(58)【調査した分野】(Int.Cl.,DB名)
面内方向に並設された複数の伝熱管からなる伝熱管群が前記面内方向に交差する面外方向に複数積層されてなる熱交換器本体と、互いに隣り合う前記伝熱管群の間で前記伝熱管に交差して延びる振止部材とを有する熱交換器の解析方法であって、
コンピュータにより、
前記熱交換器の構造モデルにおける前記伝熱管と前記振止部材との前記面外方向の対向箇所に、これら伝熱管と振止部材との非接触時に荷重が発生せずに接触時に荷重が発生する前記面外方向の非線形バネ要素を適用した非線形モデルを作成する非線形モデル作成工程と、
前記非線形モデルに対して前記面外方向の荷重を与える解析を行って、各前記対向箇所における荷重の値から前記熱交換器の荷重分布を取得する荷重分布取得工程と、
前記荷重分布に基づいて前記構造モデルの前記対向箇所のうち前記荷重が生じている前記対向箇所のみに前記面外方向の線形バネ要素を適用した線形隙間モデルを用いて耐震評価を行う耐震評価工程と、
を行う熱交換器の解析方法。
面内方向に並設された複数の伝熱管からなる伝熱管群が前記面内方向に交差する面外方向に複数積層されてなる熱交換器本体と、互いに隣り合う前記伝熱管群の間で前記伝熱管に交差して延びる振止部材とを有する熱交換器の解析方法であって、
コンピュータにより、
前記熱交換器の構造モデルにおける前記伝熱管と前記振止部材との前記面外方向の対向箇所に、これら伝熱管と振止部材との非接触時に荷重が発生せずに接触時に荷重が発生する前記面外方向の非線形バネ要素を適用した非線形モデルを作成する非線形モデル作成工程と、
前記非線形モデルに対して前記面外方向の荷重を与える解析を行って、各前記対向箇所における荷重の値から前記熱交換器の荷重分布を取得する荷重分布取得工程と、
前記構造モデルの前記対向箇所の全部に前記面外方向の線形バネ要素を適用した線形モデルに地震波を与える応答解析を行って、該線形モデルの変形量を取得する一次応答解析工程と、
を行い、
前記荷重分布取得工程では、前記非線形モデルの変形量が前記一次応答解析工程で取得した変形量と対応した値となるように、前記非線形モデルに対して荷重を与える熱交換器の解析方法。
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、上記熱交換器の伝熱管及び振止部材は、通常時は製作時のばらつきにより多少接触しているものの、互いに大きな荷重を及ぼし合ってはいない。しかしながら地震発生時には、熱交換器全体が大きく変形することにより、伝熱管と振止部材とが互いに大きな荷重を及ぼし合うことになる。これにより、熱交換器全体として、荷重が発生する部分と隙間ができる領域とに分かれる。蒸気発生器の耐震評価の精度を向上させるためには、このような伝熱管及び振止部材の挙動を把握し、熱交換器全体としての荷重分布や隙間分布を取得する必要がある。
【0005】
本発明はこのような課題に鑑みてなされたものであって、耐震評価の精度を向上させることができる熱交換器の解析方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明は、上記課題を解決するため、以下の手段を採用している。
即ち、本発明に係る熱交換器の解析方法は、面内方向に並設された複数の伝熱管からなる伝熱管群が前記面内方向に交差する面外方向に複数積層されてなる熱交換器本体と、互いに隣り合う前記伝熱管群の間で前記伝熱管に交差して延びる振止部材とを有する熱交換器の解析方法であって、
コンピュータにより、前記熱交換器の前記構造モデルにおける前記伝熱管と前記振止部材との前記面外方向の対向箇所に、これら伝熱管と振止部材との非接触時に荷重が発生せずに接触時に荷重が発生する前記面外方向の非線形バネ要素を適用した非線形モデルを作成する非線形モデル作成工程と、
前記非線形モデルに対して前記面外方向の荷重を与える解析を行って、各前記対向箇所における荷重の値から前記熱交換器の荷重分布を取得する荷重分布取得工程と、前記荷重分布に基づいて前記構造モデルの前記対向箇所のうち前記荷重が生じている前記対向箇所のみに前記面外方向の線形バネ要素を適用した線形隙間モデルを用いて耐震評価を行う耐震評価工程と、を行う。
【0007】
