特許第6802938号(P6802938)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本板硝子株式会社の特許一覧

特許6802938光学フィルタ及び光学フィルタを製造する方法
<>
  • 特許6802938-光学フィルタ及び光学フィルタを製造する方法 図000019
  • 特許6802938-光学フィルタ及び光学フィルタを製造する方法 図000020
  • 特許6802938-光学フィルタ及び光学フィルタを製造する方法 図000021
  • 特許6802938-光学フィルタ及び光学フィルタを製造する方法 図000022
  • 特許6802938-光学フィルタ及び光学フィルタを製造する方法 図000023
  • 特許6802938-光学フィルタ及び光学フィルタを製造する方法 図000024
  • 特許6802938-光学フィルタ及び光学フィルタを製造する方法 図000025
  • 特許6802938-光学フィルタ及び光学フィルタを製造する方法 図000026
  • 特許6802938-光学フィルタ及び光学フィルタを製造する方法 図000027
  • 特許6802938-光学フィルタ及び光学フィルタを製造する方法 図000028
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6802938
(24)【登録日】2020年12月1日
(45)【発行日】2020年12月23日
(54)【発明の名称】光学フィルタ及び光学フィルタを製造する方法
(51)【国際特許分類】
   G02B 5/22 20060101AFI20201214BHJP
   C09K 3/00 20060101ALI20201214BHJP
   B32B 7/023 20190101ALI20201214BHJP
   B32B 27/18 20060101ALI20201214BHJP
【FI】
   G02B5/22
   C09K3/00 104Z
   C09K3/00 105
   B32B7/023
   B32B27/18 A
【請求項の数】14
【全頁数】35
(21)【出願番号】特願2020-73573(P2020-73573)
(22)【出願日】2020年4月16日
(62)【分割の表示】特願2019-190870(P2019-190870)の分割
【原出願日】2017年12月12日
(65)【公開番号】特開2020-129121(P2020-129121A)
(43)【公開日】2020年8月27日
【審査請求日】2020年5月25日
(31)【優先権主張番号】特願2017-55698(P2017-55698)
(32)【優先日】2017年3月22日
(33)【優先権主張国】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000004008
【氏名又は名称】日本板硝子株式会社
(74)【代理人】
【識別番号】100107641
【弁理士】
【氏名又は名称】鎌田 耕一
(74)【代理人】
【識別番号】100163463
【弁理士】
【氏名又は名称】西尾 光彦
(72)【発明者】
【氏名】久保 雄一郎
(72)【発明者】
【氏名】新毛 勝秀
【審査官】 辻本 寛司
(56)【参考文献】
【文献】 特許第6087464(JP,B1)
【文献】 特開2009−242650(JP,A)
【文献】 国際公開第2011/071052(WO,A1)
【文献】 特開2009−263190(JP,A)
【文献】 特開平11−052127(JP,A)
【文献】 特開2016−124903(JP,A)
【文献】 特開2012−185385(JP,A)
【文献】 国際公開第2017/006571(WO,A1)
【文献】 中国実用新案第205157947(CN,U)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 5/22
B32B 7/023
B32B 27/18
C09K 3/00
(57)【特許請求の範囲】
【請求項1】
光吸収剤を含有している光吸収層と、
透明誘電体基板と、を備え、
下記(I)、(II)、及び(III)の要件と、下記(A)の要件とを満たす透過スペクトルを有し、
前記光吸収層及び前記透明誘電体基板によって下記(II)の要件が満たされる、
光学フィルタ。
(I)波長450nm〜600nmにおいて80%以上の平均透過率を有する。
(II)波長750nm〜900nmにおいて3%以下の透過率を有する。
(III)波長350nm〜370nmの範囲において4%以下の平均透過率を有する。
(A)波長450nm〜600nmにおける最大透過率に対応する波長λAは、λA−450nm600nm−λAの関係を満たす。
【請求項2】
ホスホン酸と銅成分とを含む光吸収剤を含有している光吸収層と、
透明誘電体基板と、を備え、
下記(I)、(II)、及び(III)の要件と、下記(B)の要件とを満たす透過スペクトルを有し、
前記光吸収層及び前記透明誘電体基板によって下記(II)の要件が満たされる、
光学フィルタ。
(I)波長450nm〜600nmにおいて80%以上の平均透過率を有する。
(II)波長750nm〜900nmにおいて3%以下の透過率を有する。
(III)波長350nm〜370nmの範囲において4%以下の平均透過率を有する。
(B)波長600nmにおける透過率が75%以上である。
【請求項3】
下記(IV)及び(V)の要件をさらに満たす、請求項1又は2に記載の光学フィルタ。 (IV)波長600nm〜800nmの範囲内において透過率が50%となる波長が620〜680nmの範囲内に存在する。
(V)波長350nm〜450nmの範囲内において透過率が50%となる波長が380〜430nmの範囲内に存在する。
【請求項4】
波長750nm〜900nmの範囲における透過率が1%以下である、請求項1〜3のいずれか1項に記載の光学フィルタ。
【請求項5】
波長1100nmにおける透過率が10%以下であるときに波長1200nmにおける透過率が10%以上であり、又は、波長1100nmにおける透過率が10%より高いときに波長1200nmにおける透過率が50%以上である、請求項1〜4のいずれか1項に記載の光学フィルタ。
【請求項6】
前記透明誘電体基板は、波長450nm〜600nmにおいて90%以上の透過率を有する、請求項1〜5のいずれか1項に記載の光学フィルタ。
【請求項7】
前記透明誘電体基板は、赤外線を吸収する赤外線カットガラスを含む、請求項1〜4のいずれか1項に記載の光学フィルタ。
【請求項8】
前記光吸収剤は、ホスホン酸と銅成分とを含む、請求項1に記載の光学フィルタ。
【請求項9】
前記光吸収層は、樹脂をさらに含有しており、
前記光吸収層における前記ホスホン酸の含有量は、前記樹脂100質量部に対して3〜180質量部である、
請求項2又は8に記載の光学フィルタ。
【請求項10】
前記光吸収層は、アリール基を有する樹脂をさらに含有しており、
前記ホスホン酸は、フェニル基、ニトロフェニル基、ヒドロキシフェニル基、又はフェニル基における少なくとも1つの水素原子がハロゲン原子に置換されているハロゲン化フェニル基を有する、請求項2又は8に記載の光学フィルタ。
【請求項11】
前記光吸収層は、前記光吸収剤を分散させる分散剤をさらに含有している、請求項1〜10のいずれか1項に記載の光学フィルタ。
【請求項12】
前記分散剤は、下記式(c1)で表されるリン酸ジエステル及び下記式(c2)で表されるリン酸モノエステルの少なくとも1つを含む、請求項11に記載の光学フィルタ。
【化1】
[式中、R21、R22、及びR3は、それぞれ、−(CH2CH2O)n4で表される1価の官能基であり、nは、1〜25の整数であり、R4は、炭素数6〜25のアルキル基を示す。R21、R22、及びR3は、互いに同一又は異なる種類の官能基である。]
【請求項13】
前記光吸収層は、アルコキシシランモノマーの加水分解物をさらに含有している、請求項1〜12のいずれか1項に記載の光学フィルタ。
【請求項14】
光吸収層と、透明誘電体基板とを備えた光学フィルタを製造する方法であって、
前記光吸収層が光吸収剤を含有し、かつ、前記光学フィルタが下記(I)、(II)、及び(III)の要件と、下記(A)の要件とを満たすこと、又は、
前記光吸収層がホスホン酸と銅成分とを含む光吸収剤を含有しており、かつ、前記光学フィルタが下記(I)、(II)、及び(III)の要件と、下記(B)の要件とを満たすことと、
前記光吸収層及び前記透明誘電体基板によって下記(II)の要件を満たすことと、を含み、
前記光吸収層を製造するための組成物を温度50〜100℃及び相対湿度80〜100%の条件で加湿する処理を含む、
方法。
(I)波長450nm〜600nmにおいて80%以上の平均透過率を有する。
(II)波長750nm〜900nmにおいて3%以下の透過率を有する。
(III)波長350nm〜370nmの範囲において4%以下の平均透過率を有する。
(A)波長450nm〜600nmにおける最大透過率に対応する波長λAは、λA−450nm600nm−λAの関係を満たす。
(B)波長600nmにおける透過率が75%以上である。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、紫外線及び赤外線吸収性組成物並びに紫外線及び赤外線吸収フィルタに関する。
【背景技術】
【0002】
CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を用いた撮像装置において、良好な色再現性を有する画像を得るために様々な光学フィルタが固体撮像素子の前面に配置されている。一般的に、固体撮像素子は紫外線領域から赤外線領域に至る広い波長範囲で分光感度を有する。一方、人間の視感度は可視光の領域にのみに存在する。このため、撮像装置における固体撮像素子の分光感度を人間の視感度に近づけるために、固体撮像素子の前面に赤外線又は紫外線を遮蔽する光学フィルタを配置する技術が知られている。
