(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、電解液が非水系溶媒で構成される非水電解液二次電池は、充放電や過充電あるいは高温下の保存などにより、二酸化炭素(CO
2)等のガスが電池ケースの内部で発生する場合がある。また、電池内部に水分が浸入し、電池特性が劣化して上記のようなガスが発生することもある。
そこで、非水電解液二次電池では、電池ケースの内部で発生したガスを電池ケースの外部に排出するためのガス排出弁が蓋体に設けられている。また、非水電解液二次電池では、電池が過充電状態になったときに当該電池の電流通路を遮断する圧力作動型の電流遮断機構(CID:Current Interrupt Device)が備えられている。また、非水電解液に所定の電池電圧を超えた際に分解してガス(例えばCO
2ガス)を発生し得るガス発生剤を含むリチウムイオン二次電池がある。ガス発生剤は、電池が過充電状態になったときに分解されて所定の種のガスを発生する。そして、そのガス圧により、電池ケース内の内圧が上昇し、その圧力上昇を検知した電流遮断機構が作動するように構成されている。
【0007】
しかし、蓋体と集電端子との間に介在されたガスケットの密度が過剰に高いと、一酸化炭素(CO)や二酸化炭素(CO
2)等のガスの電池外部への透過が抑制され、電池内圧が上昇し易くなるため、電流遮断機構および/またはガス排出弁が想定外に早く作動してしまう等の誤作動が起こり得る。また、逆に、ガスケットの密度が低くなりすぎると、電池ケースの外部から電池ケースの内部に浸入する水分量の増加および非水電解液の電池ケース外部への漏れが起こり得るため、好ましくない。
【0008】
そこで、本発明は、上記諸課題を解決するべく創出されたものであり、電池ケース外部からケース内部への水分の浸入および電池ケース内部から外部への電解液の漏れを抑制することと、電池ケースの内圧上昇による電流遮断機構およびガス排出弁の誤作動防止とを両立することができる非水電解液二次電池を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記目的を実現するべく、本発明は、
開口部を有する電池ケース本体と、該開口部を塞ぐ蓋体と、該蓋体の外面側に設けられた外部接続用の接続端子とを備える電池ケースと、
前記電池ケースの内部に収容される電極体と、
一端が前記電池ケースの内部において前記電極体と電気的に接続されており、他端が前記蓋体に設けられた貫通孔を介して前記接続端子と電気的に接続される集電端子と、
前記蓋体と前記集電端子との間を封止する合成樹脂製のガスケットと、
を備える非水電解液二次電池を提供する。
そして、ここで開示される非水電解液二次電池では、前記ガスケットは、前記電池ケースの内部において露出する面に凹凸部を有することを特徴とする。
【0010】
電池内部で発生した二酸化炭素ガスやその他のガス種の分子は小さいため、ガスケットを形成する合成樹脂の高分子鎖間隙を通過し易い。即ち、二酸化炭素ガス等のガスはガスケットに溶解する速度よりもガスケット内の拡散速度が速い。換言すると、二酸化炭素ガス等のガスがガスケットを透過する速度を考えた場合、ガスがガスケット表面に接触して当該ガスケットに溶解する速度が律速過程になっている。
しかし、ここで開示される非水電解液二次電池では、ガスケットのうち、電池ケースの内部において当該内部空間に露出する面(即ち、電池ケース内で発生したガスが直接接触し得るケース内側の露出表面)に凹凸部を有する。このため、ガスケットにおける電池ケースの内部に露出する面積を増加させることができるので、その分、ガスケットに対する二酸化炭素ガス等のガスの透過量を増加させることができる。
したがって、ここで開示される非水電解液二次電池によれば、電池ケースの内圧上昇による電流遮断機構およびガス排出弁の誤作動を防止することができる。
【0011】
また、ガスケットにおける電池ケースの内部に露出する面積が増加すると、ガスケットに対する非水電解液の接触量も増加し得るが、非水電解液構成成分(典型的には非水系溶媒)の分子は大きいため、ガスケットを形成する合成樹脂の高分子鎖間隙を実質的に通過できない。即ち、非水電解液がガスケットを透過する速度を考えた場合、非水電解液のガスケット内における拡散速度が拡散律速になっている。