このような解析方法によれば、伝熱管及び振止部材の挙動を模擬した非線形バネを適用した解析モデルで解析を行うことで、伝熱管及び振止部材に互いに及ぼされる荷重分布やこれら伝熱管と振止部材との間の隙間分布を把握することができる。そして、このような荷重分布や隙間分布を考慮して応答解析を行うことで、耐震評価の精度を向上させることができる。
ここで、仮に構造モデルにおける伝熱管及び振止部材の全ての対向箇所に線形バネ要素を適用した場合には、伝熱管と振止部材との間に隙間がある場合であっても引っ張り荷重が発生してしまう場合がある。そのため、伝熱管と振止部材との間に隙間が生じている実際の熱交換器とは異なる挙動を示すことになる。
当該解析方法によれば、荷重分布や隙間分布に基づいて、伝熱管と振止部材との対向箇所のうち荷重が0の箇所、即ち、非接触となる箇所には線形バネ要素を適用せず、荷重が発生する箇所にのみ線形バネ要素を適用する。これにより、実際の熱交換器の伝熱管及び振止部材に近い挙動を模擬することができる。
また、地震波を与える動的解析を行う応答解析の際には、解析対象となる線形隙間モデルが非線形要素を含んでいないため、解析時間が長大化してしまうこともない。
【0010】
さらに、本発明に係る熱交換器の解析方法では、
前記線形隙間モデルは、前記構造モデルにおける各前記対向箇所に、各前記対向箇所の荷重に応じた値を弾性剛性とする前記面内方向の線形バネ要素をさらに適用
したモデルであってもよい。
【0011】
これにより、伝熱管と振止部材とが互いに面内方向に及ぼす摩擦力を模擬することができる。したがって、より実際の熱交換器の挙動に近似した解析を行うことができる。
【0012】
また、本発明に係る熱交換器の解析方法では、前記コンピュータにより、前記構造モデルの前記対向箇所の全部に前記面外方向の線形バネ要素を適用した線形モデルに地震波を与える応答解析を行って、該線形モデルの変形量を取得する一次応答解析工程をさらに行い、前記荷重分布取得工程では、前記非線形モデルの変形量が前記一次応答解析工程で取得した変形量と対応した値となるように、前記非線形モデルに対して荷重を与えてもよい。
さらに、本発明に係る熱交換器の解析方法は、面内方向に並設された複数の伝熱管からなる伝熱管群が前記面内方向に交差する面外方向に複数積層されてなる熱交換器本体と、互いに隣り合う前記伝熱管群の間で前記伝熱管に交差して延びる振止部材とを有する熱交換器の解析方法であって、コンピュータにより、前記熱交換器の
構造モデルにおける前記伝熱管と前記振止部材との前記面外方向の対向箇所に、これら伝熱管と振止部材との非接触時に荷重が発生せずに接触時に荷重が発生する前記面外方向の非線形バネ要素を適用した非線形モデルを作成する非線形モデル作成工程と、
前記非線形モデルに対して前記面外方向の荷重を与える解析を行って、各前記対向箇所における荷重の値から前記熱交換器の荷重分布を取得する荷重分布取得工程と、前記構造モデルの前記対向箇所の全部に前記面外方向の線形バネ要素を適用した線形モデルに地震波を与える応答解析を行って、該線形モデルの変形量を取得する一次応答解析工程と、を行い、前記荷重分布取得工程では、前記非線形モデルの変形量が前記一次応答解析工程で取得した変形量と対応した値となるように、前記非線形モデルに対して荷重を与えてもよい。
【0013】
これにより、熱交換器に地震波が与えられた際の伝熱管及び振止部材の挙動を模擬しながら、円滑に解析を行うことができる。
即ち、本発明では、地震波を与える動的解析では線形要素のみが適用された線形モデルを用い、荷重を与える静的解析では非線形要素が適用された非線形モデルを用いている。そのため、解析時間が不用意に長大化することを抑制しながら、伝熱管及び振止部材の実際の挙動に近似した解析結果を取得することができる。
【発明の効果】
【0014】
本発明の熱交換器の解析方法によれば、耐震評価の精度を向上させることができる。
【発明を実施するための形態】
【0016】
<第一実施形態>
以下、本発明の熱交換器の解析方法について、図面を参照して詳細に説明する。