【0003】
例えば、特許文献1には、ノルボルネン系樹脂製基板と、近赤外線反射膜とを有する近赤外線カットフィルタが記載されている。近赤外線反射膜は誘電体多層膜である。ノルボルネン系樹脂製基板は近赤外線吸収剤を含有している。
【0004】
特許文献2には、ガラス基板の少なくとも片面に樹脂層を有する積層板を含み、透過率に関する所定の条件を満たす近赤外線カットフィルタが記載されている。樹脂層は近赤外線吸収剤を含有している。近赤外線カットフィルタは、好ましくは積層板の少なくとも片面に誘電体多層膜を有する。
【0005】
特許文献3には、近赤外線吸収剤及び樹脂から形成される近赤外線カットフィルタが記載されている。近赤外線吸収剤は、所定のホスホン酸化合物と、所定のリン酸エステル化合物と、銅塩とから得られる。所定のホスホン酸化合物は、リン原子Pに結合した−CH2CH2−R11で表される一価の基R1を有する。R11は水素原子、炭素数1〜20のアル
キル基、又は炭素数1〜20のフッ素化アルキル基を示す。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2005−338395号公報
【特許文献2】特開2012−103340号公報
【特許文献3】特開2011−203467号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献1及び2に記載の技術によれば、近赤外線カットフィルタが所望の特性を有するために、近赤外線を反射又は吸収する誘電体多層膜を有する必要がある。特許文献2の実施例に記載のいずれの近赤外線カットフィルタもシリカ(SiO2)層と、チタニア(
TiO2)層とが交互に積層された誘電体多層膜が形成されている。このため、特許文献
1及び2に記載の技術によれば、近赤外線カットフィルタの製造のために真空蒸着装置等の装置が必要であり、製造工程が煩雑になりやすい。
【0008】
特許文献3に記載の技術によれば、特許文献3に記載の近赤外線カットフィルタは、誘電体多層膜を必要としない。しかし、この近赤外線カットフィルタの透過領域に対応する波長の範囲は広いので、この近赤外線カットフィルタが所定の波長の赤外線又は所定の波長の紫外線を透過させてしまい、近赤外線カットフィルタにより発揮される光学特性が人
間の視感度とずれる可能性がある。なお、透過領域とは、透過率スペクトルにおいて70%以上の透過率に対応する波長の範囲を意味する。「透過率スペクトル」とは、光学フィルタに入射する光の透過率(単位:%)を波長の順に並べたものを意味する。
【0009】
また、特許文献1〜3において、近赤外線カットフィルタの耐湿性は具体的に検討されていない。
【0010】
かかる事情に鑑み、本発明は、簡素な構成で固体撮像素子の分光感度を人間の視感度に近づけるうえで有利な特性を有する、光吸収層を備えた光学フィルタを提供する。
【課題を解決するための手段】
【0011】
本発明は、
光吸収剤を含有し、下記(I)、(II)、及び(III)の要件を満たす光吸収層を備えた、光学フィルタを提供する。
(I)波長450nm〜600nmにおいて80%以上の平均透過率を有する。
(II)波長750nm〜900nmにおいて3%以下の透過率を有する。
(III)波長350nm〜370nmの範囲において4%以下の平均透過率を有する。
【0012】
また、本発明は、
光吸収層を製造する方法であって、
前記光吸収層は、光吸収剤を含有し、下記(I)、(II)、及び(III)の要件を満たし、
前記光吸収層を製造するための組成物を温度50〜100℃及び相対湿度80〜100%の条件で加湿する処理を含む、
方法を提供する。
(I)波長450nm〜600nmにおいて80%以上の平均透過率を有する。
(II)波長750nm〜900nmにおいて3%以下の透過率を有する。
(III)波長350nm〜370nmの範囲において4%以下の平均透過率を有する。
【発明の効果】
【0014】
上記の光学フィルタは、簡素な構成で固体撮像素子の分光感度を人間の視感度に近づけるうえで有利な特性を有する。
【図面の簡単な説明】
【0015】
図1図1は、本発明のUV‐IR吸収フィルタの一例を示す断面図である。
図2図2は、本発明のUV‐IR吸収フィルタの別の一例を示す断面図である。
図3図3は、本発明のUV‐IR吸収フィルタのさらに別の一例を示す断面図である。
図4図4は、本発明のUV‐IR吸収フィルタのさらに別の一例を示す断面図である。
図5図5は、本発明の撮像光学系の一例を示す断面図である。
図6図6は、実施例1、4、及び14に係るUV‐IR吸収フィルタの透過率スペクトルである。
図7A図7Aは、実施例2に係るUV‐IR吸収フィルタの耐湿試験前の透過率スペクトルである。
図7B図7Bは、実施例2に係るUV‐IR吸収フィルタの耐湿試験後の透過率スペクトルである。
図8図8は、比較例7〜9に係るUV‐IR吸収フィルタの透過率スペクトルである。
図9図9は、実施例21に係るUV‐IR吸収フィルタの透過率スペクトルである。
【発明を実施するための形態】
【0016】
以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の説明は、本発明の一例に関するものであり、本発明はこれらによって限定されるものではない。
【0017】
本発明に係るUV‐IR吸収性組成物は、下記式(a)で表されるホスホン酸と銅イオンとによって形成され、UV‐IR吸収性組成物において分散している吸収剤と、その吸収剤を分散させるリン酸エステルと、マトリクス樹脂と、アルコキシシランモノマーとを含有している。
【化3】

[式中、R11は、フェニル基、ニトロフェニル基、ヒドロキシフェニル基、又はフェニル
基における少なくとも1つの水素原子がハロゲン原子に置換されているハロゲン化フェニル基である。]
【0018】
本発明者らは、簡素な構成で、固体撮像素子の分光感度を人間の視感度に近づけるうえで有利な特性を有するUV‐IR吸収フィルタを製造するためのUV‐IR吸収性組成物を新規に開発すべく試行錯誤を何度も重ねた。その結果、銅イオンとともに吸収剤を形成するホスホン酸として、式(a)で表されるホスホン酸を含有し、リン酸エステルをさらに含有している組成物の使用によりUV‐IR吸収フィルタに所望の特性を付与できることを新たに見出した。式(a)に示す通り、ホスホン酸においてフェニル基等の官能基がリン原子に直接結合している。また、リン酸エステルにより吸収剤がUV‐IR吸収性組成物において均一に分散される。一方で、本発明者らは、このような組成物を用いて製造されたUV‐IR吸収フィルタは、所定の高温高湿環境下で白濁を生じ、性能が劣化する場合があることを新たに見出した。本発明者らの鋭意研究の結果、銅イオン等の他の化合物又はイオンと相互作用していない一部のリン酸エステルが高温高湿環境で加水分解して可視の析出物が発生することが白濁の原因であることを突き止めた。そのうえで、本発明者らは、UV‐IR吸収フィルタの耐湿性を高めるための技術について日夜検討を重ねた。その結果、リン酸エステルの含有量を低減しつつ、アルコキシシランモノマーを組成物に含有させることにより、その組成物を用いて製造されたUV‐IR吸収フィルタが良好な耐湿性を有することを新たに見出した。銅イオンと相互作用していないリン酸エステルの含有量が減ることにより、高温高湿環境においてリン酸エステルの加水分解が抑制されると考えられる。本発明のUV‐IR吸収性組成物は、このような本発明者らの新たな知見に基づいて案出された。
【0019】
リン酸エステルにより吸収剤がUV‐IR吸収性組成物において均一に分散されているので、UV‐IR吸収性組成物においてリン酸エステルの含有量が低いと、UV‐IR吸収性組成物における吸収剤の分散性が低下するように思われる。しかし、本発明に係るUV‐IR吸収性組成物が含有しているアルコキシシランモノマーが立体障害を引き起こし、吸収剤の粒子同士が凝集することを防止できるので、リン酸エステルの含有量を低減しても、UV‐IR吸収性組成物において吸収剤が良好に分散する。また、望ましくは、UV‐IR吸収性組成物を用いてUV‐IR吸収フィルタを製造する場合に、アルコキシシランモノマーの加水分解反応及び縮重合反応が十分に起こるように処理することにより、シロキサン結合(−Si−O−Si−)が形成され、UV‐IR吸収フィルタが良好な耐湿性を有する。加えて、UV‐IR吸収フィルタが良好な耐熱性を有する。なぜなら、シロキサン結合は、−C−C−結合及び−C−O−結合等の結合よりも結合エネルギーが高く化学的に安定しており、耐熱性及び耐湿性に優れているからである。
【0020】
言い換えると、アルコキシシランモノマーは、ホスホン酸と銅イオンとによって形成された吸収剤を含む微粒子が分散したコーティング用の液において微粒子の分散性を向上させる分散剤としての役割を果たす。加えて、アルコキシシランモノマーは、コーティング用の液を塗布して硬化させて形成された吸収層を硬質なものとする骨格材料としての役割を果たす。
【0021】
アルコキシシランモノマーに骨格材料としての役割を十分に発揮させるための一つの手段として、コーティング用の液に水を加えてアルコキシシランモノマーの加水分解反応及び脱水縮重合反応を生じさせることが考えられる。しかし、コーティング用の液に水を加えると、加水分解によってアルコキシシランモノマーからアルコキシ基が脱離するので、アルコキシシランモノマーが立体障害を与える機能が損なわれてしまう。加えて、添加された水の周囲だけ急激に反応が進みコーティング用の液において均質な状態が失われてしまう。さらに、コーティング用の液が疎水性の有機溶媒を含む場合、コーティング用の液に水が加わることにより水が相分離してしまう。これらの理由で、吸収剤を含む微粒子が
凝集して白濁が生じてしまう。このように、アルコキシシランモノマーの働きを利用するうえで、分散剤としての機能と、骨格材料としての機能とを両立させることは困難であることを本発明者らは見出した。
【0022】