したがって、ガスケットにおける電池ケースの内部に露出する面積を増加させても、非水電解液の電池ケース外部への漏れを阻むことができる。
さらに、電池外部からガスケットを透過して電池内部に浸入する水分量を考えた場合、ガスケットのうち電池外部に露出している部分への溶解が律速過程になっている。
したがって、ガスケットにおける電池ケースの内部に露出する面積を増加させても、電池外部から電池内部に浸入する水分量の増加を抑制することができる。
即ち、ここで開示される非水電解液二次電池によれば、電池ケース外部から内部への水分の浸入および電池ケース内部から外部への非水電解液の漏れをともに抑制することができる。
【発明を実施するための形態】
【0013】
以下、図面を参照しながら、本発明による実施の形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない電池の一般的な構成および製造プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、各図面においては、同じ作用を奏する部材・部位には同じ符号を付している。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。
【0014】
本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。また、「非水電解液二次電池」とは、非水電解液(即ち、非水溶媒中に支持電解質を含む電解液)を備えた二次電池をいう。また、「リチウムイオン二次電池」とは、電荷担体としてリチウムイオンを利用し、正負極間のリチウムイオンの移動により充放電が行われる二次電池をいう。
以下、扁平角型のリチウムイオン二次電池を例にして、本発明について詳細に説明する。なお、以下で説明する実施形態は、本発明をかかる実施形態に記載されたものに限定することを意図したものではない。
【0015】
図1は、本実施形態に係るリチウムイオン二次電池の外形を模式的に示す部分断面図であり、
図2は、
図1に示すリチウムイオン二次電池に備えられた蓋体および集電端子を示す分解斜視図である。なお、以下の説明では、リチウムイオン二次電池を単に電池という場合もある。
本実施形態に係るリチウムイオン二次電池10は、電池ケース20に、所定の電池構成材料を具備する捲回電極体30が適当な非水電解液とともに収容された構成を有する。本実施形態では、リチウムイオン二次電池10は角型電池であるが、電池の形状は角型に限定されず、円柱形状等であってもよい。
【0016】
電池ケース20は、扁平かつ有底の直方体形状に形成されたいわゆる角型の電池ケース本体21と、この電池ケース本体21の上部にて開口形成された開口部21Aと、その開口部21Aを塞ぐ蓋体22とを備える。詳しくは、電池ケース本体21の開口部21Aに蓋体22が嵌め込まれ、蓋体22の外縁と開口部21Aの周囲の電池ケース本体21との合わせ目25をレーザ溶接することにより蓋体22が電池ケース本体21に固定され、電池ケース内部を密閉する。
【0017】
電池ケース20の材質は、従来の非水電解液二次電池で使用されるものと同じであればよく、特に制限はない。軽量で熱伝導性の良い金属材料を主体に構成された電池ケース20が好ましく、このような金属製材料としてアルミニウム、ステンレス鋼、ニッケルめっき鋼等が例示される。本実施形態に用いられる電池ケース20(具体的には電池ケース本体21および蓋体22)はアルミニウムもしくはアルミニウムを主体とする合金によって構成されている。
【0018】
蓋体22の外形は、開口部21Aの形状(電池ケース本体21の開口形状)に適合する略長方形状である。蓋体22の中央部には、電池ケース20の内圧が上昇した場合に該ケースの内外を連通させて内圧を開放するためのガス排出弁27が設けられている。ガス排出弁27の隣には、電池製造時に電解液を注入するための注入口28が設けられている。注入口28には注液栓29が被せられ、溶接により固定されている。このことにより、注入口28の封止(密閉)が行われている。
【0019】
捲回電極体30は、電池ケース本体21に、その捲回軸が蓋体22とほぼ並行になるように横倒しとなる姿勢で収容されている。捲回電極体30は、通常のリチウムイオン二次電池の捲回電極体と同様、シート状の正極(正極シート)32および負極(負極シート)34間にシート状のセパレータ(セパレータシート)36を介在させつつ積層して長手方向に捲回し、拉げさせることによって作製され得る。