図1に示す解析対象となる熱交換器を備えた蒸気発生器1は、例えば、加圧水型原子炉(PWR:Pressurized Water Reactor)に用いられる。加圧水型原子炉は、原子炉冷却材及び中性子減速材として軽水を使用しており、この軽水を一次冷却材として用いる。加圧水型原子炉は、一次冷却材を、炉心全体にわたって沸騰しない高温高圧水として、蒸気発生器1に送る。
【0017】
図1に示す蒸気発生器1は、上下方向に延在し、かつ、密閉された中空円筒形状であって、上半部に対して下半部の方が小径をなす胴部2を備えている。胴部2の下端側には水室21が配置され、上端側には蒸気排出口22が配置されている。下半部から上半部にかけての領域には、胴部2の内壁面に間隔をあけて配列された円筒状の管群外筒(ラッパー管)3が設けられている。この管群外筒3の下端部は、胴部2の下半部内の下方に配置された管板(不図示)まで延在している。管群外筒3内には、複数の伝熱管15を有する熱交換器20が設けられている。
【0018】
この熱交換器20は、Uベンド部10を有する。Uベンド部10は、複数の伝熱管15を全体として半球状をなすように配列したものである。それぞれの伝熱管15は、曲がり部15Uを有している。すなわち、これら曲がり部15U同士が互いに重なり合うように配列されることで、全体として半球状をなすUベンド部10が形成されている。
【0019】
より具体的には、この熱交換器20は、
図2〜
図4に示すように、熱交換器本体11と、振止部材12と、保持部材13と、ブリッジ14と、を備えている。熱交換器本体11は、複数の伝熱管群16を面内方向D1に直交する面外方向D2に積層することによって構成される。この複数の伝熱管群16は、同一面内(面内方向D1)に並設された複数の伝熱管15から構成されている。
【0020】
各伝熱管15は、管状をなす部材であって、それぞれ下端が
図1に示す水室21に接続された一対の直線部と、これら直線部の上端部同士を接続する曲がり部15Uと、を有している。
【0021】
伝熱管群16は、曲がり部15Uの大きさが互いに異なる複数の伝熱管15を、曲がり部15Uの径が小さいものから順に該曲がり部15Uの外側に向かって配列することで構成されている。このとき、各伝熱管15の直線部は互いに平行をなしている。これにより、上記のように同一平面内に配列された複数の伝熱管15を有する伝熱管群16が形成されている。なお、面内方向D1とは、伝熱管群16における各伝熱管15が配置される平面に沿う方向を意味している。
【0022】
熱交換器本体11は、伝熱管群16を面内方向D1に直交する面外方向D2に複数積層することで構成される。なお、面外方向D2は、面内方向D1に直交する方向とせずに、交差している方向としてもよい。
このように伝熱管群16が積層されることで、熱交換器本体11の頂部では、複数の曲がり部15Uが全体として半球状をなすUベンド部を形成する。このUベンド部10は、熱交換器20の上方を向くようにして配置される。
【0023】
このような熱交換器本体11は、胴部2の内側に固定された管支持板23に支持されている。即ち、管支持板には、多数の貫通孔が形成されており、この貫通孔内に各伝熱管15が非接触状態で挿通されている。言い換えれば、各伝熱管群16における複数の伝熱管15は、隣り合う他の伝熱管15との間に間隙を形成するように配置されている。
【0024】
振止部材12は、面外方向D2に積層された伝熱管群16の間にそれぞれ設けられている。即ち、振止部材12は、互いに隣り合う伝熱管群同士の間に形成あれる隙間内に設けられている。
振止部材12は、全体としてI字状、又はV字状をなす矩形断面の棒状部材である。振止部材12の両端部には、固定部12aが設けられている。I字状の振止部材12は、Uベンド部10の中央部に位置している。さらに、V字状の振止部材12では、積層される伝熱管群16の間におけるUベンド部10がなす半球の中心側にV字の頂部が位置している。以上のような構成により、振止部材12は、面外方向D2に隣り合う伝熱管群16に挟まれるように面内方向D1に延在している。
【0025】
保持部材13は、Uベンド部10の表面から突出する振止部材12の固定部12a同士を互いに連結する部材である。この保持部材13は、Uベンド部10の半球面に沿って延びる円弧状をなしている。
【0026】