そこで、本発明者らは、さらなる検討の結果、吸収剤を含む微粒子の分散性が高く保たれ、吸収剤を含む微粒子が凝集しない状態で硬質緻密な吸収層をUV‐IR吸収性組成物から形成できる方法を見出した。この方法において、UV‐IR吸収性組成物に水を加えずにUV‐IR吸収性組成物を用いて塗膜を形成し、この塗膜を所定の温度で焼成した後にさらに加湿処理を実施してアルコキシシランモノマーの加水分解反応及び縮重合反応を進めることによりシロキサン結合の形成が促され、これにより、吸収剤を含む微粒子が凝集しない状態で硬質緻密な吸収層を形成できる。
【0023】
リン酸エステルの含有量に対するホスホン酸の含有量の比は、例えば、質量基準で、0.80以上である。このように、リン酸エステルの含有量を低減しても、UV‐IR吸収性組成物において吸収剤が良好に分散し、UV‐IR吸収性組成物を用いて製造されたUV‐IR吸収フィルタが良好な耐湿性及び良好な耐熱性を有する。
【0024】
式(a)で表されるホスホン酸は、特に制限されないが、例えば、フェニルホスホン酸、ニトロフェニルホスホン酸、ヒドロキシフェニルホスホン酸、ブロモフェニルホスホン酸、ジブロモフェニルホスホン酸、フルオロフェニルホスホン酸、ジフルオロフェニルホスホン酸、クロロフェニルホスホン酸、又はジクロロフェニルホスホン酸である。
【0025】
リン酸エステルは、吸収剤を適切に分散できる限り特に制限されないが、例えば、下記式(c1)で表されるリン酸ジエステル及び下記式(c2)で表されるリン酸モノエステルの少なくとも一方を含む。これにより、UV‐IR吸収性組成物において吸収剤がより確実に凝集することなく分散する。なお、下記式(c1)及び下記式(c2)において、R21、R22、及びR3は、それぞれ、−(CH2CH2O)n4で表される1価の官能基で
あり、nは、1〜25の整数であり、R4は、炭素数6〜25のアルキル基を示す。R21
、R22、及びR3は、互いに同一又は異なる種類の官能基である。
【化4】
【0026】
リン酸エステルは、特に制限されないが、例えば、プライサーフA208N:ポリオキシエチレンアルキル(C12、C13)エーテルリン酸エステル、プライサーフA208F:ポリオキシエチレンアルキル(C8)エーテルリン酸エステル、プライサーフA208B:ポリオキシエチレンラウリルエーテルリン酸エステル、プライサーフA219B:ポリオキシエチレンラウリルエーテルリン酸エステル、プライサーフAL:ポリオキシエチレンスチレン化フェニルエーテルリン酸エステル、プライサーフA212C:ポリオキ
シエチレントリデシルエーテルリン酸エステル、又はプライサーフA215C:ポリオキシエチレントリデシルエーテルリン酸エステルであり得る。これらはいずれも第一工業製薬社製の製品である。また、リン酸エステルは、NIKKOL DDP−2:ポリオキシエチレンアルキルエーテルリン酸エステル、NIKKOL DDP−4:ポリオキシエチレンアルキルエーテルリン酸エステル、又はNIKKOL DDP−6:ポリオキシエチレンアルキルエーテルリン酸エステルであり得る。これらは、いずれも日光ケミカルズ社製の製品である。
【0027】
UV‐IR吸収性組成物における銅イオンの供給源は、例えば、銅塩である。銅塩は、例えば酢酸銅又は酢酸銅の水和物である。銅塩は、塩化銅、蟻酸銅、ステアリン酸銅、安息香酸銅、ピロリン酸銅、ナフテン酸銅、及びクエン酸銅の無水物又は水和物であってもよい。例えば、酢酸銅一水和物は、Cu(CH3COO)2・H2Oと表され、1モルの酢
酸銅一水和物によって1モルの銅イオンが供給される。
【0028】
UV‐IR吸収性組成物におけるリン酸エステルの含有量に対するホスホン酸の含有量の比は、質量基準で、例えば3.60以下であり、望ましくは3.30以下である。この場合、UV‐IR吸収性組成物においてより確実に吸収剤が均一に分散しやすい。
【0029】
UV‐IR吸収性組成物において、加水分解縮重合物に換算したアルコキシシランモノマーの含有量とリン酸エステルの含有量との和に対するホスホン酸の含有量の比は、例えば、0.40〜1.30である。これにより、UV‐IR吸収性組成物においてより確実に吸収剤が均一に分散しやすい。なお、「加水分解縮重合物に換算したアルコキシシランモノマーの含有量」とは、アルコキシシランモノマーが完全に加水分解反応及び縮重合反応した場合に生成される加水分解縮重合物の質量を意味する。
【0030】
UV‐IR吸収性組成物において、リン酸エステルの含有量に対する、加水分解縮重合物に換算したアルコキシシランモノマーの含有量の比は、例えば、0.38〜4.00である。この場合、UV‐IR吸収性組成物を用いて製造されたUV‐IR吸収フィルタがより確実に良好な耐湿性を有する。
【0031】
UV‐IR吸収性組成物のマトリクス樹脂は、例えば、吸収剤を分散させることができ、熱硬化又は紫外線硬化が可能な樹脂であり、その硬化物が波長350nm〜900nmの光に対して透明である樹脂である。式(a)で表されるホスホン酸の含有量は、例えば、マトリクス樹脂100質量部に対して3〜180質量部である。
【0032】
UV‐IR吸収性組成物のマトリクス樹脂は、例えば、シリコーン樹脂である。シリコーン樹脂は、その構造内にシロキサン結合(−Si−O−Si−)を有する化合物である。この場合、UV‐IR吸収フィルタにおいて、アルコキシシランモノマーに由来するアルコキシシランモノマーの加水分解縮重合化合物もシロキサン結合を有するため、UV‐IR吸収フィルタにおいて、アルコキシシランモノマーに由来するアルコキシシランモノマーの加水分解縮重合化合物と、マトリクス樹脂との相性が良い。また、アルコキシシランモノマーによって適切に分散されていた吸収剤がシリコーン樹脂であるマトリクス樹脂に内包されることにより、UV‐IR吸収フィルタが可視光域において高い透明性を発揮しやすい。
【0033】
マトリクス樹脂は、望ましくはフェニル基等のアリール基を含んでいるシリコーン樹脂である。UV‐IR吸収フィルタに含まれる樹脂層が硬い(リジッドである)と、その樹脂層の厚みが増すにつれて、UV‐IR吸収フィルタの製造工程中に硬化収縮によりクラックが生じやすい。マトリクス樹脂がアリール基を含むシリコーン樹脂であると、UV‐IR吸収性組成物によって形成される層が良好な耐クラック性を有しやすい。また、アリ
ール基を含むシリコーン樹脂は、式(a)で表されるホスホン酸と高い相溶性を有し、吸収剤が凝集しにくい。さらに、UV‐IR吸収性組成物のマトリクス樹脂がアリール基を含むシリコーン樹脂である場合に、UV‐IR吸収性組成物に含まれるリン酸エステルが式(c1)又は式(c2)で表されるリン酸エステルのようにオキシアルキル基等の柔軟性を有する直鎖有機官能基を有することが望ましい。なぜなら、式(a)で表されるホスホン酸と、アリール基を含むシリコーン樹脂と、オキシアルキル基等の直鎖有機官能基を有するリン酸エステルとの組合せに基づく相互作用により、吸収剤がマトリクス樹脂及びリン酸エステルに対して高い相溶性を有し、かつ、UV‐IR吸収性組成物を硬化させることによって良好な剛性及び良好な柔軟性を併せ持つ層を形成できるからである。マトリクス樹脂として使用されるシリコーン樹脂の具体例としては、KR−255、KR−300、KR−2621−1、KR−211、KR−311、KR−216、KR−212、及びKR−251を挙げることができる。これらはいずれも信越化学工業社製のシリコーン樹脂である。
【0034】
アルコキシシランモノマーは、加水分解反応及び縮重合反応によりUV‐IR吸収フィルタにおいて、シロキサン結合を有する加水分解縮重合化合物をなすことができる限り、特に制限されないが、例えば、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、又は3−グリシドキシプロピルメチルジエトキシシランである。
【0035】
UV‐IR吸収性組成物は、例えば、下記式(b)で表されるホスホン酸と銅イオンとによって形成された補助吸収剤をさらに含有していてもよい。式中、R12は、6個以下の炭素原子を有するアルキル基、ベンジル基、又はベンジル基のベンゼン環における少なくとも1つの水素原子がハロゲン原子に置換されているハロゲン化ベンジル基である。
【化5】
【0036】
UV‐IR吸収性組成物が補助吸収剤を含有していることにより、UV‐IR吸収フィルタの波長850nm以上又は波長900nm以上の光の透過率を有利に低減できる。R12がアルキル基である場合、R12は直鎖及び分岐鎖のいずれであってもよい。UV‐IR吸収性組成物において、式(a)で表されるホスホン酸の含有量に対する式(b)で表されるホスホン酸の含有量の比は、例えば、質量基準で0.03〜0.74であり、望ましくは0.06〜0.56である。
【0037】
式(b)で表されるホスホン酸は、特に制限されないが、例えば、エチルホスホン酸、メチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、ペンチルホスホン酸、ヘキシルホスホン酸、ベンジルホスホン酸、ブロモベンジルホスホン酸、ジブロモベンジルホスホン酸、フルオロベンジルホスホン酸、ジフルオロベンジルホスホン酸、クロロベンジルホスホン酸、又はジクロロベンジルホスホン酸である。
【0038】
UV‐IR吸収性組成物における吸収剤は、例えば、式(a)で表されるホスホン酸が銅イオンに配位することによって形成されている。また、例えば、UV‐IR吸収性組成