【0020】
捲回電極体30を構成する材料および部材自体は、従来のリチウムイオン二次電池に備えられる電極体と同様でよく、特に制限はない。本実施形態の捲回電極体30は、長尺状の正極集電体(例えばアルミニウム箔)上に正極活物質層を有する正極シート32と、長尺状の負極集電体(例えば銅箔)上に負極活物質層を有する負極シート34と、セパレータシート36とを含む。
【0021】
正極活物質としては、一般的なリチウムイオン二次電池の正極に用いられる層状構造の酸化物系活物質、スピネル構造の酸化物系活物質等を好ましく用いることができる。かかる活物質の代表例として、リチウムコバルト系酸化物、リチウムニッケル系酸化物、リチウムマンガン系酸化物等のリチウム遷移金属酸化物が挙げられる。負極活物質としては、黒鉛(グラファイト)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)等の炭素材料が挙げられる。
セパレータシート36としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂からなる多孔質シート、不織布等を用いることができる。
【0022】
正極シート32と負極シート34との間に介在される非水電解液は、適当な非水系溶媒に支持塩を含有するものであり、リチウムイオン二次電池用途のものとして従来公知の非水電解液を特に制限なく採用することができる。例えば、非水系溶媒として、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等を用いることができる。また、支持塩としては、例えば、LiPF
6等のリチウム塩を好適に用いることができる。
【0023】
正極シート32には正極集電端子40が、負極シート34には負極集電端子80がそれぞれ溶接され、電気的に接続されている。これらの集電端子40,80は、蓋体22の長手方向の一方の端部近傍および他方の端部近傍にそれぞれ設けられた正極用および負極用の端子引出孔(貫通孔)242,244をそれぞれ貫通して、電池ケース20の内部から外部に引き出されている。正極集電端子40は、
図1および
図2に示すように、主として電池ケース20の内側に位置する正極内部端子420と、主として電池ケース20の外側に位置する正極外部端子460とが電気的に接続された構成を有する。負極集電端子80もまた、正極側と概ね同形状に形成された負極内部端子820と負極外部端子860とが電気的に接続された構成を有する。
以下、本実施形態に係る端子構造を主として正極側で詳細に説明し、ほぼ同形状の端子構造を備える負極側については、説明を簡略化ないしは省略することとする。
【0024】
図2に示すように、正極内部端子420は、その下端422Aが正極シート32に、例えば超音波溶接によって接合され、電気的に接続されている。正極内部端子420は、下端422Aから蓋体22に対して略垂直に延びる板状(帯状)の第一リード部422と、第一リード部の上端に続いて形成され該上端から略直角に(
図2では図の奥側から手前に)曲がって蓋体22の内面(電池ケースの内側の面をいう。以下同じ。)と略平行に広がる板状の第二リード部424と、第二リード部の板面中央部から電池の外方向に略垂直に延びる突出部426とを備える。突出部426はリベット部として構成されており、端子引出孔242および正極外部端子460の貫通孔(リベット孔)462Aに上記リベット部を貫通させてかしめることにより、正極内部端子420と正極外部端子460とが接続(締結)されている。正極内部端子420および正極外部端子460の構成材料としては導電性のよい金属材料が好ましく、典型的にはアルミニウムが用いられる。
【0025】
図2に示すように、正極外部端子460は、上記かしめ前において突出部426を挿通可能な貫通孔462Aを有する第一接続部462と、第一接続部462から蓋体22の長手方向中央側に続き、電池ケース20の外方に階段状に持ち上がって形成された第二接続部(外側端部)464とを有する。
図2に示すように、第二接続部464には、本実施形態に係る外部接続用の接続端子に相当する端子ボルト670の軸部674を挿通可能なボルト挿通孔464Aが形成されている。ボルト挿通孔464Aに端子ボルト670の軸部674を下から上に通し、第二接続部464から上方に軸部674を突出させる。そして、図示しない固定用ナットを締め付けることにより、正極外部端子460に端子ボルト670を連結(固定)することができる。
