解離の活性点であるステップサイト数が多くなる10nm以下、より好ましくは5nm以下である。
【0047】
本発明の担持金属触媒は、通常の成型技術を用い成型体として使用することができる。具体的には、粒状、球状、タブレット、リング、マカロニ、四葉、サイコロ、ハニカム状などの形状が挙げられる。また、適当な支持体にコーティングしてから使用することもできる。
【0048】
本発明の担持金属触媒は、各種反応の触媒として用いることができるが、アンモニア合成反応用触媒として好適である。前記触媒は、アンモニア合成の活性が高いため、反応効率の高い製造が可能である。
アンモニア合成用触媒として用いる際、その反応活性は特に限定はされないが、反応温度340℃、反応圧力0.1MPaにおけるアンモニアの生成速度を例に取った場合で、0.5mmol/g/h以上であることが好ましく、1.0mmol/g・h以上であることが実用の製造条件に適していることからより好ましく、2.0mmol/g・h以上であるものがより高効率の製造条件に適していることから更に好ましく、3.0mmol/g・h以上であるものが更に高効率の製造条件に適している点で更に好ましい。
【0049】
また、本発明の担持金属触媒は、アンモニア合成の逆反応であるアンモニア分解にも適用可能である。更に、本発明の担持金属触媒は、不法和炭素化合物の水素化反応、例えば、オレフィン、アセチレン化合物、カルボニル化合物の水素化反応、芳香族化合物、複素環式化合物の核水素化反応に使用することができる。
以下に本発明の担持金属触媒を用いたアンモニアの製造方法について記す。
【0050】
<アンモニアの製造方法>
本発明のアンモニアの製造方法(以下、本発明の製造方法ということがある)は、本発明の担持金属触媒を触媒として用い、水素と窒素とを前記触媒上で反応させてアンモニアを合成する方法である。
具体的な製造方法としては、水素と窒素とを前記触媒上で接触させてアンモニアを合成する方法であれば、特に限定されず、適宜既知の製造方法に準じて製造をすることができる。
【0051】
本発明のアンモニアの製造方法では、通常、水素と窒素とを前記触媒上で接触させる際に、触媒を加熱して、アンモニアを製造する。
本発明の製造方法における反応温度は特に限定はされないが、通常200℃以上、好ましくは250℃以上であり、より好ましくは300℃以上であり、通常600℃以下であり、好ましくは500℃以下であり、より好ましくは450℃以下である。アンモニア合成は発熱反応であることから、低温領域のほうが化学平衡論的にアンモニア生成に有利であるが、十分なアンモニア生成速度を得るためには上記の温度範囲で反応を行うことが好ましい。
本発明の製造方法において、前記触媒に接触させる窒素と水素のモル比率は、特に限定はされないが、通常、窒素に対する水素の比率(H
2/N
2(体積/体積))で、通常0.4以上、好ましくは0.5以上、より好ましくは1以上、通常10以下、好ましくは5以下で行う。
【0052】
本発明の製造方法における反応圧力は、特に限定はされないが、窒素と水素含む混合ガスの圧力で、通常0.01MPa以上、好ましくは0.1MPa以上、通常20MPa以下、好ましくは15MPa以下、より好ましくは10MPa以下である。また実用的な利用を考慮すると、大気圧以上の加圧条件で反応を行うことが好ましい。
【0053】
本発明の製造方法において、窒素と水素とを前記触媒に接触させる前に、前記触媒に付着する水分や酸化物を、脱水材を用いる方法、深冷分離する方法や水素ガス等を用いて除去することが好ましい。除去の方法としては還元処理が挙げられる。
本発明の製造方法においては、より良好なアンモニア収率を得るためには、本発明の製造方法に用いる窒素及び水素中の水分含有量が少ないことが好ましく、特に限定はされないが、通常、窒素と水素の混合ガス中の総水分含有量が100ppm以下、好ましくは、50ppm以下であることが好ましい。
【0054】
本発明の製造方法において、反応容器の形式は特に限定されず、アンモニア合成反応に通常用いることができる反応容器を用いることができる。具体的な反応形式としては、例えばバッチ式反応形式、閉鎖循環系反応形式、流通系反応形式等を用いることができる。このうち実用的な観点からは流通系反応形式が好ましい。また触媒を充填した一種類の反応器、又は複数の反応器を連結させる方法や、同一反応器内に複数の反応層を有する反応器の何れの方法も使用することができる。
