特許第6802583号(P6802583)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社新川の特許一覧

<>
  • 特許6802583-実装装置および半導体装置の製造方法 図000002
  • 特許6802583-実装装置および半導体装置の製造方法 図000003
  • 特許6802583-実装装置および半導体装置の製造方法 図000004
  • 特許6802583-実装装置および半導体装置の製造方法 図000005
  • 特許6802583-実装装置および半導体装置の製造方法 図000006
  • 特許6802583-実装装置および半導体装置の製造方法 図000007
  • 特許6802583-実装装置および半導体装置の製造方法 図000008
  • 特許6802583-実装装置および半導体装置の製造方法 図000009
  • 特許6802583-実装装置および半導体装置の製造方法 図000010
  • 特許6802583-実装装置および半導体装置の製造方法 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6802583
(24)【登録日】2020年12月1日
(45)【発行日】2020年12月16日
(54)【発明の名称】実装装置および半導体装置の製造方法
(51)【国際特許分類】
   H01L 21/60 20060101AFI20201207BHJP
【FI】
   H01L21/60 311T
   H01L21/60 311S
【請求項の数】10
【全頁数】16
(21)【出願番号】特願2019-521227(P2019-521227)
(86)(22)【出願日】2018年5月29日
(86)【国際出願番号】JP2018020505
(87)【国際公開番号】WO2018221499
(87)【国際公開日】20181206
【審査請求日】2019年11月20日
(31)【優先権主張番号】特願2017-105614(P2017-105614)
(32)【優先日】2017年5月29日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】519294332
【氏名又は名称】株式会社新川
(74)【代理人】
【識別番号】110001210
【氏名又は名称】特許業務法人YKI国際特許事務所
(72)【発明者】
【氏名】中村 智宣
(72)【発明者】
【氏名】前田 徹
(72)【発明者】
【氏名】高野 徹朗
【審査官】 平野 崇
(56)【参考文献】
【文献】 特開2016−162920(JP,A)
【文献】 国際公開第2010/050209(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/60
H01L 21/065
H01L 25/07
H01L 25/18
(57)【特許請求の範囲】
【請求項1】
半導体チップを、基板または他の半導体チップである被実装体にボンディングして半導体装置を製造する実装装置であって、
前記基板が直接、または、中間部材を介して載置される第一面と前記第一面と反対側の第二面とを有するステージと、
前記ステージに対して相対移動が可能であり、前記半導体チップを前記被実装体にボンディングする実装ヘッドと、
前記ステージを透過するとともに、前記基板または前記中間部材を加熱する電磁波を前記第二面側から照射する照射ユニットと、
を備え、
前記実装ヘッドは、
前記基板の上に1以上の前記半導体チップを仮圧着しながら積層してなる仮積層体を、前記基板の複数箇所に順番に形成する仮圧着処理と、
前記仮圧着処理の後、一つの仮積層体をその上面から加熱加圧することで、当該仮積層体を構成する1以上の前記半導体チップを一括で本圧着する処理を、前記基板の複数箇所で順番に行う本圧着処理と、
を実行し、
前記照射ユニットは、前記本圧着処理と並行して、前記基板または前記中間部材のうち前記本圧着実行箇所に対応する箇所に、前記電磁波を照射する、
ことを特徴とする実装装置。
【請求項2】
請求項1に記載の実装装置であって、
前記ステージは、前記第一面側に形成された第一層を有し、
前記第一層は、面方向の熱抵抗が厚み方向の熱抵抗よりも大きい、
ことを特徴とする実装装置。
【請求項3】
請求項2に記載の実装装置であって、
前記基板は、複数の前記半導体チップが熱圧着されるものであり、
前記照射ユニットは、前記第一面における前記電磁波の照射領域、および、前記第一面における前記電磁波の照射位置の少なくとも一方を変更する変更手段を備える、
ことを特徴とする実装装置。
【請求項4】
請求項2に記載の実装装置であって、
前記ステージは、前記第一層よりも前記第二面側に形成された第二層をさらに有し、
前記第一層は、前記第二層よりも面方向への熱抵抗が大きい、
ことを特徴とする実装装置。
【請求項5】
請求項4に記載の実装装置であって、
前記第二層は、前記第一層よりも、剛性が高い、ことを特徴とする実装装置。
【請求項6】
請求項4または5に記載の実装装置であって、
前記第二層は、前記電磁波が透過可能な材料からなる中実部位であり、
前記第一層は、上面に複数の溝または層内に複数の細孔が形成された部位である、
ことを特徴とする実装装置。
【請求項7】
請求項1から5のいずれか1項に記載の実装装置であって、
前記基板は、シリコンウエハであるとともに、前記ステージに直接、載置され、
前記電磁波は、波長1200nm以下であり、
前記基板が、前記電磁波により局所的に加熱される、
ことを特徴とする実装装置。
【請求項8】
請求項1から4のいずれか1項に記載の実装装置であって、
前記基板は、前記中間部材を介して前記ステージに載置され、
前記電磁波は、前記中間部材に吸収されるとともに、前記基板に吸収されない波長を有しており、
前記電磁波により局所的に加熱された前記中間部材からの伝熱により、前記基板が局所的に加熱される、
ことを特徴とする実装装置。
【請求項9】