ブリッジ14は、面外方向D2に間隔をあけて設けられた複数の振止部材12にそれぞれ接続されている。ここで、一部の振止部材12の固定部12aは、他の振止部材12の固定部12aよりも半球面の径方向外側に向かって突出している。ブリッジ14は、この突出部分に接続されている。以上により、ブリッジ14と振止部材12とが互いに接続される。
【0027】
このブリッジ14は、Uベンド部10の外周、すなわち、伝熱管群16の半球状の外周に沿って面内方向D1に延在するように配置された円弧状の部材である。なお、
図2では、1つのみのブリッジ14が示されているが、実際には
図3に示すように、複数のブリッジ14が面外方向D2に間隔をあけて配置されている。
【0028】
以上のように構成された蒸気発生器1では、
図1に示すように、加圧水型原子炉で加熱された一次冷却水が水室21の入室に送られ、熱交換器本体11の多数の伝熱管15内を通って循環して水室21の出室に到達する。一方、復水器で冷却された二次冷却水は、給水管に送られ、胴部2内の給水路を通って、伝熱管群16に沿って上昇する。この際、伝熱管15内を流通する高温の一次冷却水と伝熱管15周囲の二次冷却水との間で熱交換が行われる。この熱交換を経て冷却された一次冷却水は、出室から加圧水型原子炉内に戻される。一方、高温高圧の一次冷却水と熱交換した二次冷却水は、胴部2内を上昇し、気水分離器で蒸気と熱水とに分離される。分離された蒸気は、湿分分離器で湿分を除去されてからタービンに送られる。
【0029】
<熱交換器の解析方法>
次に上述した蒸気発生器1の熱交換器20の解析方法について、
図5に示すフローチャートを参照して説明する。
本実施形態の解析方法は、構造モデル作成工程S1、線形モデル作成工程S2、一次応答解析工程S3、非線形モデル作成工程S4、荷重分布取得工程S5、線形隙間モデル作成工程S6及び耐震評価工程S7を含む。
【0030】
<構造モデル作成工程>
構造モデル作成工程S1では、
図6に示すような熱交換器20の構造モデルMを作成する。即ち、熱交換器20の構成部品としての伝熱管15、振止部材12、保持部材13及びブリッジ14をモデル化した構成部品モデルを熱交換器20の図面データに基づいて組み合わせ、熱交換器20全体のFEMモデルとしての構造モデルMを作成する。
具体的には、構造モデル作成工程S1では、自動生成プログラムが組み込まれたコンピュータを使用し、予め作成された上記の各構成部品モデル及び熱交換器20の図面データに基づいて管群全体(Uベンド部を含む熱交換器20の上部全体)の構造モデルMを自動作成する。
なお、図面データは、構成部品の位置や姿勢や、構成部品同士の接続部の位置等が設定された熱交換器20の設計図面である。当該図面データは、上記の自動生成プログラムに予め組み込まれている。
【0031】
<線形モデル作成工程>
構造モデル作成工程S1の後に、線形モデル作成工程S2を行う。線形モデル作成工程S2では、構造モデルMにおける伝熱管15と振止部材12との対向箇所25の全部に、面外方向D2の線形バネ要素を適用することで、線形モデルを作成する。
ここで、上記構造モデルMにおける伝熱管15と振止部材12との相対位置関係は、
図7に示す通りとなっている。即ち、面外方向位D2に隣り合う一対の振止部材12の間に配置される伝熱管15は、これら振止部材12の延在方向に交差するように延在しており、伝熱管15は、該伝熱管15を面外方向D2から挟み込む一対の振止部材12の間で隙間をあけて配置されている。伝熱管15は、振止部材12に対して当該隙間を介して面外方向D2に対向している。伝熱管15と振止部材12との対向箇所25とは、伝熱管15と振止部材12とが面外方向D2に最短距離を示す部分である。
【0032】
線形モデル作成工程S2では、構造モデルMにおける上記対向箇所25の全てに、伝熱管15と振止部材12とに結合された面外方向D2の線形バネ要素を適用する。線形バネ要素は、
図8に示す通り、荷重と相対変位とが線形関係を示す荷重-変位特性を有するバネ要素である。線形バネ要素の特性線は、相対変位の増加とともに荷重も増加する直線状をなす。ここで、