物において吸収剤を少なくとも含む微粒子が形成されている。この場合、リン酸エステル及びアルコキシシランモノマーの働きにより、微粒子同士が凝集することなくUV‐IR吸収性組成物において分散している。この微粒子の平均粒子径は、例えば5nm〜200nmである。微粒子の平均粒子径が5nm以上であれば、微粒子の微細化のために特別な工程を要さず、吸収剤を少なくとも含む微粒子の構造が壊れる可能性が小さい。また、UV‐IR吸収性組成物において微粒子が良好に分散する。また、微粒子の平均粒子径が200nm以下であると、ミー散乱による影響を低減でき、UV‐IR吸収フィルタにおいて可視光の透過率を向上させることができ、撮像装置で撮影された画像のコントラスト及びヘイズなどの特性の低下を抑制できる。微粒子の平均粒子径は、望ましくは100nm以下である。この場合、レイリー散乱による影響が低減されるので、UV‐IR吸収性組成物を用いて形成された吸収層において可視光に対する透明性がさらに高まる。また、微粒子の平均粒子径は、より望ましくは75nm以下である。この場合、UV‐IR吸収性組成物を用いて形成された吸収層の可視光に対する透明性がとりわけ高い。なお、微粒子の平均粒子径は、動的光散乱法によって測定できる。
【0039】
UV‐IR吸収性組成物が補助吸収剤を含む場合、補助吸収剤は、例えば、式(b)で表されるホスホン酸が銅イオンに配位することによって形成されている。また、例えば、UV‐IR吸収性組成物において補助吸収剤を少なくとも含む微粒子が形成されている。補助吸収剤を含む微粒子の平均粒子径は、例えば、吸収剤を含む微粒子の平均粒子径と同様である。
【0040】
図1〜4に示す通り、本発明に係るUV‐IR吸収フィルタの例であるUV‐IR吸収フィルタ1a〜1dは、透明誘電体基板20と、吸収層10とを備えている。吸収層10は、上記式(a)で表されるホスホン酸と銅イオンとによって形成された吸収剤と、吸収剤を分散させるリン酸エステルと、シロキサン結合を有する化合物とを含有している。加えて、吸収層10は、透明誘電体基板20の一方の主面と平行に形成されている。
【0041】
UV‐IR吸収フィルタ1a〜1dにおける吸収層10は、例えば、上記のUV‐IR吸収性組成物を透明誘電体基板20の一方の主面と平行な層状に塗布して塗膜を形成し、その塗膜を硬化及び乾燥させることによって形成される。
【0042】
UV‐IR吸収フィルタ1a〜1dにおいて、マトリクス樹脂ではない、アルコキシシランモノマーの加水分解縮重合化合物は、典型的には、上記のUV‐IR吸収性組成物に含有されていたアルコキシシランモノマーが加水分解反応及び縮重合反応して形成されている。すなわち、UV‐IR吸収フィルタ1a〜1dにおいて、シロキサン結合を有する化合物は、アルコキシシランモノマーの加水分解重縮合化合物を含む。
【0043】
UV‐IR吸収フィルタ1a〜1dにおいて、吸収層10を形成するマトリクス樹脂は、例えば、上記のシリコーン樹脂がシロキサン結合により重合することにより形成される。すなわち、UV‐IR吸収フィルタ1a〜1dにおいて、シロキサン結合を有する化合物は、マトリクス樹脂であるシリコーン樹脂を含む。
【0044】
UV‐IR吸収フィルタ1a〜1dにおいて、例えば、リン酸エステルの含有量に対する前記ホスホン酸の含有量の比は、質量基準で、0.80以上である。これにより、UV‐IR吸収フィルタ1a〜1dは、より確実に、良好な耐湿性及び良好な耐熱性を有する。
【0045】
上記の式(a)に記載の通り、吸収剤を形成するホスホン酸は、フェニル基、ニトロフェニル基、ヒドロキシフェニル基、又はハロゲン化フェニル基を含む。フェニル基、ニトロフェニル基、ヒドロキシフェニル基、及びハロゲン化フェニル基は高い親油性を有する
ので、トルエン等の有機溶媒に対して高い相溶性を有し、吸収剤が凝集しにくい。吸収剤を形成するホスホン酸が有するフェニル基、ニトロフェニル基、ヒドロキシフェニル基、又はハロゲン化フェニル基により、UV‐IR吸収フィルタ1a〜1dの吸収層10が柔軟な構造を有しやすい。その結果、吸収層10は良好な耐クラック性を有する。
【0046】
例えば、UV‐IR吸収フィルタ1a〜1dの吸収層10は、上記の式(b)で表されるホスホン酸と銅イオンとによって形成された補助吸収剤をさらに含有していてもよい。
【0047】
UV‐IR吸収フィルタ1a〜1dにおいて、吸収層10は、例えば200μm以下の厚みを有する。吸収層10において、リン酸エステルの含有量に対するホスホン酸の含有量の比は、質量基準で、0.80以上であり、吸収層10はアルコキシシランモノマーに由来するアルコキシシランモノマーの加水分解縮重合化合物を含有している。このため、吸収層10の厚みを200μm以下に低減しても、UV‐IR吸収フィルタ1a〜1dが良好な耐湿性を有する。UV‐IR吸収フィルタ1a〜1dを薄くできることは、固体撮像素子モジュールの低背化に有利である。
【0048】
UV‐IR吸収フィルタ1a〜1dにおいて、吸収層10は、望ましくは180μm以下の厚みを有する。また、吸収層10は、例えば30μm以上の厚みを有する。
【0049】
UV‐IR吸収フィルタ1a〜1dは、例えば、下記(I)〜(V)を満たす。
(I)UV‐IR吸収フィルタ1a〜1dは、波長450nm〜600nmにおいて80%以上の平均分光透過率を有する。
(II)UV‐IR吸収フィルタ1a〜1dは、波長750nm〜900nmにおいて3%以下の分光透過率を有する。
(III)UV‐IR吸収フィルタ1a〜1dは、波長350nm〜370nmの範囲にお
いて4%以下の平均分光透過率を有する。
(IV)UV‐IR吸収フィルタ1a〜1dは、波長600nm〜800nmにおいて波長の増加に伴い減少する分光透過率を有する。波長600nm〜800nmにおいてUV‐IR吸収フィルタ1a〜1dの分光透過率が50%になる波長を赤外側カットオフ波長と定義したときに、UV‐IR吸収フィルタ1a〜1dに0°の入射角で入射する光に対する赤外側カットオフ波長が620nm〜680nmである。
(V)UV‐IR吸収フィルタ1a〜1dは、波長350nm〜450nmにおいて波長の増加に伴い増加する分光透過率を有する。波長350nm〜450nmにおいてUV‐IR吸収フィルタ1a〜1dの分光透過率が50%になる波長を紫外側カットオフ波長と定義したときに、UV‐IR吸収フィルタ1a〜1dに0°の入射角で入射する光に対する紫外側カットオフ波長が380nm〜430nmである。
【0050】
UV‐IR吸収フィルタ1a〜1dが上記の(I)の条件を満たすことにより、UV‐IR吸収フィルタ1a〜1dが固体撮像素子の前面に配置されている場合に、波長450nm〜600nmの範囲において固体撮像素子が受け取る可視光の光量が多い。UV‐IR吸収フィルタ1a〜1dが上記の(II)の条件を満たすことにより、UV‐IR吸収フィルタ1a〜1dは、750nm〜900nmの赤外線を有利に遮蔽できる。加えて、UV‐IR吸収フィルタ1a〜1dが上記の(III)の条件を満たすことにより、UV‐I
R吸収フィルタ1a〜1dは、370nm以下の紫外線を有利に遮蔽できる。その結果、UV‐IR吸収フィルタ1a〜1dが固体撮像素子の前面に配置されている場合に、固体撮像素子の分光感度を人間の視感度に有利に近づけることができる。さらに、UV‐IR吸収フィルタ1a〜1dが上記の(IV)及び(V)の条件を満たすことにより、赤外線領域及び紫外線領域の光が有利に遮蔽される。その結果、UV‐IR吸収フィルタ1a〜1dが固体撮像素子の前面に配置されている場合に、固体撮像素子の分光感度を人間の視感度に有利に近づけることができる。
【0051】
上記(I)の条件に関し、UV‐IR吸収フィルタ1a〜1dは、波長450nm〜600nmにおいて望ましくは85%以上の平均分光透過率を有する。これにより、UV‐IR吸収フィルタ1a〜1dが固体撮像素子の前面に配置されている場合に、波長450nm〜600nmの範囲において固体撮像素子が受け取る可視光の光量がより多い。
【0052】
上記(II)の条件に関し、UV‐IR吸収フィルタ1a〜1dは、波長750nm〜900nmにおいて、望ましくは1%以下の分光透過率を有し、より望ましくは0.5%以下の分光透過率を有する。上記(III)の条件に関し、UV‐IR吸収フィルタ1a〜1
dは、波長350nm〜370nmの範囲において、望ましくは1%以下の平均分光透過率を有する。これにより、UV‐IR吸収フィルタ1a〜1dが固体撮像素子の前面に配置されている場合に、固体撮像素子の分光感度を人間の視感度にさらに近づけることができる。
【0053】
上記(IV)の条件に関し、望ましくは、UV‐IR吸収フィルタ1a〜1dに0°の入射角で入射する光に対する赤外側カットオフ波長が630nm以上である。望ましくは、UV‐IR吸収フィルタ1a〜1dに0°の入射角で入射する光に対する赤外側カットオフ波長が660nm以下である。上記(V)の条件に関し、望ましくは、UV‐IR吸収フィルタ1a〜1dに0°の入射角で入射する光に対する紫外側カットオフ波長が390nm以上である。望ましくは、UV‐IR吸収フィルタ1a〜1dに0°の入射角で入射する光に対する紫外側カットオフ波長が420nm以下である。これにより、UV‐IR吸収フィルタ1a〜1dが固体撮像素子の前面に配置されている場合に、固体撮像素子の分光感度を人間の視感度にさらに近づけることができる。
【0054】
UV‐IR吸収フィルタ1a〜1dは、例えば下記(VI)及び(VII)をさらに満たす
。(VI)UV‐IR吸収フィルタ1a〜1dに0°の入射角で入射する光に対する赤外側カットオフ波長とUV‐IR吸収フィルタ1a〜1dに40°の入射角で入射する光に対する赤外側カットオフ波長との差が20nm以下であり、望ましくは10nm以下である。(VII)UV‐IR吸収フィルタ1a〜1dに0°の入射角で入射する光に対する紫外
側カットオフ波長とUV‐IR吸収フィルタ1a〜1dに40°の入射角で入射する光に対する紫外側カットオフ波長との差が20nm以下であり、望ましくは10nm以下である。
【0055】
UV‐IR吸収フィルタ1a〜1dが上記の(VI)及び(VII)の条件を満たすことに
より、UV‐IR吸収フィルタ1a〜1dが固体撮像素子の前面に配置されている場合に、固体撮像素子の分光感度が固体撮像素子に入射する光の入射角によって変化しにくい。
【0056】
UV‐IR吸収フィルタ1a〜1dは、例えば、UV‐IR吸収フィルタ1a〜1dを温度60℃及び相対湿度90%の環境に500時間曝す長期耐湿試験を行い、長期耐湿試験の前後のUV‐IR吸収フィルタ1a〜1dの透過率スペクトルを長期耐湿試験の前のUV‐IR吸収フィルタ1a〜1dの透過率スペクトルの波長750〜900nmにおける最大の透過率が1.0%又は0.5%になるようにそれぞれ同一の正規化係数を用いて正規化したときに、下記(i)〜(v)をさらに満たす。