半導体チップを、基板または他の半導体チップである被実装体にボンディングして半導体装置を製造する半導体装置製造方法であって、
前記基板を直接、または、中間部材を介してステージの第一面に載置する載置工程と、
前記ステージに対して相対移動が可能な実装ヘッドにより、前記半導体チップを前記被実装体にボンディングするボンディング工程と、
前記ボンディング工程の少なくとも一部と並行して、前記ステージを挟んで前記実装ヘッドの反対側に配される照射ユニットから、前記基板または前記中間部材で吸収されるとともに前記ステージを透過する電磁波を照射することで、前記基板または前記中間部材を加熱する基板加熱工程と、
を備え、
前記ボンディング工程は、
前記実装ヘッドにより、基板の上に1以上の前記半導体チップを仮圧着しながら積層してなる仮積層体を、前記基板の複数箇所に順番に形成する仮圧着工程と、
前記仮圧着工程の後、一つの仮積層体をその上面から加熱加圧することで、当該仮積層体を構成する1以上の前記半導体チップを一括で本圧着する処理を、前記基板の複数箇所で順番に行う本圧着工程と、
を含み、
前記基板加熱工程は、前記半導体チップを一括で本圧着する処理と並行して、前記基板または前記中間部材のうち前記本圧着実行箇所に対応する箇所に、前記電磁波を照射する、
ことを特徴とする半導体装置の製造方法。
【請求項10】
請求項9に記載の半導体装置の製造方法であって、
前記ステージは、前記第一面側に形成された第一層を有し、
前記第一層は、面方向の熱抵抗が厚み方向の熱抵抗よりも大きい、
ことを特徴とする半導体装置の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書は、半導体チップを、基板または他の半導体チップである被実装体にボンディングして半導体装置を製造する実装装置、および、半導体装置の製造方法を開示する。
【背景技術】
【0002】
半導体チップを、基板または他の半導体チップの上にボンディングする場合、通常、加熱した実装ヘッドで、半導体チップを加熱加圧する。ただし、実装ヘッドからの熱のみで、ボンディング対象となる半導体チップを適切に加熱することは難しい。特に、近年は、半導体装置の更なる高機能化、小型化のために、複数の半導体チップを積層して実装することが提案されている。この場合、実装処理の時間短縮のために、複数の半導体チップを仮圧着しながら積層した後、当該複数の半導体チップを一括で本圧着する場合がある。すなわち、複数の半導体チップを仮圧着状態で積層して仮積層体を形成した後、当該仮積層体の上面を加熱した実装ヘッドで加熱加圧して本圧着する場合がある。かかる場合には、実装ヘッドからの熱のみで、仮積層体の最下層の半導体チップまで適切に加熱することは難しい。そこで、従来から、半導体装置をボンディングする際には、基板が載置されるステージ全体を加熱している。これによれば、半導体チップの上下両側から加熱できる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】国際公開第2010/050209号
【特許文献2】特許第3833531号公報
【特許文献3】特許第4001341号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、ステージ全体を加熱した場合、ボンディング対象(加熱対象)の半導体チップとは異なる箇所に配置された半導体チップも加熱され続けることになる。結果として、半導体チップに、長時間、熱が入力されることになる。こうした長期に亘る熱入力は、半導体チップ、特に半導体チップの底面に設けられた非導電性フィルム(Non Conductive Film)等の樹脂の劣化を招き、ひいては、実装品質の低下を招く。
【0005】
かかる問題を避けるために、ステージの複数箇所に、パルスヒータ等の局所加熱用のヒータを設けておき、必要な箇所のヒータのみをオンすることも考えられる。しかし、こうした局所加熱用のヒータをステージに埋め込んだ場合、ステージの平坦度を維持することが難しく、ひいては、実装品質の低下を招く。
【0006】
また、特許文献1−3には、ステージの裏側から照射した光により、基板を光加熱する技術が開示されているが、これらは、いずれも、基板を局所的に加熱することについては、十分に、考慮されていない。
【0007】
そこで、本明細書では、ボンディング対象の半導体チップを適切に加熱する一方で、他の半導体チップへの熱入力を抑制できる実装装置、および、半導体装置の製造方法を提供する。
【課題を解決するための手段】
【0008】
本明細書で開示する実装装置は、半導体チップを、基板または他の半導体チップである被実装体にボンディングして半導体装置を製造する実装装置であって、前記基板が直接、または、中間部材を介して載置される第一面と前記第一面と反対側の第二面とを有するステージと、前記ステージに対して相対移動が可能であり、前記半導体チップを前記被実装体にボンディングする実装ヘッドと、前記ステージを透過するとともに、前記基板または前記中間部材を加熱する電磁波を前記第二面側から照射する照射ユニットと、を備え、前記ステージは、前記第一面側に形成された第一層を有し、前記第一層は、面方向の熱抵抗が厚み方向の熱抵抗よりも大きいことを特徴とする。
【0009】
前記基板は、複数の前記半導体チップが熱圧着されるものであり、前記照射ユニットは、前記第一面における前記電磁波の照射領域、および、前記第一面における前記電磁波の照射位置の少なくとも一方を変更する変更手段を備えてもよい。
【0010】
また、前記実装ヘッドは、複数の前記半導体チップが仮圧着された状態で積層された仮積層体を加熱して本圧着するヒータを備え、前記照射ユニットは、前記ヒータとともに前記仮積層体を加熱してもよい。
【0011】
また、前記ステージは、前記第一層よりも前記第二面側に形成された第二層をさらに有し、前記第一層は、前記第二層よりも面方向への熱抵抗が大きくてもよい。
【0012】
また、前記第二層は、前記第一層よりも、剛性が高くてもよい。
【0013】
また、前記第二層は、前記電磁波が透過可能な材料からなる中実部位であり、前記第一層は、上面に複数の溝または層内に複数の細孔が形成された部位であってもよい。