図8における荷重は、伝熱管15と振止部材12との間で作用し合う荷重を示している。また、相対変位は、伝熱管15と振止部材12との相対変位を示している。線形バネ要素では、伝熱管15と振止部材12との初期位置(設計データ上の位置、即ち、外力が及んでいない構造モデルM上の位置)にある場合の相対変位を基準値0としている。そして、伝熱管15と振止部材12とが基準値よりも近接した状態を正、伝熱管15と振止部材12とが基準値よりも離間した状態を負としている。
【0033】
なお、上述の通り、伝熱管15と振止部材12との間には隙間が存在しているため、相対変位が0から所定の正の値の範囲にある場合は伝熱管15と振止部材12とは接触しない。そのため、線形バネ要素の荷重‐変位特性の特性線は、
図8に示すように、原点を通らずに横軸となる相対変位の正方向に変位した直線状をなしている。即ち、線形バネ要素の荷重‐荷重変位特性には、上述した隙間を踏まえた要素(ギャップ要素)を含んでいる。
【0034】
なお、構造モデルMでは、
図7に示すように、伝熱管15を該伝熱管15に沿って延びる一次元要素15aとして設定してもよい、振止部材12を該振止部材12に沿って延びる線分のこれらの延在方向に延びる一次元要素15bとして示してもよい。また、線形モデル作成工程S2では、伝熱管15と振止部材12との対向箇所25を、これら伝熱管15と振止部材12との最短距離を通る一次元要素30として示してもよい。そして、当該対向箇所25を示す一次元要素30に
図8に示す面外方向D2の線形バネ要素を設定してもよい。
以上のように、構造モデルMにおける伝熱管15と振止部材12との対向箇所25に面外方向D2の線形バネ要素を適用することで、線形モデルが作成される。
【0035】
<一次応答解析工程>
線形モデル作成工程S2の後に、一次応答解析工程S3を行う。一次応答解析工程S3では、線形モデルに地震波を与える応答解析を行って、該線形モデルの変形量を取得する。
即ち、一次応答解析工程S3では、上記の線形モデルに対して地震波(地震加速度)を与え、地震波時刻歴応答解析(動的解析)を行い、変位の応答波形を得る。ここでの地震波は、実際に評価すべき地震に対応する地震波である。また、実際の地震時には高次モードよりも一次モードが卓越することから、一次モードのみを考慮して上記応答解析を行う。
そして、上記応答波形に基づいて、例えば線形モデル全体としての面外方向D2の最大変位を一次予想の変形量として取得する。なお、応答波形から熱交換器20全体のひずみを求め、当該ひずみを変形量としてもよい。
【0036】
<非線形モデル作成工程>
次に非線形モデル作成工程S4を行う。非線形モデル作成工程S4は、構造モデル作成工程S1の後に線形モデル作成工程S2や一次応答解析工程S3と並行して行ってもよいし、これら線形モデル作成工程S2、一次応答解析工程S3の前段又は後段に行ってもよい。
非線形モデル作成工程S4では、
図7に示す構造モデルMにおける伝熱管15と振止部材12との対向箇所25に、面外方向D2の非線形バネ要素を適用することで、非線形モデルを作成する。本実施形態では、対向箇所25の全てに、伝熱管15と振止部材12とに結合された面外方向D2の非線形バネ要素を適用する。即ち、線形モデル作成工程S2では、構造モデルMの対向箇所25に線形バネ要素を設定したのに対して、非線形モデル作成工程S4では、構造モデルMの対向箇所25に非線形バネ要素を設定する。
【0037】
非線形バネ要素は、
図9に示す通り、荷重と相対変位とが非線形関係を示す荷重-変位特性を有するバネ要素である。
図9に示す荷重及び相対変位の定義は、
図8に示す線形バネ要素と同様である。
【0038】
非線形バネ要素の荷重‐変位特性は、相対変位が負である場合、及び、0から正の所定の値の範囲にある場合に、荷重の値は0となる。一方、相対変位が正の所定の値を超えた場合には、相対変位と荷重とが正の相関となる直線状をなしている。これにより、非線形バネ要素は、伝熱管15と振止部材12との非接触時に荷重が発生せずに接触時のみに荷重が発生するといった実際の熱交換器20での挙動を模擬している。なお、非線形バネ要素の荷重‐変位特性で所定の正の値になって初めて相対変位の増加に伴って荷重が増加するのは、線形バネ要素と同様にギャップ要素を含むためである。これにより、伝熱管15と振止部材12との隙間がなくなるまで変位して初めて荷重が生じるといった実際の挙動を模擬している。