(i)長期耐湿試験の前の波長450〜600nmにおける平均透過率と長期耐湿試験の後の波長450〜600nmにおける平均透過率との差の絶対値が3ポイント以下である。
(ii)長期耐湿試験の前の波長350〜370nmにおける平均透過率と長期耐湿試験の後の波長350〜370nmにおける平均透過率との差の絶対値が1ポイント以下である。
(iii)長期耐湿試験の前の波長750〜900nmにおける最大の透過率と長期耐湿試
験の後の波長750〜900nmにおける最大の透過率との差の絶対値が1ポイント以下である。
(iv)波長600nm〜800nmにおいて波長の増加に伴い減少する分光透過率を有し、波長600nm〜800nmにおいてUV‐IR吸収フィルタ1a〜1dの分光透過率が50%になる波長を赤外側カットオフ波長と定義したときに、長期耐湿試験の前の赤外側カットオフ波長と長期耐湿試験の後の赤外側カットオフ波長との差の絶対値が3nm以下である。
(v)波長350nm〜450nmにおいて波長の増加に伴い増加する分光透過率を有し、波長350nm〜450nmにおいてUV‐IR吸収フィルタ1a〜1dの分光透過率が50%になる波長を紫外側カットオフ波長と定義したときに、長期耐湿試験の前の紫外側カットオフ波長と長期耐湿試験の後の前記紫外側カットオフ波長との差の絶対値が3nm以下である。
【0057】
このように、UV‐IR吸収フィルタ1a〜1dは、例えば、長期耐湿試験の前後において変動が小さく安定な透過率特性を有し、優れた耐湿性を有する。
【0058】
UV‐IR吸収フィルタ1a〜1dにおける透明誘電体基板20は、450nm〜600nmにおいて90%以上の平均分光透過率を有する誘電体基板である限り、特に制限されない。場合によっては、透明誘電体基板20として、赤外線領域に吸収能を有していてもよい。この場合でも、上記の(I)〜(V)の条件を満たすUV‐IR吸収フィルタ1a〜1dを得ることができる。もちろん、透明誘電体基板20は、例えば波長350nm〜900nmにおいて90%以上の平均分光透過率を有していてもよい。透明誘電体基板20の材料は、特定の材料に制限されないが、例えば、所定のガラス又は樹脂である。透明誘電体基板20の材料がガラスである場合、透明誘電体基板20は、例えば、ソーダ石灰ガラス及びホウケイ酸ガラスなどのケイ酸塩ガラスでできた透明なガラス又は赤外線カットガラスである。赤外線カットガラスは、例えば、CuOを含むリン酸塩ガラス又はフツリン酸塩ガラスである。透明誘電体基板20が赤外線カットガラスである場合、赤外線カットガラスが有する赤外線吸収能により、吸収層10に求められる赤外線吸収能を軽減できる。その結果、吸収層10の厚みを薄くでき、又は、吸収層10に含まれる吸収剤の濃度を低減できる。赤外線カットガラスの透過率スペクトルにおける赤外側カットオフ波長は比較的長波長側に存在する傾向がある。このため、上記のUV‐IR吸収性組成物を硬化させて赤外線カットガラスである透明誘電体基板20に吸収層10を形成することにより、UV‐IR吸収フィルタ1a〜1dの赤外側カットオフ波長が短波長側に存在しやすく、固体撮像素子の分光感度を人間の視感度に一致させやすい。
【0059】
透明誘電体基板20の材料が樹脂である場合、その樹脂は、例えば、ノルボルネン系樹脂等の環状オレフィン系樹脂、ポリアリレート系樹脂、アクリル樹脂、変性アクリル樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリカーボネート樹脂、又はシリコーン樹脂である。
【0060】
本発明に係るUV‐IR吸収性組成物の調製方法の一例を説明する。まず、酢酸銅一水和物などの銅塩をテトラヒドロフラン(THF)などの所定の溶媒に添加して撹拌し、銅塩の溶液を得る。次に、この銅塩の溶液に、式(c1)で表されるリン酸ジエステル及び式(c2)で表されるリン酸モノエステルなどのリン酸エステル化合物を加えて撹拌し、A液を調製する。また、式(a)で表されるホスホン酸をTHFなどの所定の溶媒に加えて撹拌し、B液を調製する。式(a)で表されるホスホン酸として複数種類のホスホン酸を用いる場合、ホスホン酸をTHFなどの所定の溶媒に加えたうえで撹拌して、ホスホン酸の種類ごとに調製した複数の予備液を混合してB液を調製してもよい。例えば、B液の調製においてアルコキシシランモノマーが加えられる。A液を撹拌しながら、A液にB液を加えて所定時間撹拌する。次に、この溶液にトルエンなどの所定の溶媒を加えて撹拌し
、C液を得る。次に、C液を加温しながら所定時間脱溶媒処理を行って、D液を得る。これにより、THFなどの溶媒及び酢酸(沸点:約118℃)などの銅塩の解離により発生する成分が除去され、式(a)で表されるホスホン酸と銅イオンとによって吸収剤が生成される。C液を加温する温度は、銅塩から解離した除去されるべき成分の沸点に基づいて定められている。なお、脱溶媒処理においては、C液を得るために用いたトルエン(沸点:約110℃)などの溶媒も揮発する。この溶媒は、UV‐IR吸収性組成物においてある程度残留していることが望ましいので、この観点から溶媒の添加量及び脱溶媒処理の時間が定められているとよい。なお、C液を得るためにトルエンに代えてo‐キシレン(沸点:約144℃)を用いることもできる。この場合、o‐キシレンの沸点はトルエンの沸点よりも高いので、添加量をトルエンの添加量の4分の1程度に低減できる。
【0061】
UV‐IR吸収性組成物が補助吸収剤を含有している場合、例えば、以下のようにしてH液がさらに調製される。まず、酢酸銅一水和物などの銅塩をテトラヒドロフラン(THF)などの所定の溶媒に添加して撹拌し、銅塩の溶液を得る。次に、この銅塩の溶液に、式(c1)で表されるリン酸ジエステル及び式(c2)で表されるリン酸モノエステルなどのリン酸エステル化合物を加えて撹拌し、E液を調製する。また、式(b)で表されるホスホン酸をTHFなどの所定の溶媒に加えて撹拌し、F液を調製する。式(b)で表されるホスホン酸として複数種類のホスホン酸を用いる場合、ホスホン酸をTHFなどの所定の溶媒に加えたうえで撹拌してホスホン酸の種類ごとに調製した複数の予備液を混合してF液を調製してもよい。E液を撹拌しながら、E液にF液を加えて所定時間撹拌する。次に、この溶液にトルエンなどの所定の溶媒を加えて撹拌し、G液を得る。次に、G液を加温しながら所定時間脱溶媒処理を行って、H液を得る。これにより、THFなどの溶媒及び酢酸などの銅塩の解離により発生する成分が除去され、式(b)で表されるホスホン酸と銅イオンとによって補助吸収剤が生成される。G液を加温する温度はC液と同様に決定され、G液を得るための溶媒もC液と同様に決定される。
【0062】
D液にシリコーン樹脂等のマトリクス樹脂を加えて撹拌して本発明に係るUV‐IR吸収性組成物を調製できる。また、UV‐IR吸収性組成物が補助吸収剤を含有している場合、D液にシリコーン樹脂等のマトリクス樹脂を加えて撹拌して得られたI液に、さらにH液を加えて撹拌することにより、UV‐IR吸収性組成物を調製できる。
【0063】
UV‐IR吸収性組成物の調製に使用される溶媒は、式(a)で表されるホスホン酸と銅イオンとによって吸収剤を適切に形成する観点から、所定の極性を有することが望ましい。なぜなら、溶媒の極性は、吸収剤を少なくとも含む微粒子のUV‐IR吸収性組成物における分散に影響を及ぼすからである。例えば、A液の調製に使用されるリン酸エステルの種類に応じて適切な極性を有する溶媒が選択される。
【0064】
本発明の一例に係るUV‐IR吸収フィルタ1aの製造方法の一例について説明する。まず、UV‐IR吸収性組成物を透明誘電体基板の一方の主面と平行に塗布して塗膜を形成する。例えば、液状のUV‐IR吸収性組成物をスピンコーティング又はディスペンサによる塗布により、透明誘電体基板20の一方の主面に塗布して塗膜を形成する。次に、この塗膜に対して所定の加熱処理を行って塗膜を硬化させる。例えば、50℃〜200℃の温度の環境にこの塗膜を曝す。必要に応じて、UV‐IR吸収性組成物に含有されているアルコキシシランモノマーを十分に加水分解させるために塗膜に加湿処理を施す。例えば、50℃〜100℃の温度及び80%〜100%の相対湿度の環境に前記塗膜を曝す。これにより、シロキサン結合のくり返し構造(Si−O)nが形成される。場合によっては
、加湿処理は省略可能である。このようにして、UV‐IR吸収フィルタ1aを製造できる。吸収層10を強固に形成しつつUV‐IR吸収フィルタ1aの光学特性を高める観点から、加熱処理における塗膜の雰囲気温度の最高値は、例えば85℃以上である。塗膜の加湿処理の条件は、アルコキシシランモノマーの加水分解反応及び縮重合反応を促進可能
な条件である限り特に制限されず、例えば、塗膜の加湿処理は、60℃〜100℃の温度条件と80%〜100%の相対湿度の条件とが適宜組み合せられた環境に塗膜を所定時間曝すことによってなされる。塗膜の加湿処理の温度条件と相対湿度の条件との組み合わせの一例は温度85℃及び相対湿度85%であり、塗膜の加湿処理の温度条件と相対湿度の条件との組み合わせの別の一例は温度65℃及び相対湿度95%である。
【0065】
図2に示す通り、本発明の別の一例に係るUV‐IR吸収フィルタ1bは、赤外線反射膜30を備えている。赤外線反射膜30は、異なる屈折率を有する複数の材料が代わる代わる積層されて形成された膜である。赤外線反射膜30を形成する材料は、例えば、SiO2、TiO2、及びMgF2などの無機材料又はフッ素樹脂などの有機材料である。赤外