【0026】
上記かしめは、端子引出孔242を囲む蓋体22の内面と第二リード部424との間に本実施形態に係るガスケット50を挟み、さらに、端子引出孔242を囲む蓋体22の外面と正極外部端子460の第一接続部462との間にインシュレータ60を挟んで行われる。かかるかしめにより、正極集電端子40を蓋体22に固定するとともに、蓋体22と正極集電端子40の第二リード部424との間でガスケット50を圧縮することにより端子引出孔242の周囲が封止(シール)されている。また、ガスケット50により、電池ケース20(蓋体22の内面)と正極集電端子40(第二リード部424)との間が絶縁され、インシュレータ60により、電池ケース20(蓋体22の外面)と正極外部端子460(第一接続部462)とが絶縁されている。端子引出孔242付近の絶縁構造については後述する。
【0027】
インシュレータ60は、端子引出孔242を囲む蓋体22の上面(表面)と正極外部端子460の第一接続部462との間に挟まれる取付部620と、正極外部端子460の第二接続部464と蓋体22との間に延びる延長部640とを有する。取付部620は、蓋体22の外面に沿って広がる皿部を有する。この皿部の窪みに合わせて正極外部端子460の第一接続部462が配置されている。
【0028】
延長部640には、インシュレータ60の長手方向(蓋体22の長手方向と一致する。)を長辺とする長方形状の開口形状を有し、端子ボルト670の頭部672を受け入れ可能なボルト受け穴642が形成されている。頭部672は、端子ボルト670の軸に垂直な断面における形状がボルト受け穴642の開口形状よりも一回り小さな長方形状となるように形成されている。端子ボルト670は、頭部672がボルト受け穴642に挿入されることで回転が制限され(共回りが阻止され)、かつ軸部674が正極外部端子460のボルト挿通孔464Aを通して突出するように配置(装着)されている。
【0029】
次に、ガスケットの構造について
図2と
図3を参照しながら説明する。
図3は、組み付け前のガスケット50の斜視図である。
ガスケット50は、略円板形状に形成されており、その中心には正極集電端子40の突出部426(
図2)を挿通するための貫通孔55が形成されている。また、ガスケット50のうち、電池ケース20の内部において露出する面(外周面)51には、貫通孔55に向けて凹み形成された凹部53が周方向に沿って複数形成されており、各凹部53の間には凸部54がそれぞれ形成されている。各凹部53は、外周面51を略直方体形状に切り欠いた形状にそれぞれ形成されており、底壁53aと、この底壁53aの両端と外周面51との間にそれぞれ形成された側壁53b,53cとをそれぞれ有する。さらに、ガスケット50の上面(および下面)には、蓋体22の内面に沿って接触し得るフラットなシール面部52が形成されている。
【0030】
このように、ガスケット50のうち、電池ケース20の内部に露出する外周面51に凹部53および凸部54を形成することにより、外周面51の露出面積が増加するため、電池ケース20の内部で発生した二酸化炭素ガス等のガスが外周面51と接触する面積を増加させることができる。各凹部53の形状は、外周面51を半球状または円柱状あるいは三角錐状に切り欠いた形状でも良く、限定されない。また、外周面51に溝状の凹部を複数形成して凹凸を形成することにより、外周面51の露出面積を増加させることもできる。また、本実施形態では、ガスケット50のうち、電池内部で露出しているのは外周面51のみであるが、外周面51以外に電池内部で露出する部分が存在する場合は、その部分および外周面に凹凸を形成し、露出面積を増加させることもできる。また、本実施形態では、凹部53および凸部54は、それぞれ6個ずつ形成されているが、数は限定されない。また、本実施形態では、ガスケット50は略円板形状であるが、ガスケットの形状は多角形など、限定されない。
【0031】
次に、
図4(a)(b)を参照しながら、ガスケット50による蓋体22および正極集電端子40の絶縁構造について説明する。
図4(a)は
図1に示すリチウムイオン二次電池の正極側の絶縁構造を模式的に示す断面図であり、電池ケース20の幅広面と直交する方向に切断したときの断面図であって、端子引出孔242の軸(端子引出孔242の中心を通り、貫通孔の径方向に垂直な軸)を含む断面図である。