水素と窒素からアンモニアを合成する反応は、体積収縮を伴う発熱反応であることから、アンモニア収率を上げるために工業的には反応熱を除去することが好ましく、通常用いられる除熱手段を伴う既知の反応装置を用いてもよい。例えば具体的には触媒が充填された反応器を直列に複数個連結し、各反応器の出口にインタークーラーを設置して除熱する方法等を用いてもよい。
【0055】
本発明のアンモニアの製造方法においては、本発明の製造方法で得られるアンモニア合成用触媒を単独で用いても、アンモニア合成に通常用いることができる他の公知の触媒と組み合わせて使用することができる。
【実施例】
【0056】
以下に、実施例に基づいて、本発明をより詳細に説明する。NH
3の生成量をガスクロマトグラフにより、又は生成したNH
3を硫酸水溶液中に溶解させ、その溶液をイオンクロマトグラフにより定量してアンモニア生成速度を求めることによりアンモニア合成活性の評価を行った。
【0057】
(BET比表面積測定方法)
BET比表面積の測定は、対象物の表面に液体窒素温度で窒素ガスを吸着させ、−196℃における窒素ガスの吸脱着に基づく吸脱着等温線から求めた。分析条件は以下の通り。
[測定条件]
測定装置:高速・比表面/細孔分布測定装置 BELSORP−mini 2(MicrotracBEL社製)
吸着ガス:窒素 99.99995体積%
吸着温度:液体窒素温度 −196℃
【0058】
(イオンクロマトグラム分析)
反応容器から排出されたアンモニアガスを、5mM硫酸水溶液に溶解させ、捕捉したアンモニウムイオン(NH
4+)をイオンクロマトグラフにより分析した。分析条件は以下の通り。
[測定条件]
装置 :島津製作所社製 Prominence
検出器:電気伝導度検出器CDD―10Avp (島津製作所社製)
カラム:イオンクロマトグラム用カラムIC−C4(島津製作所社製)
溶離液:3.0mM シュウ酸+2.0mM 18−クラウン−6−エーテル水溶液
流速 :1.0 mL/分
カラム温度:40℃
【0059】
(実施例1)
(CaH
2の調製)
金属Ca(Aldrich社製,99.99%)2gを、Ar置換したステンレス鋼製の管状電気炉内に入れた。該電気炉内を真空排気した後に、前記電気炉内の圧力が2MPaになるまで水素を導入した。次に前記電気炉内の温度を常温から400℃まで4時間かけて昇温し、引き続き400℃で10時間加熱した。その後、常温まで冷却し、CaH
2粉末を得た。
【0060】
(Ru担持物の調製)
得られた前記CaH
2粉末1gを、Ar雰囲気のグローブボックス中でRu
3(CO)
12粉末(Ardrich社製、99%)0.042gと物理混合し、真空の石英ガラス管に封入した。次に前記石英ガラス管を250℃で15時間加熱した。これによりCaH
2に金属Ruが2質量%担持された金属担持物(以下、Ru/CaH
2)が得られた。この金属担持物のBET表面積は、3.8m
2/gであった。以下で、前記金属担持物を担持金属触媒として用いて、アンモニア合成を行なった。
【0061】
(アンモニア合成反応)
窒素ガス(N
2)と水素ガス(H
2)を触媒上で反応させてアンモニア(NH
3)を生成させる反応(以下、アンモニア合成反応)を行った。前記Ru/CaH
20.1gをガラス管に詰め、固定床流通式反応装置で前記アンモニア合成反応を行った。原料のN
2ガス、H
2ガスはいずれも水分濃度は0.5ppm以下であった。原料ガスの流量は、N
2:15mL/min、H2:45mL/min、合計60mL/minに設定し、圧力は大気圧、反応温度は340℃で反応を行った。
【0062】
(アンモニアの生成速度)
前記固定床流通式反応装置から出てきたガスを0.005M硫酸水溶液中にバブリングさせ、前記ガス中のアンモニアを溶解させ、生じたアンモニウムイオンをイオンクロマトグラフにより前記の方法により定量した。340℃におけるアンモニアの生成速度は、4.0mmol/g・hであった。結果を表1に示した。
【0063】
(実施例2)
実施例1における金属Caに代えて、金属Sr(Aldrich社製,99.99%)1gを用いた以外は、実施例1と同様の方法によりSrH