【0014】
また、前記基板は、シリコンウエハであるとともに、前記ステージに直接、載置され、前記電磁波は、波長1200nm以下であり、前記基板が、前記電磁波により局所的に加熱されてもよい。
【0015】
また、前記基板は、前記中間部材を介して前記ステージに載置され、前記電磁波は、前記中間部材に吸収されるとともに、前記基板に吸収されない波長を有しており、前記電磁波により局所的に加熱された前記中間部材からの伝熱により、前記基板が局所的に加熱されてもよい。
【0016】
本明細書で開示する半導体装置の製造方法は、半導体チップを、基板または他の半導体チップである被実装体にボンディングして半導体装置を製造する半導体装置製造方法であって、前記基板を直接、または、中間部材を介してステージの第一面に載置する載置工程と、前記ステージに対して相対移動が可能な実装ヘッドにより、前記半導体チップを前記被実装体にボンディングするボンディング工程と、前記ボンディング工程の少なくとも一部と並行して、前記ステージを挟んで前記実装ヘッドの反対側に配される照射ユニットから、前記基板または前記中間部材で吸収されるとともに前記ステージを透過する電磁波を照射することで、前記基板または前記中間部材を加熱する基板加熱工程と、を備え、前記ステージは、前記第一面側に形成された第一層を有し、前記第一層は、面方向の熱抵抗が厚み方向の熱抵抗よりも大きい、ことを特徴とする。
【0017】
前記ボンディング工程は、前記実装ヘッドにより、基板の上に1以上の前記半導体チップを仮圧着しながら積層してなる仮積層体を、前記基板の複数箇所に順番に形成する仮圧着工程と、前記仮圧着工程の後、一つの仮積層体をその上面から加熱加圧することで、当該仮積層体を構成する1以上の前記半導体チップを一括で本圧着する処理を、前記基板の複数箇所で順番に行う本圧着工程と、を含み、前記基板加熱工程は、前記半導体チップを一括で本圧着する処理と並行して、前記基板または前記中間部材のうち前記本圧着実行箇所に対応する箇所に、前記電磁波を照射してもよい。
【発明の効果】
【0018】
本明細書で開示する装置および方法によれば、基板が局所的に電磁波で加熱されるため、ボンディング対象の半導体チップを適切に加熱できる。また、ステージの第一層が面方向の熱抵抗が厚み方向の熱抵抗よりも高いため、面方向に離間して配された他の半導体チップへの伝熱が抑制され、ひいては、他の半導体チップへの熱入力が抑制される。
【図面の簡単な説明】
【0019】
図1】実装装置の構成を示す図である。
図2】半導体装置の一例を示す図である。
図3】基板の一例を示す図である。
図4】半導体チップの一例を示す図である。
図5】基板を局所加熱している様子を示す図である。
図6図5のX部拡大図である。
図7】ステージの他の一例を示す図である。
図8】ステージの他の一例を示す図である。
図9】ステージの他の一例を示す図である。
図10】ステージの他の一例を示す図である。
【発明を実施するための形態】
【0020】
以下、半導体装置の製造方法および実装装置100について図面を参照して説明する。図1は、実装装置100の構成を示す図である。この実装装置100は、基板30の上に、半導体チップ12を実装する装置である。この実装装置100は、複数の半導体チップ12を積層して実装する場合に特に好適な構成となっている。なお、以下の説明では、複数の半導体チップ12を積層して成る積層体のうち、積層体を構成する複数の半導体チップ12が仮圧着状態のものを「仮積層体STt」と呼び、複数の半導体チップ12が、本圧着状態のものを「チップ積層体STc」と呼び区別する。
【0021】
実装装置100は、チップ供給ユニット102、チップ搬送ユニット104、ボンディングユニット106、照射ユニット108、および、これらの駆動を制御する制御部130と、を備える。チップ供給ユニット102は、チップ供給源から半導体チップ12を取り出し、チップ搬送ユニット104に供給する部位である。このチップ供給ユニット102は、突上部110とダイピッカ114と移送ヘッド116と、を備えている。
【0022】
チップ供給ユニット102において、複数の半導体チップ12は、ダイシングテープTE上に載置されている。このとき半導体チップ12は、バンプ18が上側を向いたフェイスアップ状態で載置されている。突上部110は、この複数の半導体チップ12の中から一つの半導体チップ12のみを、フェイスアップ状態のまま、上方に突き上げる。ダイピッカ114は、突上部110により突き上げられた半導体チップ12を、その下端で吸引保持して受け取る。半導体チップ12を受け取ったダイピッカ114は、当該半導体チップ12のバンプ18が下方を向くように、すなわち、半導体チップ12がフェイスダウン状態になるように、その場で180度回転する。この状態になれば、移送ヘッド116が、ダイピッカ114から半導体チップ12を受け取る。
【0023】
移送ヘッド116は、上下および水平方向に移動可能であり、その下端で、半導体チップ12を吸着保持できる。ダイピッカ114が180度回転して、半導体チップ12がフェイスダウン状態となれば、移送ヘッド116は、その下端で、当該半導体チップ12を吸着保持する。その後、移送ヘッド116は、水平および上下方向に移動して、チップ搬送ユニット104へと移動する。
【0024】
チップ搬送ユニット104は、鉛直な回転軸Raを中心として回転する回転台118を有している。移送ヘッド116は、回転台118の所定位置に、半導体チップ12を載置する。半導体チップ12が載置された回転台118が回転軸Raを中心として回転することで、当該半導体チップ12が、チップ供給ユニット102と反対側に位置するボンディングユニット106に搬送される。
【0025】