図4(b)は(a)に示す断面図から電池ケース本体21を除いた状態の断面図である。
【0032】
図4(a)に示すように、ガスケット50が蓋体22と正極集電端子40(第二リード部424)とに挾持されている。ガスケット50はガス透過性を有する合成樹脂製である。蓋体22の内面243は、ガスケット50のシール面部52により正極集電端子40と接触することが阻まれており、これにより、蓋体22(電池ケース20)および正極集電端子40が絶縁されている。また、インシュレータ60が正極外部端子460と蓋体22の外面245とに挟持されて、正極外部端子460と蓋体22(電池ケース20)とが接触することが阻まれており、これにより、蓋体22(電池ケース20)および正極外部端子460が絶縁されている。ガスケット50の外周面51と、蓋体22の内面の周縁に形成された鍔部22Aとの間には隙間22Bが形成されており、その隙間22Bによって、外周面51が電池ケース20の内部に露出した状態になっている。凹部53および凸部54が本願の請求項1に記載の凹凸部に対応する。
【0033】
このような凹部53および凸部54を有するガスケット50は、予め凹部53および凸部54に対応する形状を有する金型を用い、例えば射出成型や熱プレス成型等によって合成樹脂材料を成型することで作製することができる。あるいは、凹部53および凸部54のないガスケットをまず成型により得て、これに切削加工によって凹部53および凸部54を設けることによっても作製することができる。
【0034】
ガスケット50の構成材料としては、特に限定するものではないが、好適例として、疎水性のポリオレフィン系樹脂(例、ポリプロピレン(PP)、ポリエチレン(PE))、フッ素系樹脂(例、パーフルオロアルコキシアルカン(PFA)、ポリテトラフルオロエチレン(PTFE))等の合成樹脂材料が挙げられる。これら材料は、高分子鎖とその集合体によって形成されており、二酸化炭素ガス等のガスが高分子鎖間隙を透過し易い。
【0035】
本実施形態のリチウムイオン二次電池10における負極側の構造は、負極集電端子80の材質を除いては正極側と概ね同様である。すなわち、負極シート34には負極集電端子80の一端が、例えば抵抗溶接により電気的に接続されている。この負極集電端子80は、正極内部端子420と概ね同じ形状に形成された負極内部端子820と負極外部端子860とを備え、負極内部端子820の突出部(リベット部)を負極外部端子860の第一接続部にかしめることにより負極内部端子820と負極外部端子860とが電気的に接続されている。上記かしめは、正極側と同様に、端子820,860の間にガスケット50、蓋体22およびインシュレータ60を挟んで行われる。ガスケット50は正極側のものと同様に上述の凹部53および凸部54を外周面51に有する。負極外部端子860は、第一接続部と第二接続部とを有する階段状に形成されている。その第二接続部に設けられたボルト挿通孔には端子ボルト670が下から上に挿通されており、その軸部674(
図2)に外部接続用の接続部材を連結(固定)し得るように構成されている。負極内部端子820および負極外部端子860の構成材料としては導電性のよい金属材料が好ましく、例えば銅が用いられる。ガスケット50、インシュレータ60の材質や形状は正極側と同様でよい。
【0036】
以下、本発明に関する試験例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。
【0037】
本試験例では、電池内部からガスケット50を透過して電池外部へ漏れる二酸化炭素ガスの透過量と、電池外部からガスケット50を透過して電池内部に浸入する水分の透過量とを測定した。また、本試験例では、ガスケット50の外周面51の面積、即ちガスケット50の電池内部に露出している露出面積と各透過量との関係を求めた。
図3において、符号L1は、ガスケット50の中心から凸部54までの長さ、即ちガスケット50の最大径を示し、符号L2は、ガスケット50の中心から凹部53の底壁53aまでの長さ、即ちガスケット50の最小径を示し、符号tは、ガスケット50の厚さを示す。本試験例では、最大径L1が5.0mmで厚さtが0.6mmのガスケット50をベースにした。そして、最大径L1および厚さtを一定にし、最小径L2を変えることにより、ガスケット50の外周面51の露出面積を変えた。最小径L2が短くなると、各凹部53の深さがそれぞれ深くなり、各凹部53の側壁53b,53cの面積がそれぞれ増加するため、外周面51の露出面積が増加する。