2を得た。実施例1のCaH
2に代えて前記SrH
2を用いた以外は、実施例1と同様の方法により、SrH
2に金属Ruが2質量%担持された金属担持物(以下、Ru/SrH
2)を調製した。前記Ru/SrH
2のBET比表面積は3.3m
2/gであった。前記Ru/SrH
2を触媒として用いた以外は、実施例1と同様の条件でアンモニア合成反応を実施した。反応温度340℃におけるアンモニアの生成速度は、2.4mmol/g・hであった。結果を表1に示した。
【0064】
(実施例3)
実施例1における金属Caに代えて、金属Ba(Aldrich社製,99.99%)1gを用いた以外は、実施例1と同様の方法によりBaH
2を得た。実施例1のCaH
2に代えて前記BaH
2を用いた以外は、実施例1と同様の方法により、BaH
2に金属Ruが2質量%担持された担持物(以下、Ru/BaH
2)を調製した。前記Ru/BaH
2のBET比表面積は4.2m
2/gであった。前記Ru/BaH
2を触媒として用いた以外は、実施例1と同じ同様の条件でアンモニア合成反応を実施した。反応温度340℃におけるアンモニアの生成速度は0.8mmol/g・hであった。結果を表1に示した。
【0065】
(比較例1)
WO2012/077658の実施例1に記載の方法に準拠し、導電性マイエナイト型化合物(C12A7:e−)を合成した。マイエナイト型化合物として、Ca原子とAl原子のモル比が11:14となるマイエナイト型化合物を合成し、これに対応する前記C12A7:e−を得た。前記C12A7:e−の伝導電子濃度は2×10
21cm
−3であった。
【0066】
前記C12A7:e−を用いた以外は実施例1と同じ条件でRuを担持し、2質量%Ruを担持した担持物(以下、Ru/C12A7:e−)を調製した。前記Ru/C12A7:e−のBET比表面積は1.0m
2/gであった。前記Ru/C12A7:e−を触媒として用い、実施例1と同様の条件でアンモニア合成反応を実施した。反応温度340℃におけるアンモニアの生成速度は1.6mmol/g・hであった。結果を表1に示した。
【0067】
(比較例2)
WO2015/129471の実施例1に記載の方法に準拠し、2質量%Ruを担持したCa
2N(以下、Ru/Ca
2N)を調製した。前記Ru/Ca
2NのBET比表面積は1.0m
2/gであった。前記Ru/Ca
2Nを触媒として用い、実施例1と同様の条件でアンモニア合成反応を実施した。反応温度340℃におけるアンモニアの生成速度は、3.4mmol/g・hであった。結果を表1に示した。
【0068】
(比較例3)
Ru
3(CO)
12 を溶解させたTHF溶媒中(60 mL)に、MgO 2gを分散させた後、蒸発乾固し、真空中450℃で加熱することにより、MgOに2質量%Ruを担持した金属担持物(以下、Ru/MgO)を得た。さらに、前記Ru/MgOとCsCO
3とを、Cs原子/Ru原子のモル比=1となるように混ぜ、エタノール中に分散させる。4時間攪拌後、溶媒を蒸発乾固させることで、Csを添加したRu触媒(以下、Cs−Ru/MgO)を調製した。
前記Cs−Ru/MgOのBET比表面積は12m
2/gであった。前記Cs−Ru/MgOを触媒として用いた以外は、実施例1と同様の条件でアンモニア合成反応を実施した。340℃におけるアンモニアの生成速度は、2.4mmol/g・hであった。結果を表1に示した。
【0069】
(比較例4)
実施例1のCaH
2に代えてCaOを用いた以外は、実施例1と同様の方法により、CaOに金属Ruが2質量%担持された金属担持物(以下、Ru/CaO)を調製した。前記Ru/CaOのBET比表面積は3m
2/gであった。前記Ru/CaOを触媒として用いた以外は実施例1と同様の条件でアンモニア合成反応を実施した。340℃におけるアンモニアの生成速度は、0.3mmol/g・hであった。結果を表1に示した。
【0070】
(比較例5)
実施例1のCaH
2に代えてMgOを用いた以外は、実施例1と同様の方法により、MgOに金属Ruが2質量%担持された担持物(以下、Ru/MgO)を調製した。前記Ru/MgOのBET比表面積は40m
2/gであった。前記Ru/MgOを触媒として用いた以外は実施例1と同様の条件でアンモニア合成反応を実施した。340℃におけるアンモニアの生成速度は、0.3mmol/g・hであった。結果を表1に示した。