ボンディングユニット106は、基板30を支持するステージ120と、半導体チップ12を基板30に取り付ける実装ヘッド124と、を備えている。ステージ120は、基板30が載置される上面(第一面)と、当該第一面と反対側の下面(第二面)とを有する。また、ステージ120は、水平方向に移動可能であり、載置されている基板30と実装ヘッド124との相対位置関係を調整する。ステージ120は、後に詳説するように、照射ユニット108から照射される電磁波134を透過可能な材料で構成されている。また、ステージ120は、面方向への熱抵抗が厚み方向の熱抵抗よりも高い第一層と、第一層の下側に配される第二層とを有した多層構造となっているが、これについても後述する。
【0026】
実装ヘッド124は、基板30に、複数の半導体チップ12を積層して実装する。実装ヘッド124は、その下端に半導体チップ12を保持でき、また、鉛直な回転軸Rb回りの回転と、昇降と、が可能となっている。この実装ヘッド124は、半導体チップ12を基板30または他の半導体チップ12の上に圧着する。具体的には、保持している半導体チップ12を基板30等に押し付けるように、実装ヘッド124が、下降することで、半導体チップ12の仮圧着または本圧着が行われる。この実装ヘッド124には、温度可変のヒータ(図示せず)が内蔵されており、実装ヘッド124は、仮圧着実行時には、第一温度T1に、本圧着実行時には、第一温度T1よりも高い第二温度T2に加熱される。また、実装ヘッド124は、仮圧着実行時には、第一荷重F1を、本圧着実行時には、第二荷重F2を、半導体チップ12に付加する。
【0027】
実装ヘッド124の近傍には、カメラ(図示せず)が設けられている。基板30および半導体チップ12には、それぞれ、位置決めの基準となるアライメントマークが付されている。カメラは、このアライメントマークが映るように、基板30および半導体チップ12を撮像する。制御部130は、この撮像により得られた画像データに基づいて、基板30および半導体チップ12の相対位置関係を把握、必要に応じて、実装ヘッド124の軸Rb回りの回転角度およびステージ120の水平位置を調整する。
【0028】
照射ユニット108は、ステージ120の裏側から特定波長の電磁波134を照射することで基板30を局所的に加熱する。照射ユニット108は、少なくとも、電磁波134を照射する電磁波源132を有している。電磁波134は、ステージ120を透過しやすく、基板30に吸収されやすい波長を有していれば特に限定されないが、出力や指向性を考慮すれば、電磁波134は、望ましくは、レーザ光である。電磁波源132としては、所望の波長、パワーの光を所望のパワーで照射できるのであれば、特に限定されず、例えば、レーザ発振器やLD(Laser Diode)、LED、ハロンゲンランプ等を用いることができる。照射ユニット108は、さらに、電磁波134を、基板30の特定範囲のみを照射するために、絞りやレンズ、ミラー、光ファイバ等の光学部材や、これら光学部材を駆動して電磁波を走査させる駆動部材等を有してもよい。
【0029】
制御部130は、各部の駆動を制御するもので、例えば、各種演算を行うCPUと、各種データやプログラムを記憶する記憶部と、を備えている。制御部130は、記憶部に記憶されたプログラムに従い、各部を駆動して、半導体チップの実装処理を実行する。例えば、制御部130は、実装ヘッド124およびステージ120を駆動して、半導体チップを基板30に実装させる。また、制御部130は、後述する本圧着処理と並行して、照射ユニット108を駆動して、基板30を局所的に加熱させる。
【0030】
次に、この実装装置100で製造される半導体装置10について図3図5を参照して説明する。図3は、半導体装置10の一例を示す模式図、図4は、基板30の模式図、図5は、半導体チップ12の模式図である。なお、図3において、半導体チップ12と基板30との境界、および、二つの半導体チップ12の境界における太線は、本圧着されていることを示している。
【0031】
本例で取り扱う半導体装置10は、図3に示すように、基板30の上面に、複数(図示例では4つ)の半導体チップ12が積層実装されている。また、本例では、基板30として、シリコンウエハを使用する。したがって、本明細書で開示する実装プロセスは、シリコンウエハの回路形成面に、半導体チップ12を積層実装する「チップオンウェハプロセス」である。
【0032】
シリコンウエハである基板30は、主にシリコンからなり、樹脂やガラスからなる一般的な回路基板に比して、熱伝導率が高い。図2に示すように、基板30には、格子状に並ぶ複数の実装区画34が設定されている。各実装区画34には、複数の半導体チップ12が積層実装される。実装区画34は、所定の配置ピッチPで配設されている。この配置ピッチPの値は、実装対象の半導体チップ12のサイズ等に応じて適宜、設定される。また、本実施形態では、実装区画34を略正方形としているが、適宜、他の形状、例えば略長方形としてもよい。各実装区画34の表面には、実装される半導体チップ12のバンプ18に対応した位置に、電極36(図3参照)が形成されている。
【0033】
次に半導体チップ12の構成について図4に示すように、半導体チップ12の上下面には、電極端子14,16が形成されている。また、半導体チップ12の片面には、電極端子14に連なってバンプ18が形成されている。バンプ18は、導電性金属からなり、所定の溶融温度Tmで溶融する。
【0034】
また、半導体チップ12の片面には、バンプ18を覆うように、非導電性フィルム(以下「NCF」という)20が貼り付けられている。NCF20は、半導体チップ12と、基板30または他の半導体チップ12とを接着する接着剤として機能するもので、非導電性の熱硬化性樹脂、例えば、ポリイミド樹脂、エポキシ樹脂、アクリル樹脂、フェノキシ樹脂、ポリエーテルスルホン樹脂等からなる。このNCF20の厚みは、バンプ18の平均高さよりも大きく、バンプ18は、このNCF20によりほぼ完全に覆われている。NCF20は、常温下では、固体のフィルムであるが、所定の軟化開始温度Tsを超えると、徐々に、可逆的に軟化して流動性を発揮し、所定の硬化開始温度Ttを超えると、不可逆的に硬化し始める。
【0035】