線反射膜30を透明誘電体基板に形成した積層体は、例えば、波長350nm〜800nmの光を透過させるとともに、波長850nm〜1200nmの光を反射する。赤外線反射膜30を備えたその積層体は、波長350nm〜800nmにおいて、例えば85%以上、望ましくは90%以上の分光透過率を有し、かつ、波長850nm〜1200nmにおいて、例えば1%以下、望ましくは0.5%以下の分光透過率を有する。これにより、UV‐IR吸収フィルタ1bは、波長850nm〜1200nmの範囲の光又は波長900nm〜1200nmの範囲の光をさらに効果的に遮蔽できる。また、赤外線反射膜30を備えた積層体の分光透過率が上記の特性を有することにより、光の入射角の変化による赤外線反射膜30を備えた積層体の透過率スペクトルのシフトがUV‐IR吸収フィルタ1bの透過率スペクトルに与える影響を抑制できる。なぜなら、光の入射角の変動に伴って赤外線反射膜の透過スペクトルに波長シフトが現れる領域に、式(a)で表されるホスホン酸と銅イオンとによって形成された吸収剤が光吸収能を有するからである。
【0066】
UV‐IR吸収フィルタ1bの赤外線反射膜30を形成する方法は、特に制限されず、赤外線反射膜30を形成する材料の種類に応じて、真空蒸着、スパッタリング、CVD(Chemical Vapor Deposition)、及びスピンコーティング又はスプレーコーティングを利
用したゾルゲル法のいずれかを用いることができる。
【0067】
図3に示す通り、本発明の別の一例に係るUV‐IR吸収フィルタ1cにおいて、透明誘電体基板20の両方の主面上に吸収層10が形成されている。これにより、1つの吸収層10によってではなく、2つの吸収層10によって、UV‐IR吸収フィルタ1cが所望の光学特性を得るために必要な吸収層の厚みを確保できる。透明誘電体基板20の両方の主面上における吸収層10の厚みは同一であってもよいし、異なっていてもよい。すなわち、UV‐IR吸収フィルタ1cが所望の光学特性を得るために必要な吸収層の厚みが均等に又は不均等に分配されるように、透明誘電体基板20の両方の主面上に吸収層10が形成されている。これにより、透明誘電体基板20の両方の主面上に形成された各吸収層10の厚みが比較的小さい。このため、吸収層の厚みが大きい場合に生じる吸収層の厚みのばらつきを抑制できる。また、液状のUV‐IR吸収性組成物を塗布する時間を短縮でき、UV‐IR吸収性組成物の塗膜を硬化させるための時間を短縮できる。透明誘電体基板20が非常に薄い場合、透明誘電体基板20の一方の主面上のみに吸収層10を形成すると、UV‐IR吸収性組成物から吸収層10を形成する場合に生じる収縮に伴う応力によって、UV‐IR吸収フィルタが反る可能性がある。しかし、透明誘電体基板20の両方の主面上に吸収層10が形成されていることにより、透明誘電体基板20が非常に薄い場合でも、UV‐IR吸収フィルタ1cにおいて反りが抑制される。
【0068】
図4に示す通り、本発明の別の一例に係るUV‐IR吸収フィルタ1dは、透明誘電体基板20の一方の主面と平行に形成された補助吸収層15をさらに備えている。補助吸収層15は、例えば、上記の式(b)で表されるホスホン酸と銅イオンとによって形成された補助吸収剤と、この補助吸収剤を分散させるリン酸エステルと、マトリクス樹脂とを含有している補助UV‐IR吸収性組成物の硬化物によって形成されている。これにより、
UV‐IR吸収フィルタ1dは、補助吸収層15を備えていることにより、波長850nm以上又は波長900nm以上の光の透過率を有利に低減できる。
【0069】
図4に示す通り、例えば、透明誘電体基板20の一方の主面に吸収層10が形成され、かつ、透明誘電体基板20の他方の主面に補助吸収層15が形成されている。この場合、吸収層10の形成に伴い透明誘電体基板20に加わる応力と補助吸収層15の形成に伴い透明誘電体基板20に加わる応力とがバランスし、UV‐IR吸収フィルタに反りが発生しにくい。
【0070】
補助UV‐IR吸収性組成物におけるリン酸エステル及びマトリクス樹脂としては、例えば、上記のUV‐IR吸収性組成物におけるリン酸エステル及びマトリクス樹脂と同様の材料を用いることができる。
【0071】
液状の補助UV‐IR吸収性組成物をスピンコーティング又はディスペンサによる塗布により、透明誘電体基板20の一方の主面に塗布して塗膜を形成する。次に、この塗膜に対して所定の加熱処理を行って塗膜を硬化させる。このようにして、UV‐IR吸収フィルタ1dを製造できる。吸収層10及び補助吸収層15を形成するための加熱処理は同時に行われてもよい。
【0072】
図5に示す通り、例えば、UV‐IR吸収フィルタ1aを用いて、撮像光学系100を提供できる。撮像光学系100は、UV‐IR吸収フィルタ1aに加え、例えば、撮像レンズ3をさらに備えている。撮像光学系100は、デジタルカメラなどの撮像装置において、撮像素子2の前方に配置されている。撮像素子2は、例えば、CCD又はCMOSなどの固体撮像素子である。図5に示す通り、被写体からの光は、撮像レンズ3によって集光され、UV‐IR吸収フィルタ1aによって紫外線及び赤外線がカットされた後、撮像素子2に入射する。このため、撮像素子2の分光感度が人間の視感度に近く、色再現性の高い良好な画像を得ることができる。撮像光学系100は、UV‐IR吸収フィルタ1aに代えて、UV‐IR吸収フィルタ1b、UV‐IR吸収フィルタ1c、及びUV‐IR吸収フィルタ1dのいずれかを備えていてもよい。
【実施例】
【0073】
実施例により、本発明をより詳細に説明する。なお、本発明は以下の実施例に限定されない。まず、実施例及び比較例に係るUV‐IR吸収フィルタの評価方法を説明する。
【0074】
<UV‐IR吸収フィルタの透過率スペクトル測定>
波長300nm〜1200nmの範囲の光を実施例及び比較例に係るUV‐IR吸収フィルタに入射させたときの透過率スペクトルを、紫外線可視分光光度計(日本分光社製、製品名:V−670)を用いて測定した。この測定において、UV‐IR吸収フィルタに対する入射光の入射角を0°(度)に設定した。UV‐IR吸収フィルタの吸収層の厚みの違いによる透過率スペクトルの影響を排除するために、波長750nm〜900nmの範囲における透過率が、それぞれある所定の値になるように正規化した。具体的には、実施例及び比較例に係るUV‐IR吸収フィルタについて実測された透過率スペクトルに100/92を乗じて界面における反射をキャンセルし、各波長における透過率を吸光度に換算したうえで正規化係数を乗じて調整した値に92/100をさらに乗算して、正規化した透過率スペクトルを算出した。ここで、正規化係数は、以下の2つの条件(1)及び(2)のそれぞれに従って定めた。
条件(1):実測された透過率スペクトルにおける波長750〜900nmの範囲における最大の透過率が1.0%になるように調整。
条件(2)実測された透過率スペクトルにおける波長750〜900nmの範囲における最大の透過率が0.5%になるように調整。
【0075】
UV‐IR吸収フィルタの開発段階においては、基板に塗布されたUV‐IR吸収性組成物の塗膜の厚みがばらつくことがある。このばらつきは、UV‐IR吸収フィルタの分光透過率特性に大きな影響を及ぼす。UV‐IR吸収フィルタの商業的製造(量産)の段階では、UV‐IR吸収性組成物の塗布条件及び塗膜の厚みを厳重に管理することで、UV‐IR吸収フィルタの分光透過率特性を均一に調節することが可能である。しかし、開発段階の試作品の評価においては、迅速な試行錯誤とフィードバックが重要である。このため、実際の開発においては、UV‐IR吸収性組成物の塗布条件及び塗膜の厚みの厳重な管理を行わずにUV‐IR吸収性組成物の塗膜の厚みがばらつくことを前提にして評価を行うことが望ましい。そこで、上記の通り、UV‐IR吸収性組成物の塗膜の厚みのばらつきが無視できるように、測定された分光透過率特性に所定の補正を施して、実施例及び比較例に係るUV‐IR吸収フィルタの分光透過率特性の相対的な評価を可能にした。
【0076】
<吸収層の厚みの測定>
一部の実施例及び一部の比較例に係るUV‐IR吸収フィルタの厚みをデジタルマイクロメータで測定した。UV‐IR吸収フィルタの厚みから透明ガラス基板の厚みを差し引いてUV‐IR吸収フィルタの吸収層の厚みを算出した。算出された吸収層の厚みと上記の正規化係数との積を「正規化厚み」と定めた。
【0077】
<透過率スペクトルの入射角依存性の評価>
波長300nm〜1200nmの範囲の光を実施例21に係るUV‐IR吸収フィルタに0°から65°まで5°刻みで入射角度を変えながら入射させたときの各入射角度における透過率スペクトルを、紫外線可視分光光度計(日本分光社製、製品名:V−670)を用いて測定した。
【0078】
<耐湿性評価>
実施例及び比較例に係るUV‐IR吸収フィルタを温度85℃及び相対湿度85%に設定された恒温恒湿槽に16時間置いた。その後、UV‐IR吸収フィルタを恒温恒湿槽から取り出して、UV‐IR吸収フィルタの吸収層の外観を目視により確認した。
【0079】
<実施例1>
酢酸銅一水和物1.125gとテトラヒドロフラン(THF)60gとを混合して、3時間撹拌し酢酸銅溶液を得た。次に、得られた酢酸銅溶液に、リン酸エステル化合物であるプライサーフA208N(第一工業製薬社製)を0.4115g加えて30分間撹拌し、A液を得た。フェニルホスホン酸(日産化学工業社製)0.4410gにTHF10gを加えて30分間撹拌し、B−1液を得た。4‐ブロモフェニルホスホン酸(東京化成工業社製)0.6610gにTHF10gを加えて30分間撹拌し、B−2液を得た。次に、B−1液とB−2液とを混ぜて1分間撹拌し、メチルトリエトキシシラン(MTES:信越化学工業社製)1.934gとテトラエトキシシラン(TEOS:キシダ化学社製 特級)0.634gを加えてさらに1分間撹拌し、B液を得た。A液を撹拌しながらA液にB液を加え、室温で1分間撹拌した。次に、この溶液にトルエン25gを加えた後、室温で1分間撹拌し、C液を得た。このC液をフラスコに入れてオイルバス(東京理化器械社製、型式:OSB−2100)で加温しながら、ロータリーエバポレータ(東京理化器械社製、型式:N−1110SF)によって、脱溶媒処理を行った。オイルバスの設定温度は、105℃に調整した。その後、フラスコの中から脱溶媒処理後のD液を取り出した。フェニル系ホスホン酸銅(吸収剤)の微粒子の分散液であるD液は透明であり、微粒子が良好に分散していた。D液における各成分の含有量及びD液における微粒子の分散状態を表1に示す。