【0071】
(アンモニア生成速度の比較)
表1に、本発明の担体材料上に金属Ruを担持した触媒によるアンモニア合成反応の触媒活性を示した。表1に示すアンモニア生成速度からみて、比較例3〜5に示した既存の触媒担体に金属Ru又はCs−Ruを担持した触媒と比較すると、前記Ru/CaH
2、前記Ru/SrH
2、前記Ba/H
2は、比表面積が小さいにもかかわらず、同じ質量あたりの触媒活性が高く、非常に優れた触媒であることが分かった。この触媒活性は、比較例1に示した高い触媒活性を有する前記Ru/C12A7:e−よりも高い値を示すことが分かった。
【0072】
【表1】
【0073】
(実施例4)
実施例1におけるRu/CaH
2のRu担持量を5質量%にした以外は、実施例1と同様の方法で前記Ru/CaH
2を調製し、これを触媒として用いて実施例1と同様の条件でアンモニア合成反応を実施した。340℃におけるアンモニアの生成速度は6.0mmol/g・hであった。結果を
図1に示した。
【0074】
(実施例5)
実施例1におけるRu/CaH
2のRu担持量を10質量%にした以外は、実施例1と同様の方法でRu/CaH
2を調製し、これを触媒として用いて実施例1と同様の条件でアンモニア合成反応を実施した。
図1に示すとおり、340℃におけるアンモニアの生成速度は7.0mmol/g・hであった。結果を
図1に示した。
【0075】
(実施例6)
実施例1におけるRu/CaH
2のRu担持量を15質量%にした以外は、実施例1と同様の方法でRu/CaH2を調製し、これを触媒として用いて実施例1と同様の条件でアンモニア合成反応を実施した。340℃におけるアンモニアの生成速度は5.3mmol/g・hであった。結果を
図1に示した。
【0076】
(実施例7)
実施例1におけるRu
3(CO)
12に代えて、Co
2(CO)
8(関東化学社製、95%)0.058gを用いてCoを担持した以外は、実施例1と同様の方法により、金属Coを2質量%CaH
2に担持させた金属担持物(以下、Co/CaH2)を調製した。前記Co/CaH
2を触媒として用いた以外は、実施例1と同様の条件でアンモニア合成反応を実施した。340℃におけるアンモニアの生成速度は0.4mmol/g・hであった。結果を表2に示した。
【0077】
(実施例8)
実施例1におけるRu
3(CO)
12に代えて、Fe
2(CO)
9(STREM CHEMICALS社製、99%)0.126gを用いてFeを担持した以外は、実施例1と同様の方法により、Feを2質量%CaH
2に担持させた担持物(以下、Fe/CaH
2)を調製した。前記Fe/CaH
2を触媒として用いた以外は、実施例1と同様の条件でアンモニア合成反応を実施した。340℃におけるアンモニアの生成速度は0.2mmol/g・hであった。結果を表2に示した。
【0078】
表2に、CaH
2担体にRu,Co,Feをそれぞれ担持した触媒の340℃でのアンモニア合成活性の結果を示した。
【0079】
【表2】
【0080】
(実施例9)
実施例1のCaH
2に代えてCeH
2を用いた以外は、実施例1と同様の方法により、CeH
2に金属Ruが2質量%担持された金属担持物(以下、Ru/CeH
2)を調製した。前記Ru/CeH
2のBET比表面積は1.7m
2/gであった。前記Ru/CeH
2を触媒に用いた以外は、実施例1と同様の条件でアンモニア合成反応を実施した。340℃におけるアンモニアの生成速度は2.8mmol/g・hであった。結果を表3に示した。
【0081】
(実施例10)
実施例1のCaH
2に代えてLaH
nを用いた以外は、実施例1と同様の方法により、LaH
nに金属Ruが2質量%担持された担持物(以下、Ru/LaHx)を調製した。前記Ru/LaH
nのBET比表面積は1.3m
2/gであった。前記Ru/LaH
nを触媒として用いた以外は、実施例1と同様の条件でアンモニア合成反応を実施した。340℃におけるアンモニアの生成速度は2.7mmol/g・hであった。結果を表3に示した。
【0082】
(実施例11)
実施例1のCaH
2に代えてYH
2を用いた以外は、実施例1と同様の方法により、YH