ここで、軟化開始温度Tsは、硬化開始温度Ttおよびバンプ18の溶融温度Tmよりも低い。仮圧着用の第一温度T1は、この軟化開始温度Tsより高く、溶融温度Tmおよび硬化開始温度Ttよりも低い。また、本圧着用の第二温度T2は、溶融温度Tmおよび硬化開始温度Ttよりも高い。すなわち、Ts<T1<(Tm,Tt)<T2となっている。
【0036】
半導体チップ12を基板30または下側の半導体チップ12(以下、両者を区別しない場合は「被実装体」と呼ぶ)に仮圧着する際には、実装ヘッド124を、第一温度T1に加熱したうえで半導体チップ12を加圧する。このとき、半導体チップ12のNCF20は、実装ヘッド124からの伝熱により、第一温度T1近傍まで加熱され、軟化し、流動性を持つ。そして、これにより、NCF20が、半導体チップ12と被実装体との隙間に流れ込み、当該隙間を確実に埋めることができる。
【0037】
半導体チップ12を、被実装体に本圧着する際には、実装ヘッド124を、第二温度T2に加熱したうえで、半導体チップ12を加圧する。このとき、半導体チップ12のバンプ18およびNCF20は、実装ヘッド124からの伝熱により、第二温度T2近傍まで加熱される。これにより、バンプ18は、溶融し、対向する被実装体に溶着できる。また、この加熱により、NCF20が、半導体チップ12と被実装体との隙間を埋めた状態で硬化するため、半導体チップ12と被実装体とが強固に固定される。つまり、本圧着の際、半導体チップ12は、基板30等に熱圧着される。
【0038】
ここで、実装ヘッド124の温度を、第一温度T1から第二温度T2、または、第二温度T2から第一温度T1へ切り替えるには、一定の時間がかかる。したがって、半導体装置10を製造時間を短縮するためには、実装ヘッド124の温度の切り替え回数を低減することが有効である。そこで、複数の半導体チップ12を積層実装する場合には、全ての半導体チップ12を仮圧着した後に、この仮圧着された半導体チップ12を本圧着するプロセスが提案されている。具体的には、まず、第一温度T1に加熱した実装ヘッド124を用いて、複数の半導体チップ12を仮圧着しながら積層して成る仮積層体STtを、複数の実装区画34に形成する。続いて、第二温度T2に切り替えた実装ヘッド124で仮積層体STtの上面を加圧し、これにより、仮積層体STtを構成する複数の半導体チップ12を一括で本圧着する。かかる手順で半導体チップ12を実装していくことで、実装ヘッド124の温度の切り替え回数を大幅に低減でき、半導体装置10の製造時間を大幅に短縮できる。
【0039】
ところで、これまでの説明で明らかな通り、半導体チップ12を適切に実装するためには、実装対象の半導体チップ12が、その処理過程に応じた適切な温度に加熱されることが望まれる。例えば、本圧着を行う際には、半導体チップ12は、NCF20の硬化開始温度Tt以上、かつ、バンプ18の溶融温度Tm以上に加熱されていなければならない。しかし、実装ヘッド124からの熱のみで、全ての半導体チップ12を適切な温度に加熱することは難しい場合もあった。特に、仮積層体STtを構成する複数の半導体チップ12を一括で本圧着する場合、実装ヘッド124からの熱のみでは、最下層の半導体チップ12を、適切に加熱することは難しかった。
【0040】
また、一つの仮積層体STtにおいて、最上層の半導体チップ12の温度と最下層の半導体チップ12の温度差(以下「積層体内温度差」)ΔTは、小さいことが望まれる。積層体内温度差ΔTが大きいと、実装品質のバラツキを招くこととなる。しかし、実装ヘッド124からの熱のみでは、積層体内温度差ΔTを小さくすることは難しかった。
【0041】
そこで、従来は、基板30が載置されるステージ120にヒータを内蔵しておき、基板30全体も加熱することが多かった。かかる構成によれば、仮積層体STtが、下側からも加熱されるため、最下層の半導体チップ12も、適切な温度に加熱されやすく、また、積層体内温度差ΔTをある程度小さくできる。
【0042】
ただし、ステージ120全体を加熱する場合、当然ながら、その温度は、NCF20の硬化開始温度Ttよりも十分に低くしなければならない。これは、ステージ120の温度が、硬化開始温度Ttより高いと、仮圧着後、本圧着前の半導体チップ12のNCF20が、熱硬化してしまうからである。そのため、ステージ120は、あまり高温にすることはできず、積層体内温度差ΔTを十分に小さくすることは難しかった。
【0043】
また、ステージ120が、硬化開始温度Ttより低温であったとしても、当該ステージ120全体が加熱される場合、基板30上に仮圧着または本圧着された半導体チップ12には、長時間、熱が入力され続けることになる。こうした長期間に及ぶ熱の入力は、半導体チップ12、特に、NCF20の劣化、ひいては、実装品質の劣化を招く。
【0044】
そこで、既述した通り、本明細書で開示する実装装置100では、ステージ120の下側に、照射ユニット108を配置し、基板30を局所的に電磁波134で加熱する。図5は、基板30を局所的に加熱する様子を示すイメージ図である。なお、図5において、三つの実装区画34を図示しているが、以下の説明では、これらの実装区画34を、図面左側から順に、「区画A」、「区画B」、「区画C」と呼び、区別する。また、図5において、半導体チップ12と被実装体(基板30または他の半導体チップ12)との境界における太線は、本圧着されていることを示し、破線は、仮圧着されていることを示している。したがって、図5において、区画Aの積層体は、本圧着されたチップ積層体STcであり、区画B,Cの積層体は、仮圧着後かつ本圧着前の仮積層体STtである。図5は、区画Bの仮積層体STtを本圧着するときの様子を示している。
【0045】
図5に示すように、一つの仮積層体STtを本圧着する際には、第二温度T2に加熱された実装ヘッド124で、当該仮積層体STtを加熱・加圧する。また、基板30のうち、本圧着対象の仮積層体STtが配された区画Bに、電磁波134を照射し、当該区画Bを電磁波134で加熱する。
【0046】