【0080】
酢酸銅一水和物1.125gとTHF60gとを混合して3時間撹拌し酢酸銅溶液を得
た。次に、得られた酢酸銅溶液に、リン酸エステル化合物であるプライサーフA208Nを0.7095g加えて30分間撹拌し、E液を得た。また、n−ブチルホスホン酸(日本化学工業社製)0.7075gにTHF10gを加えて30分撹拌し、F液を得た。E液を撹拌しながらE液にF液を加え、室温で1分間撹拌した。次に、この溶液にトルエン25gを加えた後、室温で1分間撹拌し、G液を得た。このG液をフラスコに入れてオイルバスで加温しながら、ロータリーエバポレータによって、脱溶媒処理を行った。オイルバスの設定温度は、105℃に調整した。その後、フラスコの中から脱溶媒処理後のH液を取り出した。ブチルホスホン酸銅(補助吸収剤)の微粒子の分散液であるH液は透明であり、微粒子が良好に分散していた。H液における各成分の含有量及びH液における微粒子の分散状態を表2に示す。
【0081】
D液にシリコーン樹脂(信越化学工業社製、製品名:KR−300)を2.20g添加し30分間撹拌して、I液を得た。得られたH液の20質量%分に相当する4.09gのH液をI液に加えて30分撹拌し、実施例1に係るUV‐IR吸収性組成物を得た。
【0082】
76mm×76mm×0.21mmの寸法を有するホウケイ酸ガラスでできた透明ガラス基板(SCHOTT社製、製品名:D263)の一方の主面の中心部の30mm×30mmの範囲にディスペンサを用いて実施例1に係るUV‐IR吸収性組成物を約0.5g塗布して塗膜を形成した。次に、未乾燥の塗膜を有する透明ガラス基板をオーブンに入れて、85℃で6時間加熱処理を行い、塗膜を硬化させた。その後、温度85℃及び相対湿度85%に設定された恒温恒湿槽に塗膜を有する透明ガラス基板を20時間置いて加湿処理を行い、実施例1に係るUV‐IR吸収フィルタを得た。実施例1に係るUV‐IR吸収フィルタの正規化された透過率スペクトルを図6に実線で示す。実施例1に係るUV‐IR吸収フィルタの正規化された透過率スペクトルに関する特性を表8に示す。実施例1に係るUV‐IR吸収フィルタの耐湿性評価の結果を表9に示す。
【0083】
実施例1に係るUV‐IR吸収フィルタを温度60℃及び相対湿度90%の環境に500時間曝す長期耐湿試験を行った。長期耐湿試験の前後の実施例1に係るUV‐IR吸収フィルタの透過率スペクトルを長期耐湿試験の前の実施例1に係るUV‐IR吸収フィルタの透過率スペクトルの波長750〜900nmにおける最大の透過率が1.0%又は0.5%になるようにそれぞれ同一の正規化係数を用いて正規化した。
【0084】
具体的には、長期耐湿試験前の実施例1に係るUV‐IR吸収フィルタの透過率スペクトルを計測し、波長750〜900nmにおける最大の透過率が1%(条件(1))及び0.5%(条件(2))になるように正規化係数ST1%及びST0.5%をそれぞれ求めた。それぞれの正規化係数に基づいて、長期耐湿試験前の実施例1に係るUV‐IR吸収フィルタの正規化された透過率スペクトルを求めた。次に、長期耐湿試験後の実施例1に係るUV‐IR吸収フィルタの透過率スペクトルを計測し、正規化係数ST1%及びST0.5%に基づいて長期耐湿試験後の実施例1に係るUV‐IR吸収フィルタの正規化された透過率スペクトルをそれぞれ求めた。このようにして長期耐湿性試験前後における正規化された透過率スペクトルを求めた。これらを比較した結果を表13に示す。実施例1に係るUV‐IR吸収フィルタは、長期耐湿試験の前後において変動が小さく安定な透過率特性を有し、優れた耐湿性を有することが示唆された。なお、表13においては、長期耐湿試験前後のUV‐IR吸収フィルタの透過率特性の差をより厳密に示すために、平均透過率及び最大透過率を小数点以下第2位まで表示した。
【0085】
<実施例2>
実施例1と同様にしてD液及びH液を得た。D液にシリコーン樹脂(信越化学工業社製、製品名:KR−300)を2.20g添加し30分撹拌して、I液を得た。得られたH液の20質量%分に相当する4.20gのH液をI液に加えて30分間撹拌し、実施例2
に係るUV‐IR吸収性組成物を得た。実施例1に係るUV‐IR吸収性組成物の代わりに実施例2に係るUV‐IR吸収性組成物を用い、かつ、加湿処理の時間を158時間に変更した以外は実施例1と同様にして実施例2に係るUV‐IR吸収フィルタを得た。実施例2に係るUV‐IR吸収フィルタの正規化された透過率スペクトルに関する特性を表8に示す。実施例2に係るUV‐IR吸収フィルタの耐湿性評価の結果を表9に示す。なお、実施例2に係るUV‐IR吸収フィルタを温度85℃及び相対湿度85%に設定された恒温恒湿槽に104時間置いた。その後、UV‐IR吸収フィルタを恒温恒湿槽から取り出して、UV‐IR吸収フィルタの吸収層の外観を目視により確認した。その結果、吸収層は白濁しておらず、透明であり、良好な外観を示した。104時間に及ぶ耐湿試験の前の実施例2に係るUV‐IR吸収フィルタの正規化された透過率スペクトルを図7Aに示す。また、104時間に及ぶ耐湿試験の後の実施例2に係るUV‐IR吸収フィルタの正規化された透過率スペクトルを図7Bに示す。
【0086】
<実施例3>
酢酸銅一水和物1.125gとTHF60gとを混合して3時間撹拌し、酢酸銅溶液を得た。次に、得られた酢酸銅溶液に、リン酸エステル化合物であるプライサーフA208Nを0.3431g加えて30分間撹拌し、A液を得た。また、フェニルホスホン酸0.4490gにTHF10gを加えて30分撹拌し、B−1液を得た。さらに、4−ブロモフェニルホスホン酸0.6733gにTHF10gを加えて30分撹拌し、B−2液を得た。次に、B−1液とB−2液とを混ぜて1分間撹拌し、MTES2.862g及びTEOS0.938gを加えてさらに1分撹拌し、B液を得た。A液を撹拌しながらA液にB液を加え、室温で1分間撹拌した。次に、この溶液にトルエン25gを加えた後、室温で1分間撹拌し、C液を得た。このC液をフラスコに入れてオイルバスで加温しながら、ロータリーエバポレータによって、脱溶媒処理を行った。オイルバスの設定温度は、105℃に調整した。その後、フラスコの中から脱溶媒処理後のD液を取り出した。フェニル系ホスホン酸銅(吸収剤)の微粒子の分散液であるD液は透明であり、良好に微粒子が分散していた。
【0087】
D液にシリコーン樹脂(信越化学工業社製、製品名:KR−300)を2.20g添加して30分間撹拌し、実施例3に係るUV‐IR吸収性組成物を得た。
【0088】
76mm×76mm×0.21mmの寸法を有するホウケイ酸ガラスでできた透明ガラス基板の一方の主面の中心部の30mm×30mmの範囲にディスペンサを用いて約0.5gの実施例3に係るUV‐IR吸収性組成物を塗布して塗膜を形成した。次に、未乾燥の塗膜を有する透明ガラス基板をオーブンに入れて、85℃で2時間加熱処理を行い、塗膜を硬化させた。その後温度85℃及び相対湿度85%に設定された恒温恒湿槽に塗膜を有する透明ガラス基板を62時間置いて加湿処理を行い、実施例3に係るUV‐IR吸収フィルタを得た。実施例3に係るUV‐IR吸収フィルタの透過率スペクトルに関する特性を表8に示す。実施例3に係るUV‐IR吸収フィルタの耐湿性評価の結果を表9に示す。
【0089】
<実施例4〜20>
UV‐IR吸収性組成物における各成分の添加量を表3に示す通り調整した以外は、実施例3と同様にして、実施例4〜20に係るUV‐IR吸収性組成物を調製した。なお、実施例14〜20において、リン酸エステル化合物として、プライサーフA208Nに代えてプライサーフA208Fを使用した。また、塗膜の硬化条件及び塗膜を有する透明ガラス基板の加湿処理の条件を表4に示す通りに調整した以外は、実施例3と同様にして、実施例4〜20に係るUV‐IR吸収フィルタを作製した。表中において、湿度を調節せずにX℃でY時間行った処理を「X℃:Yh」と表記し、x℃及び相対湿度y%でz時間行った処理を「x℃‐y%RH:zh」と表記している。実施例4及び14に係るUV‐
IR吸収フィルタの正規化された透過率スペクトルを図6にそれぞれ破線及び一点鎖線で示す。実施例4〜20に係るUV‐IR吸収フィルタの透過率スペクトルに関する特性を表8に示す。実施例4〜20に係るUV‐IR吸収フィルタの耐湿性評価の結果を表9に示す。
【0090】
加水分解縮重合物に換算したアルコキシシランモノマーの含有量は、次のようにして求めた。TEOSの分子量は208.3267であり、全てのTEOSが加水分解縮重合物に変化したと考えると、加水分解縮重合物の構成単位はSiO2(分子量:60.084
3)と表せる。このため、加水分解縮重合物に換算したTEOSの含有量は、TEOSの含有量の28.841%(=60.0843/208.3267)に相当する。MTESの場合、MTESの分子量は178.3008であり、全てのMTESが加水分解縮重合物に変化したと考えると、加水分解縮重合物の構成単位はCH3SiO3/2(分子量:67.1190)と表せる。このため、加水分解縮重合物に換算したMTESの含有量はMTESの含有量の37.644%(=67.1190/178.3008)に相当する。
【0091】
<実施例21>
実施例1に係るUV‐IR吸収性組成物からなる塗膜の厚みを変更した以外は実施例1と同様にして実施例21に係るUV‐IR吸収フィルタを得た。実施例21に係るUV‐IR吸収フィルタの厚みは123μmであった。実施例21に係るUV‐IR吸収フィルタの透過率スペクトルの入射角依存性に関する結果を表12及び図9に示す。
【0092】
<比較例1〜3>