2に金属Ruが2質量%担持された担持物(以下、Ru/YH
2)を調製した。前記Ru/YH
2のBET比表面積は0.8m
2/gであった。前記Ru/YH2を触媒として用いた以外は、実施例1と同様の条件でアンモニア合成反応を実施した。340℃におけるアンモニアの生成速度は0.9mmol/g・hであった。結果を表3に示した。
【0083】
表3に、Ru/CaH
2と、希土類金属水素化物にRuを担持した触媒による反応温度340℃でのアンモニア合成活性をまとめた結果を示す。Ru/CeH
2やRu/LaHnともにRu/CaH
2に匹敵する触媒性能を示すことが分かった。
【0084】
【表3】
【0085】
実施例1、4、5、6に示すように、反応温度340℃でRu担持量の異なるCaH
2触媒によるアンモニア合成活性を調べたところ、Ru担持量を増加させるにつれて、触媒活性は大きく向上し、Ru担持量10質量%で最大の活性となった。さらに担持量を15質量%まで増加させると触媒活性は低下する傾向があることが分かった。
【0086】
(実施例12)
実施例1の2質量%Ru/CaH
2を触媒として用いて、反応温度340℃で、10気圧(1.0MPa)、120時間継続してアンモニア合成反応を行い、触媒の長期の安定性を評価した。
図2に結果を示す。本発明の触媒は、120時間の反応においても安定してアンモニアを生成し、ほとんど反応活性が低下しないことが分かった。
【0087】
(実施例13)
実施例1の2質量%Ru/CaH
2を触媒として用いて、反応温度340℃で、水素分圧の異なるガス雰囲気下においてアンモニア合成反応を行った。前記アンモニア合成反応において窒素分圧を0.017MPaに固定し、水素分圧を0.03MPa、0.04MPa、0.05MPa、0.07MPaとし、ガスの全流量が60mL/minとなるようにArガスを流した。
図3に結果を示した。
一般的な触媒である比較例5の触媒(Ru/MgO)では、水素分圧の増加と共に触媒活性は低下したが、実施例1の触媒(Ru/CaH
2)では、水素分圧の増加と共に触媒活性は大きく向上した。このことから、Ru/CaH2は水素被毒を受けにくい触媒であることが分かった。
【0088】
(実施例14)
実施例1に記載の2質量%Ru/CaH
2を触媒として用いて、反応温度340℃で70時間アンモニア合成反応を行った後、当該触媒のX線回折パターンを測定した。
図4に結果を示した。リートベルト解析により反応後のRu/CaH
2触媒には、CaH
2が84.92%、CaOが14.30%、Ca
2NHが0.78%含まれていることが分かった。
CaOの生成は、触媒調製時、あるいは反応ガス中に含まれる微量の不純物(水分又は酸素)により酸化したと考えられる。一方、Ca
2NHに由来するピークが観察された。これは、反応中に窒素がCaH2の結晶構造の骨格中に取り込まれていることを示唆している。
【0089】
本発明の金属担持物及び担持金属触媒の効果は、金属水素化物に含まれるヒドリドイオン(H
−イオン)の動的役割がもたらす作用と考えられる。すなわち、金属水素化物にRuなどの遷移金属を担持した金属担持物が加熱されると、金属担持物中のH
−イオンが中性水素として脱離して、その欠損サイトを電子が占有するF中心が生成する。この状況はアンモニアを製造する条件下において特に起こりやすい。本発明で用いられる金属水素化物から発生する金属イオンの原子価は、通常、+2価又は+3価であるため、これらの結晶は、アルカリ金属等のイオン結晶に比べ大きな格子エネルギーを有している。また、酸素イオンやハロゲンイオンと比べて、ヒドリドイオンは、そのイオン半径を環境によってかなり変化できるという特徴がある。よって、これらの水素化物結晶中のF中心の電子のエネルギー準位は、ヒドリドイオンを電子で置き換えた際にアルカリ金属酸化物やハロゲン化物にみられるようなF中心の周りの構造の緩和によって大幅に低下せずに、高く保たれるものと推測される。これによって、金属担持物そのものの仕事関数が低くなることにより、担持した金属種への電子供与が効率よく起こり、金属種の触媒活性を促進していると考えられる。また、上述のようにF中心と元のヒドリドが欠損サイトに存在した際の局所構造が大きく違わないので、ヒドリドイオンと電子の可逆的交換が速やかに生じるものと考察される。