ここで、既述した通り、電磁波134は、ステージ120を透過しやすく、かつ、基板30に吸収されやすい波長を有している。本例では、基板30は、シリコンウエハである。シリコンの透過率は、波長1200nmを下回ると急激に低下する。したがって、シリコンウエハを基板30として用いる場合、電磁波134の波長は、1200nm以下とすることが望ましい。ただし、波長が過度に小さいと、電磁波のエネルギーも低下するため、電磁波134の波長は、可視光よりも大きい、すなわち、750nm以上であることが望ましい。
【0047】
また、ステージ120は、電磁波134の透過率が高いことが望ましい。また、ステージ120は、伝熱性の乏しい材料であることも望まれる。これは、電磁波134により加熱された実装区画34の熱が、ステージ120を介して他の実装区画34に伝熱することを防止するためである。こうした条件を満たすために、ステージ120は、例えば、石英やフッ化バリウム、フッ化マグネシウム、フッ化カルシウム等で構成されることが望ましい。
【0048】
電磁波134の照射範囲は、半導体チップ12の外形とほぼ同範囲であることが望ましい。また、照射ユニット108は、所望の範囲のみに電磁波134を照射するために、電磁波134の照射範囲および照射位置の少なくとも一方を変更する変更手段を有することが望ましい。変更手段の構成としては、種々考えられるが、変更手段は、例えば、ステージ120に対する電磁波源132の位置を移動させる移動機構を有してもよい。かかる移動機構としては、例えば、ステージ120を移動させるXY移動機構が含まれる。また、変更手段は、所望の照射範囲にのみ照射するために、例えば、図5に示すように、照射範囲よりも十分に大径の電磁波134の経路途中に設けられ、照射範囲に対応した開口が形成された絞り135を有してもよい。この絞り135は、対象となる半導体装置に応じて、適宜、交換されてもよい。
【0049】
また、別の形態として、基板30近傍において照射範囲よりも十分に小径となる電磁波134で、照射範囲を走査してもよい。基板30近傍において小径の電磁波134を得るために、小径の平行電磁波(例えば平行光)を出射する電磁波源132を用いてもよいし、光学部材(レンズ等)を用いて大径の電磁波134を基板30周辺で合焦させてもよい。また、電磁波134を走査させるために、電磁波源132自体を動かしてもよいし、電磁波134を屈曲させるミラー等を動かしてもよい。ミラーを動かす形態としては、例えば、2以上のミラーをガルバノモータで駆動させるガルバノミラー機構を用いてもよい。また、ミラーや電磁波源132を駆動する機構として、コイルモータやカム等を用いてもよい。
【0050】
また、別の形態として、所望の照射範囲にのみ照射するために、各種光学部材を用いて、電磁波134のプロファイル(サイズ・形等)を変化させてもよい。例えば、幾何学的なビーム成形機能を有した矩形コアファイバを用いてもよい。また、別の形態として、電磁波134の経路途中に、筒体の内面に複数のミラーが貼り付けられたカレイドスコープを配してもよい。さらに、上述の光学部材と変えて、または、加えて、回折レンズやフライアレンズ、その他の光学レンズを用いて、電磁波134のプロファイルを変化させてもよい。
【0051】
また、図1では、電磁波源132を一つだけ図示しているが、電磁波源132は、2以上設けられてもよく、この2以上の電磁波源132は、互いに同種の電磁波源でもよいし、互いに異なる種類の電磁波源でもよい。また、電磁波134のパワーは、基板30を所望の時間で、所望の温度まで加熱できることが望ましい。例えば、仮積層体STtを一括で本圧着する際には、最下層の半導体チップ12を、最上層の半導体チップ12と同じ温度まで加熱することが望まれる。通常、本圧着の実行時間は、数秒であるため、電磁波134は、この本圧着の実行中(数秒以内)に基板30を第二温度T2近くまで加熱できる程度のパワーを有することが望ましい。
【0052】
いずれにしても、ステージ120を透過しやすく、基板30に吸収されやすい波長の電磁波134を照射することで、基板30において電磁波134が吸収される。そして、吸収された電磁波のエネルギーが熱に変換されることで、基板30のうち電磁波134が照射された範囲のみが局所的に加熱される。そして、基板が局所的に加熱されることで、当該加熱部分(照射部分)の上に位置する半導体チップ12も加熱される。こうした局所加熱(電磁波134の照射)を、本圧着処理を行う実装区画34にのみ行うことで、最下層の半導体チップ12も適切に加熱でき、良好な実装品質が得られる。また、本圧着処理を行う実装区画34に対して局所加熱を行うことで、積層体内温度差ΔTを低減でき、一つの積層体を構成する複数の半導体チップ12の実装品質を均一化できる。
【0053】
その一方で、本圧着処理を行わない実装区画34には、電磁波134を照射しないため、当該実装区域の温度上昇、ひいては、本圧着処理の対象でない半導体チップ12の熱に起因する劣化や変質を効果的に防止できる。
【0054】
ただし、本圧着対象の実装区画34のみを電磁波134で加熱した場合、当該実装区画34で生じた熱の一部は、基板30や、ステージ120を介して、他の実装区画34へと伝達される。例えば、図5において、区画Bのみを電磁波134で加熱した場合であっても、当該区画Bで生じた熱の一部は、基板30およびステージ120を介して、区画Aや区画Cへと流出する。こうした熱流出は、熱効率の悪化や、本圧着処理の対象でない区画Aや区画Bの半導体チップ12の熱劣化を招くおそれがある。
【0055】
そこで、本明細書で開示する実装装置100では、加熱対象の実装区画以外の実装区画への伝熱を低減するために、ステージ120を、上述した通り、伝熱性の乏しい材料、例えば石英等で構成している。さらに、本例では、ステージ120を介した面方向へ伝熱を低減するために、ステージ120の表面に、複数の溝を形成している。かかる溝を形成することで、面方向に向かう経路途中には複数の空気層(溝部分)が存在することになり、面方向の熱抵抗が高くなる。以下では、ステージ120のうち、この溝が形成された部分を「第一層122」と呼び、第一層122の下側に配される中実部分を「第二層123」と呼ぶ。第一層122は、その表面に複数の溝が形成されているため、面方向の熱抵抗が、厚み方向の熱抵抗よりも高くなっている。また、第二層123は、中実構造であるため、第一層122に比べて、面方向への熱抵抗が低い一方で、強度が高く、撓みにくくなっている。