以上のように、構造モデルMにおける伝熱管15と振止部材12との対向箇所25に面外方向D2の非線形バネ要素を適用することで、非線形モデルが作成される。
【0039】
<荷重分布取得工程>
一次応答解析工程S3及び非線形モデル作成工程S4の後に、荷重分布取得工程S5を行う。荷重分布取得工程S5では、非線形モデルに対して慣性加速度(荷重)を与える解析(静的解析)を行って、各対向箇所25における荷重の値から前記熱交換器20の荷重分布を取得する。また、荷重分布取得工程S5では、同時に熱交換器20全体としての上記対向箇所25の隙間分布を取得できる。即ち、荷重分布を取得した結果、各対向箇所25における荷重が0となる箇所は、伝熱管15と振止部材12とが非接触となり隙間が生じているとみなすことができる。したがって、荷重分布と同時に隙間分布を取得できる。
【0040】
荷重分布取得工程S5では、上記の非線形モデルに対して面外方向D2の慣性加速度を与えた際の応答解析(静的解析)を行う。当該解析では、
図10に示す変形時の非線形モデルの変形量が、一次応答解析工程S3で取得した変形量、即ち、地震波に対する線形モデルの変形量に一致するように慣性加速度を付与する。また、一次応答解析と同様の理由から、一次モードのみを考慮して上記解析を行う。
【0041】
ここで一般に、地震時には慣性加速度が質量に作用するため、面外方向D2に慣性加速度を作用させた場合の変形と、地震時における一次モードでの面外方向D2の変形は酷似している。そのため、非線形モデルに面外方向D2の慣性加速度を与えた際の変形量は、地震時における一次モードでの面外方向D2の変形量に近似する。したがって、非線形モデルの変形量が線形モデルの変形量と一致させるように慣性加速度を与えることで、地震波に対する非線形モデルの応答に相当するデータを取得することができる。そして、当該応答解析の結果に基づく非線形モデルの変形状態から、当該非線形モデルが一次モードで変形した際の各対向箇所25における荷重を取得することができる。なお、当該荷重とは、熱交換器20の変形により伝熱管15と伝熱管15とが面外方向D2に接触することで生じる荷重である。
【0042】
これにより、熱交換器20全体としての対向箇所25の荷重分布を取得することができる。また、各対向箇所25のうち荷重が発生していない箇所は、伝熱管15と振止部材12とが非接触状態であることを示している。そのため、
図11に示すように、熱交換器20全体としての対向箇所25の隙間分布を取得することができる。
【0043】
<線形隙間モデル作成工程>
荷重分布取得工程S5の後に、線形隙間モデル作成工程S6を行う。線形隙間モデル作成工程S6では、荷重分布又は隙間分布に基づいて、構造モデルMの対向箇所25のうち荷重が生じている対向箇所25のみに面外方向D2の線形バネ要素を適用した線形隙間モデルを作成する。
具体的には、荷重分布取得工程S5で取得した荷重分布又は隙間分布から、各対向箇所25を隙間が生じている箇所(荷重が0の箇所)、隙間が生じていない箇所(荷重が発生している箇所)の2つのグループに区分けする。そして、構造モデルMに対して対向箇所25における隙間が生じていない箇所のみに、線形モデル作成工程S2と同様の
図8に示す線形バネ要素を設定することで、線形隙間モデルを作成する。
各対向箇所25のうち、伝熱管15と振止部材12とが非接触の箇所にはそもそも荷重が生じないため、線形バネ要素の設定は不要となる。そのため、線形隙間モデルでは、非接触箇所には線形バネ要素を設定しない。
【0044】
<耐震評価工程>
そして、線形隙間モデル作成工程S6の後に、線形隙間モデルに対して耐震評価を行う。具体的には、線形隙間モデルに対して固有値解析や動的解析としての地震波時刻歴応答解析等を施し、当該線形隙間モデルの耐振性等を熱交換器20の耐振性等として評価する。
【0045】
以上のように、本実施形態の解析方法によれば、伝熱管15及び振止部材12の接触・非接触時の挙動を模擬した非線形バネを適用した解析モデル(非線形モデル)で応答解析を行うことで、伝熱管15及び振止部材12に互いに及ぼされる荷重分布や隙間分布を把握することができる。
【0046】
また、伝熱管15と振止部材12との対向箇所25のうち接触する箇所のみに線形バネ要素を適用した線形隙間モデルを解析対象として耐震評価を行うため、精度高く評価を行うことができる。