【0038】
図5(a)は、本試験例で使用したガスケットの水準1〜3の内容を示す表である。水準1は、最大径L1および最小径L2が同じ5.0mmのガスケット、即ち、外周面51に凹部53および凸部54が形成されていないベースのガスケットであり、外周面51の露出面積が18.9mm
2である。水準2は、最小径L2が4.5mmのガスケット、即ち、外周面51に凹部53および凸部54が形成され、凹部53の深さが0.5mmのガスケットであり、外周面51の露出面積が21.5mm
2である。水準3は、最小径L2が4.0mmのガスケット、即ち、外周面51に凹部53および凸部54が形成され、凹部53の深さが1.0mmのガスケットであり、外周面51の露出面積が24.2mm
2である。
【0039】
そして、かかる水準1〜3の各ガスケットを
図4(a)に示すように所定位置に装着した扁平角型のリチウムイオン二次電池を60℃の環境下で1ヶ月保存し、電池内部から電池外部へ漏れる二酸化炭素ガス(CO
2)の透過量[μg]を測定した。この測定は、同じ環境下で2回行った。また、水準1〜3の各ガスケットを所定位置に装着した扁平角型のリチウムイオン二次電池を60℃、98%RHの環境下で1ヶ月保存し、電池外部から電池内部に浸入する水分の透過量[μg]を測定した。この測定も同じ環境下で2回行った。その測定結果を
図5(b)に示す。また、
図6は、
図5(b)の実験結果一覧を示すグラフである。
【0040】
図5(b)の表および
図6のグラフに示すように、ガスケット50の外周面51の露出面積が増加すると、水分透過量は殆ど変化しなかったが、二酸化炭素ガス(CO2)の透過量は露出面積の増加に応じて増加した。
即ち、本試験例により、ガスケット50の外周面51の電池内部における露出面積を増加することにより、電池内部に発生した二酸化炭素ガス等のガスが電池外部へ透過する透過量を増加させることができ、かつ、電池外部から電池内部に浸入する水分の透過量の増加を抑制できることが示された。
電池内部で発生した二酸化炭素ガスの分子は小さいため、ガスケット50を形成する合成樹脂の高分子鎖間隙を通過し易い。即ち、二酸化炭素ガス等のガスはガスケット50に溶解する速度よりもガスケット50内の拡散速度が速い。換言すると、二酸化炭素ガス等のガスがガスケット50を透過する速度を考えた場合、ガスがガスケット50に溶解する速度が律速過程になっていると考えられる。このため、ガスケット50の外周面51の電池内部における露出面積を増加することにより、ガスケット50に対する二酸化炭素ガス等のガスの透過量が増加したと判断した。
また、電池外部からガスケット50を透過して電池内部に浸入する水分量を考えた場合、ガスケット50のうち電池外部に露出している外周面51への溶解が律速過程になっていると考えられる。このため、ガスケット50の外周面51の電池内部への露出面積を増加させても電池外部から電池内部に浸入する水分量の増加を抑制することができる。
さらに、ガスケット50の外周面51の電池内部への露出面積が増加すると、ガスケット50に対する非水電解液の溶解量も増加するが、非水電解液を構成する成分(非水系溶媒)の分子は大きいため、ガスケット50を形成する合成樹脂の高分子鎖間隙を通過し難い。即ち、非水電解液がガスケットを透過する速度を考えた場合、非水電解液のガスケット50内における拡散速度が拡散律速になっていると考えられる。このため、ガスケット50の外周面51の電池内部への露出面積を増加させても非水電解液の電池ケース外部への漏れを抑止することができる。
本試験例でも明らかなように、上述した実施形態のガスケット50を備えたリチウムイオン二次電池10によれば、電池ケース20の外部から電池ケース20の内部に浸入する水分量および非水電解液の漏れ抑制することと、電池ケース20の内圧上昇による電流遮断機構およびガス排出弁(ガス排出弁)の誤作動防止とを両立することができる。
【0041】
本実施形態のリチウムイオン二次電池10は、ハイブリッド車や、電気自動車等の車両の駆動用電源等に好適である。車両駆動用電源は、複数の二次電池を組み合わせた組電池としてもよい。