【0056】
第一層122に形成された溝のピッチは、特に限定されないが、例えば、半導体チップ12の一辺よりも十分に小さく(例えば、溝ピッチは、半導体チップの一辺の1/10以下等)してもよい。溝のピッチが小さく、溝の数が多くなることで、溝のエッジと基板30との当接箇所に生じる応力集中を緩和することができ、ひいては、ボンディング(仮圧着、本圧着)を行う際に、半導体チップ12全体にかかる圧力を均一化できる。また、別の形態として、溝のピッチを、実装区画34の配置ピッチPと同じにし、当該溝が、実装区画34の境界線とほぼ同じ位置に配されるようにしてもよい。換言すれば、半導体チップ12の真下には、溝が存在せず、面方向に隣接する二つの半導体チップ12の間にのみ溝が存在するようにしてもよい。かかる構成とすれば、ボンディング(仮圧着、本圧着)を行う際に、半導体チップ12全体にかかる圧力をより均一化できる。また、この第一層122に形成された溝は、載置された基板30を吸引保持するための吸引機構(図示せず)と連通されてもよい。
【0057】
このように、ステージ120の表層に、面方向の熱抵抗が厚み方向の熱抵抗より高い第一層122を設けることにより、当該ステージ120を介した面方向への伝熱が効果的に防止できる。これについて、図6を参照して説明する。図6は、図5のX部拡大図である。照射ユニット108により、区画Bのみを電磁波134で加熱したとする。この場合、区画Bで生じた熱は、上方(半導体チップ12側)、面方向(区画A,C側)、下方(ステージ120側)へと伝達される。ここで、熱効率を高めるためには、区画Bで生じた熱のうち、上方(半導体チップ12側)に伝達される熱量を増やし、面方向(区画A,C側)および下方(ステージ120側)に伝達される熱量を低減することが望ましい。基板30が、伝熱性の高いシリコンウエハである場合、面方向(区画A,C側)への伝熱量を低減することは難しい。一方、本例では、ステージ120を断熱性の高い材料で構成し、さらに、その表面に複数の溝を形成して、基板30との接触面積を低減しているため、下方(ステージ120側)への伝熱量は、効果的に低減できる。つまり、ステージ120を断熱性の高い材料から構成するとともに、ステージ120と基板30との接触面積を低減することで、照射ユニット108で半導体チップ12を加熱する際の熱効率を向上させることができる。
【0058】
ただし、ステージ120への伝熱量は、少ないとはいえ、ゼロにはできない。ステージ120に伝達された熱が、当該ステージ120を介して、面方向(区画A,C側)に伝達されると、加熱対象以外の半導体チップ12に入力される熱量が増加する。しかし、本例のステージ120は、面方向への熱抵抗が高い第一層122を有しているため、熱がステージ120を介して面方向(区画A,C側)に伝達されることが効果的に防止される。結果として、加熱対象以外の半導体チップ12に入力される熱量を低減でき、半導体チップ12の熱に起因する劣化や変質を防止できる。
【0059】
ところで、半導体チップ12をボンディング(仮圧着、本圧着)する際には、実装ヘッド124を用いて当該半導体チップ12に圧力を付与する。ステージ120が、面方向熱抵抗が高い第一層122のみを有する場合、ボンディングの際に付加される荷重に耐えられず、基板30の平面度が維持できないおそれがある。そこで、本例では、第一層122の下に、第一層122よりも剛性の高い第二層123を設けている。これにより、大きな荷重が付加された場合でも、撓みにくく、基板30の平面度を維持できる。
【0060】
次に、この実装装置100を用いた半導体装置10の製造の流れについて説明する。半導体装置10を製造する場合には、まず、基板30を、直接、ステージ120に載置する載置工程を実行する。続いて、実装ヘッド124を用いて、基板30の上面に、半導体チップ12をボンディングするボンディング工程を実行する。このボンディング工程は、さらに、仮圧着工程と、本圧着工程と、に大別される。
【0061】
仮圧着工程では、実装ヘッド124は、全ての実装区画34において、複数の半導体チップ12を仮圧着しながら積層し、仮積層体STtを形成する。具体的には、実装ヘッド124は、予め第一温度T1に加熱しておく。その状態で、まず、ステージ120を水平移動させて、一つの実装区画34を、実装ヘッド124の真下に配置する。そして、実装ヘッド124は、チップ搬送ユニット104で搬送された半導体チップ12を、その先端吸引保持した後、下降し、当該半導体チップ12を、被実装体(基板30または他の半導体チップ12)の上に載置し、第一荷重F1で押圧する。これにより、半導体チップ12のNCF20が軟化し、半導体チップ12が仮圧着される。この仮圧着作業を、複数回繰り返し、一つの実装区画34に、仮積層体STtを形成する。一つの実装区画34に、仮積層体STtが形成できれば、ステージ120は、他の実装区画34が、実装ヘッド124の真下に位置するように、水平方向に移動する。そして、再び、実装ヘッド124を用いて仮積層体STtの形成を行う。以降、同様の処理を、全ての実装区画34に対して行う。
【0062】
全ての実装区画34において、仮積層体STtが形成できれば、続いて、本圧着工程を実行する。本圧着工程では、本圧着処理を複数の仮積層体STtに対して順番に行う。具体的には、実装ヘッド124は、第一温度T1から第二温度T2に温度を切り替える。また、その状態で、ステージ120を水平移動させて、一つの実装区画34を、実装ヘッド124の真下に配置する。この状態になれば、実装ヘッド124は、下降して、一つの仮積層体STtの上面を第二荷重F2で加圧する。これにより、当該一つの仮積層体STtを構成する複数の半導体チップ12が、一括で本圧着される。
【0063】