即ち、例えば構造モデルMにおける伝熱管15及び振止部材12の全ての対向箇所25に
図8に示す線形バネ要素を適用すれば、伝熱管15と振止部材12との間に隙間が生じている場合であっても引っ張り荷重が発生することになる。この場合、実際の熱交換器20とは異なる挙動を示すことになり、解析精度の低下を招く。
【0047】
これに対して本実施形態の解析方法によれば、荷重分布又は隙間分布に基づいて、伝熱管15と振止部材12との対向箇所25のうち荷重が0の箇所(非接触となる箇所)には線形バネ要素を適用せず、荷重が発生する箇所(接触する箇所)にのみ線形バネ要素を適用している。これにより、実際の熱交換器20の伝熱管15及び振止部材12により近い挙動を模擬することができる。即ち、伝熱管15と振止部材12との間に隙間が生じている場合であってもこれらの間に引っ張り力が発生しないため、解析結果が実際の熱交換器20から大きく乖離してしまうことはない。
【0048】
また、本実施形態では、地震波を与える動的解析を行う工程(一次応答解析工程S3、線形隙間モデル作成工程S6)では線形要素のみが適用された線形モデル又は線形隙間モデルを用い、慣性加速度を与える静的解析を行う工程(荷重分布取得工程S5)では非線形要素が適用された非線形モデルを用いている。解析が複雑な動的解析では、線形要素のみが適用された解析モデルを用いているため、解析時間が長大化することはない。さらに、非線形要素が適用された解析モデルについては動的解析に比べて計算が容易な静的解析のみを行っているため、解析時間の長大化を抑えることができる。したがって、解析全体を短時間で行うことができる。
【0049】
次に本発明の第二実施形態について説明する。第二実施形態では、第一実施形態と同様の構成要素には同様の符号を付して詳細な説明を省略する。
第二実施形態では、線形隙間モデル作成工程S6で、第一実施形態の線形隙間モデルにおける伝熱管15と振止部材12との各対向箇所25に、
図12に示すように、これら伝熱管15と振止部材12とに結合された面内方向D1の線形バネ要素を40適用する。当該線形バネ要素40は、伝熱管15と振止部材12とが接触した際に生じる面内方向D1の摩擦力を模擬するものである。
【0050】
面内方向D1の線形バネ要素40の弾性剛性は、荷重分布取得工程S5で取得した各対向箇所25での荷重の値に基づいて定められる。即ち、伝熱管15と振止部材12とが所定の荷重で面外方向D1に接触した場合は、該荷重に摩擦係数を乗じた値が伝熱管15と振止部材12との摩擦力となる。そして、この摩擦力は、伝熱管15と振止部材12とが接触した状態で面外方向D2に相対移動する際の弾性剛性に対応する。したがって、各対向箇所25における面外方向D2の荷重と面外方向D2の相対変位との関係である荷重‐変位特性は、
図13に示すように、それぞれ対向箇所25における荷重に対応する弾性剛性K
1、K
2、K
3、K
4を有する直線状を示す。各対向箇所25での面内方向D1の線形バネ要素は、それぞれ一自由度系のモデルとすることができる。
【0051】
そして、このような線形隙間モデルに対して、第一実施形態同様、耐震評価工程S7を実施する。これにより、伝熱管15と振止部材12とが互いに面内方向D1に及ぼす摩擦力を考慮した応答解析を行うことができる。したがって、より実際の熱交換器20の挙動に近似した解析を行うことができ、耐震評価の精度をさらに向上させることができる。
【0052】
以上、本発明の実施の形態について説明したが、本発明はこれに限定されることなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば一次応答解析工程S3では、一次モードのみを考慮して解析を行ったが、線形モデルに対して固有値解析を行った上で評価モードを選定し、当該選定モードを考慮して応答解析を行ってもよい。
一次応答解析工程S3では、慣性加速度を与える解析のみならず、慣性加速度以外の荷重を与えて変形量を求める解析を行ってもよい。
また、実施形態では、蒸気発生器1の熱交換器20に本発明の解析方法を適用した例について説明したが、他の熱交換器20に適用してもよい。