リン酸エステル化合物として、プライサーフA208Nに代えてプライサーフA208Fを使用し、UV‐IR吸収性組成物における各成分の添加量を表5に示す通りに調整した以外は、実施例3と同様にして、比較例1〜3に係るUV‐IR吸収性組成物を調製した。加えて、比較例1〜3に係るUV‐IR吸収性組成物を用い、塗膜を有する透明ガラス基板の加湿処理の条件を表6に示す通りに調整した以外は、実施例3と同様にして、比較例1〜3に係るUV‐IR吸収フィルタを作製した。比較例1〜3に係るUV‐IR吸収フィルタの透過率スペクトルに関する特性を表10に示す。比較例1〜3に係るUV‐IR吸収フィルタの耐湿性評価の結果を表11に示す。
【0093】
<比較例4、比較例5、及び比較例6>
UV‐IR吸収性組成物における各成分の添加量を表5に示す通りに調整した以外は実施例3と同様にして比較例4、比較例5、及び比較例6に係る組成物を得た。比較例4及び5では、リン酸エステル化合物として、プライサーフA208Nに代えてプライサーフA208Fを使用した。比較例4、比較例5、及び比較例6に係る組成物において、微粒子(吸収剤)が凝集してしまい、UV‐IR吸収性組成物として使用できなかった。
【0094】
<比較例7〜9>
MTES及びTEOSの代わりにシリコーンオリゴマー(KR‐311、KR‐255、又はKR‐212:いずれも信越化学工業社製)を使用し、各成分の添加量を表7に示す通りに調整した以外は実施例3と同様にして比較例7〜9に係るUV‐IR吸収性組成物を調製した。加えて、比較例7〜9に係るUV‐IR吸収性組成物を使用し、塗膜の硬化条件又は塗膜を有する透明ガラス基板の加湿処理の条件を表6に示す通りに調整した以外は、実施例3と同様にして比較例7〜9に係るUV‐IR吸収フィルタを作製した。比較例7〜9に係るUV‐IR吸収フィルタの透過率スペクトルに関する特性を表10に示す。比較例7〜9に係るUV‐IR吸収フィルタの耐湿性評価の結果を表11に示す。比較例7、比較例8、及び比較例9に係るUV‐IR吸収フィルタの正規化された透過率スペクトルを図8にそれぞれ実線、破線、及び一点鎖線で示す。
【0095】
表5に示す通り、比較例4及び5のように、リン酸エステルの含有量がホスホン酸の含有量に対して少ないと、吸収剤の微粒子が適切に分散できず凝集してしまう。これに対し例えば、表3に示す通り、実施例20に係るUV‐IR吸収性組成物では、リン酸エステルの含有量がホスホン酸の含有量に対してより少ないもののアルコキシシランモノマーの含有により吸収剤の微粒子が適切に分散していた。加えて、表9に示す通り、実施例20に係るUV‐IR吸収フィルタは、リン酸エステルの含有量がホスホン酸の含有量に対してより少ないことにより、良好な耐湿性を有することが示唆された。
【0096】
表3及び表9に示す通り、実施例19に係るUV‐IR吸収フィルタによれば、アルコキシシランモノマーとしてMTESのみ使用した場合でも、UV‐IR吸収性組成物において吸収剤の微粒子が適切に分散でき、良好な耐湿性を発揮できることが示唆された。
【0097】
表3、表4、及び表8に示す通り、実施例17と実施例18との対比によれば、加湿処理を施すことにより、波長450〜600nmにおける平均透過率が向上し、UV‐IR吸収フィルタの可視域の分光透過率が高まることが示唆された。これは、アルコキシシランモノマーの加水分解が十分に進んでシロキサン結合のくり返し構造(Si−O)nの形成
が促進される過程で塗膜中の微粒子の配置がより望ましい状態に変化するためであると推測される。
【0098】
実施例14〜16に係るUV‐IR吸収性組成物のリン酸エステルの含有量は、比較例1〜3に係るUV‐IR吸収性組成物の半分以下であった。実施例14〜16と比較例1〜3との対比より、リン酸エステルの含有量を減らしても、所定量のアルコキシシランモノマーを添加したうえで、所定の加熱処理によって塗膜を硬化させた後に、加湿処理を実施すれば、UV‐IR吸収フィルタが所望の光学特性を有し、かつ、良好な耐湿性を有することが示唆された。
【0099】
実施例3〜13と実施例14〜16との対比により、UV‐IR吸収性組成物に使用されたリン酸エステルの種類が異なっていても、UV‐IR吸収性組成物におけるアルコキシシランモノマーの含有により、UV‐IR吸収性組成物において吸収剤の微粒子が適切に分散でき、かつ、UV‐IR吸収フィルタが所望の光学特性を発揮できることが示唆された。また、UV‐IR吸収性組成物におけるブロモフェニルホスホン酸の含有により、紫外側カットオフ波長がわずかに長波長側にシフトすることが示唆された。
【0100】
実施例3、5〜9によれば、他の実施例に係るUV‐IR吸収性組成物に比べて、マトリクス樹脂であるシリコーン樹脂の含有量が半分程度であっても、UV‐IR吸収フィルタが所望の光学特性及び良好な耐湿性を有することが示唆された。これは、吸収剤であるホスホン酸銅の微粒子を含む吸収層が非常に高い耐湿性を有することを示唆しており、UV‐IR吸収フィルタの厚みを大幅に低減できることを示唆している。これは、UV‐IR吸収性組成物におけるアルコキシシランモノマーの含有により大幅にリン酸エステルの含有量を低減可能になったことによるものであると考えられる。
【0101】
実施例8によれば、UV‐IR吸収性組成物において、加水分解縮重合物に換算したアルコキシシランモノマーの含有量とリン酸エステルの含有量との和に対するホスホン酸の含有量の比(γ)が1.151と大きくても、吸収剤であるホスホン酸銅の微粒子が適切に分散できる。加えて、UV‐IR吸収フィルタが所望の光学特性を発揮できる。比較例6によれば、γを1.420まで大きくすると、ホスホン酸銅の微粒子が凝集してゼリー状になり、組成物の色味もわずかに白く濁り、適切に微粒子が分散していなかった。このため、UV‐IR吸収性組成物におけるγの望ましい範囲は、0.40〜1.30であることが示唆された。
【0102】
表5に示す通り、比較例1〜5によれば、UV‐IR吸収性組成物において、リン酸エステルの含有量に対するホスホン酸の含有量の質量比(α)が0.250≦α≦0.453の範囲であれば、UV‐IR吸収性組成物においてホスホン酸銅の微粒子が分散可能であることが示唆された。また、表3及び表5に示す通り、実施例3〜20によれば、UV‐IR吸収性組成物にアルコキシシランモノマーを加えることにより、0.856≦α≦3.271の範囲でαを大幅に増加させても、換言すると、リン酸エステルの含有量を大幅に減らしても、UV‐IR吸収性組成物においてホスホン酸銅の微粒子が分散可能であることが示唆された。さらに、少なくとも、0.856≦α≦3.271の範囲で良好な耐湿性を有するUV‐IR吸収フィルタが得られることが示唆された。
【0103】
図6図7A、及び図7Bに示す通り、実施例1及び2によれば、吸収剤であるフェニル系ホスホン酸銅の微粒子と補助吸収剤であるブチルホスホン酸銅の微粒子とを混合して、同一の吸収層に内包させることにより、より良好な光学特性を有するUV‐IR吸収フィルタが作製可能であることが示唆された。フェニル系ホスホン酸銅の微粒子とブチルホスホン酸銅の微粒子とは混合されて同一の吸収層に内包させることが可能であり、それによってフェニル系ホスホン酸銅の微粒子による吸収の少ない1000〜1100nm付近の分光透過率の低減が可能となり、より良好な光学特性を持つUV‐IR吸収フィルタの作製が可能となることが示唆された。また、図7A及び図7Bに示す通り、実施例2に係るUV‐IR吸収フィルタは、158時間の加湿処理後でも良好な光学特性を有し、温度85℃及び相対湿度85%の環境における104時間の耐湿試験を実施しても光学特性に変動がほとんど無いことから、極めて高い耐湿性を有することが示唆された。
【0104】
比較例7〜9によれば、UV‐IR吸収性組成物において、シリコーンオリゴマーを用いても、吸収剤の微粒子を適切に分散させることは可能であることが示唆された。しかし、図8に示す通り、比較例7〜9と実施例との対比によれば、比較例7〜9に係るUV‐IR吸収フィルタの波長450〜600nmにおける平均透過率は、実施例に係るUV‐IR吸収フィルタの波長450〜600nmにおける平均透過率よりも低かった。加えて、比較例7〜9に係るUV‐IR吸収フィルタは良好な耐湿性を有するとは言い難かった。
【0105】
表8及び表10に示す通り、実施例1、4、5、11〜13に係るUV‐IR吸収フィルタの正規化厚みは、比較例1〜3に係るUV‐IR吸収フィルタの正規化厚みよりも小さかった。これにより、本発明によれば、UV‐IR吸収フィルタにおける吸収層の厚みを低減しやすいことが示唆された。この利点は、実施例1、4、5、11〜13に係るUV‐IR吸収性組成物において比較例1〜3に係るUV‐IR吸収性組成物に比べて分散剤であるリン酸エステルの添加量が低減されており、リン酸エステルの添加量が低減されていてもシリコーン樹脂等のマトリクス樹脂の添加量を低減できたことによるものであると考えられる。
【0106】
表12に示す通り、実施例21に係るUV‐IR吸収フィルタの、0°の入射角における透過率スペクトルと40°の入射角における透過率スペクトルとの対比の結果から、実施例21に係るUV‐IR吸収フィルタは、上記の条件(VI)及び(VII)を満たすこと
が示唆された。加えて、実施例21に係るUV‐IR吸収フィルタにおいては、入射角度が60°を超えると、波長450〜600nmの範囲の平均透過率が80%を下回るものの、非常に優れた入射角依存性を有することが示された。実施例21によれば、このように大きい入射角度に対しても光学性能を維持できるUV‐IR吸収フィルタを提供できる。実施例21に係るUV‐IR吸収フィルタのこのような利点によれば、ウェアラブルなカメラ及びスマートフォン等の携帯端末に搭載されるカメラ等の撮像装置において撮像可能な視野角をより拡大でき、撮像装置における薄型化、低背位化、又は高画角化の要請に応えることができる。
【0107】
【表1】
【0108】
【表2】
【0109】
【表3】
【0110】
【表4】
【0111】
【表5】
【0112】
【表6】
【0113】
【表7】
【0114】
【表8】
【0115】
【表9】
【0116】
【表10】
【0117】
【表11】
【0118】
【表12】
【0119】
【表13】
図1
図2
図3
図4
図5
図6
図7A
図7B
図8
図9