ここで、この本圧着処理と並行して、当該一つの仮積層体STtが配された実装区画34を局所的に加熱する基板加熱工程も行う。具体的には、対象となる実装区画34(実装ヘッド124の真下領域)に、電磁波134を照射し、当該実装区画34のみを局所的に加熱する。これにより、対象の実装区画34の温度が上昇し、当該実装区画の上に配された半導体チップ12も加熱される。そして、これにより、仮積層体STtの上層と下層との温度差(積層体内温度差ΔT)が小さい状態で、本圧着処理を行うことができる。結果として、半導体チップ12の実装品質をより向上できる。
【0064】
一つの仮積層体STtが本圧着されれば、ステージ120は、他の実装区画34が、実装ヘッド124の真下に位置するように、水平方向に移動する。そして、再び、実装ヘッド124を用いた仮積層体STtの加熱加圧と、電磁波134による基板30の局所加熱を行う。そして、同様の処理を、全ての実装区画34に対して行えば、半導体装置10の製造処理が終了となる。
【0065】
以上の説明から明らかな通り、本明細書で開示する半導体装置10の製造方法によれば、基板30のうち、加熱対象の半導体チップ12が載置されている実装区画34に電磁波134を照射することで、当該実装区画34のみを電磁波134で加熱している。これにより、加熱対象の半導体チップ12を適切に加熱することができる一方で、加熱対象でない半導体チップ12に、長時間、熱が入力することが防止できる。また、ステージ120に、面方向の熱抵抗が厚み方向の熱抵抗よりも高い第一層122と、剛性の高い第二層123と、を設けることにより、基板30の平面度が維持されるとともに、ステージ120を介して、加熱対象でない半導体チップ12へ伝熱が低減される。結果として、半導体チップ12の実装品質をより向上できる。
【0066】
なお、これまでの説明した構成は、いずれも一例であり、適宜、変更されてもよい。例えば、上述の説明では、基板30として、シリコンウエハを用いていたが、例えば、シリコンカーバイド(SiC)や窒化ガリウム(GaN)、サファイア等からなるウエハを基板30として用いてもよい。また、ウエハではなく、樹脂基板やガラス基板等を基板30として用いてもよい。
【0067】
ところで、こうした基板、ウエハの中には、電磁波134による加熱が困難なものもある。この場合には、基板30を、ステージ120に直接載置するのではなく、ステージ120と基板30との間に、電磁波134を吸収する中間部材140を配置すればよい。中間部材140は、電磁波134を吸収しやすい材料からなるのであれば特に限定されない。したがって、中間部材140は、図7に示すように、ステージ120の上面に配置される略平板状部材でもよい。また、別の形態として、中間部材140は、電磁波134を吸収する材料から成るのであれば、図8に示すように、ステージ120の表面を被覆する被膜(例えば黒体被膜)であってもよい。
【0068】
いずれにしても、ステージ120と基板30との間に、電磁波134を吸収する中間部材140を設けることで、基板30の種類に関わらず、常に、基板30を、電磁波134で加熱することができる。なお、中間部材140を設ける場合、ステージ120は、第一層122を有さない構造であってもよい。例えば、中実ブロック状のステージ120の上に、中間部材140を載置し、この中間部材140の上に、基板30を載置するようにしてもよい。
【0069】
また、これまでの説明では、ステージ120に設ける第一層122を、複数の溝が形成された部位として説明したが、第一層122は、面方向の熱抵抗が厚み方向の熱抵抗よりも高いのであれば、他の構成でもよい。例えば、図9に示すように、第一層122と第二層123は、別部材であってもよい。ただし、この場合でも、第一層122および第二層123は、いずれも、電磁波134を透過しやすいことが望まれる。また、第一層122を構成する素材の熱伝導率は、第二層123を構成する素材の熱伝導率以下であることが望ましい。したがって、例えば、電磁波134の波長が1200nm以下であり、第二層123が石英からなる場合、第一層122は、近赤外線を透過する光学用プラスチック材料で構成してもよい。
【0070】
また、別の形態として、第一層122の面方向の熱抵抗を厚み方向の熱抵抗よりも高めるため、第一層122を所定の形状に加工してもよい。なお、ここでの「加工」とはフライス等で材料の一部を除去するような機械加工に限らず、プラスチック射出成型のような成形加工も含む。したがって、例えば、上述したように、第一層122は、複数の溝を形成したり、図10に示すように、層内に孔を形成したりすることで、面方向の熱抵抗を向上させてもよい。この場合、第一層122と第二層123は、一体化されていてもよいし、別部材であってもよい。
【0071】
また、上述の説明では、仮積層体STtを一括で本圧着する場合にのみ、基板30を電磁波134で加熱しているが、必要であれば、仮圧着時においても、電磁波134で加熱してもよい。また、上述の説明では、複数の半導体チップ12を積層実装する場合のみを例示したが、本明細書で開示の技術は、積層実装しない場合にも、当然に適用できる。
【0072】
また、上述の説明では、実装ヘッド124や照射ユニット108を一つとしているが、必要に応じて、これらは、複数設けてもよく、複数箇所で同時、圧着処理や基板30の電磁波134による加熱を行ってもよい。
【符号の説明】
【0073】
10 半導体装置、12 半導体チップ、14,16 電極端子、18 バンプ、30 基板、34 実装区画、36 電極、100 実装装置、102 チップ供給ユニット、104 チップ搬送ユニット、106 ボンディングユニット、108 照射ユニット、110 突上部、114 ダイピッカ、116 移送ヘッド、118 回転台、120 ステージ、122 第一層、123 第二層、124 実装ヘッド、130 制御部、132 電磁波源、134 電磁波、140 中間部材、STc チップ積層体、STt 仮積層体。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10