(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明は、この様な状況に鑑みてなされたものであり、正孔もしくは電子リーク防止特性、正孔もしくは電子輸送特性、プロセス温度に対する耐熱性、可視光透明性等に優れた、光電変換素子をはじめとする種々のエレクトロニクスデバイスを提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者は、上記課題を解決すべく、鋭意努力した結果、下記式(1)で表される化合物を光電変換素子に適用したところ前記諸課題を解決することを見出し、本発明を完成するに至った。
即ち、本発明は、下記の通りである。
[1]下記式(1)で表される化合物を含む撮像素子用光電変換素子用材料
【0010】
【化1】
【0011】
(式(1)中、R
1及びR
2はそれぞれ独立に置換又は無置換の芳香族基を表す。)、
[2]式(1)の化合物が下記式(2)で表される化合物である上記[1]に記載の撮像素子用光電変換素子用材料
【0012】
【化2】
【0013】
(式(2)中、R
1及びR
2は上記[1]に記載の式(1)におけるのと同じ意味を表す。)、
[3]式(1)又は式(2)におけるR
1及びR
2がそれぞれ独立に置換又は無置換の芳香族炭化水素基である上記[1]又は[2]に記載の撮像素子用光電変換素子用材料、
[4]式(1)又は式(2)におけるR
1及びR
2が置換又は無置換のフェニル基である上記[3]に記載の撮像素子用光電変換素子用材料、
[5]式(1)又は式(2)におけるR
1及びR
2が置換又は無置換の芳香族炭化水素基を有するフェニル基である上記[4]に記載の撮像素子用光電変換素子用材料、
[6]式(1)又は式(2)におけるR
1及びR
2が置換又は無置換のフェニル基を有するフェニル基である上記[5]に記載の撮像素子用光電変換素子用材料、
[7]式(1)又は式(2)におけるR
1及びR
2がビフェニル基を有するフェニル基である上記[6]に記載の撮像素子用光電変換素子用材料、
[8]式(1)又は式(2)におけるR
1及びR
2が炭素数1乃至12のアルキル基を有するフェニル基である上記[4]に記載の撮像素子用光電変換素子用材料、
[9]式(1)又は式(2)におけるR
1及びR
2がメチル基又はエチル基を有するフェニル基である上記[8]に記載の撮像素子用光電変換素子用材料、
[10]上記[1]及至[9]のいずれか一項に記載の撮像素子用光電変換素子用材料を含んでなる撮像素子用光電変換素子、
[11](A)第一の電極膜、(B)第二の電極膜及び該第一の電極膜と該第二の電極膜の間に配置された(C)光電変換部を有する光電変換素子であって、該(C)光電変換部が少なくとも(c−1)光電変換層及び(c−2)光電変換層以外の有機薄膜層を含んでなり、かつ該(c−2)光電変換層以外の有機薄膜層が[1]乃至[9]のいずれか一項に記載の撮像素子用光電変換素子用材料を含んでなる撮像素子用光電変換素子、
[12](c−2)光電変換層以外の有機薄膜層が電子ブロック層である上記[11]に記載の撮像素子用光電変換素子、
[13](c−2)光電変換層以外の有機薄膜層が正孔ブロック層である上記[11]に記載の撮像素子用光電変換素子、
[14](c−2)光電変換層以外の有機薄膜層が電子輸送層である上記[11]に記載の撮像素子用光電変換素子、
[15](c−2)光電変換層以外の有機薄膜層が正孔輸送層である上記[11]に記載の撮像素子用光電変換素子、
[16]更に、(D)正孔蓄積部を有する薄膜トランジスタ及び(E)該薄膜トランジスタ内に蓄積された電荷に応じた信号を読み取る信号読み取り部を有する上記[10]乃至[15]のいずれか一項に記載の撮像素子用光電変換素子、
[17](D)正孔蓄積部を有する薄膜トランジスタが、更に(d)正孔蓄積部と第一の電極膜及び第二の電極膜のいずれか一方とを電気的に接続する接続部を有する上記[16]に記載の撮像素子用光電変換素子、
[18]上記[10]及至[17]のいずれか一項に記載の撮像素子用光電変換素子を複数アレイ状に配置した撮像素子、
[19]上記[10]及至[17]のいずれか一項に記載の撮像素子用光電変換素子または上記[18]に記載の撮像素子を含む光センサー。
【発明の効果】
【0014】
本発明により、正孔又は電子のリーク防止性や輸送性、さらには耐熱性や可視光透明性等の要求特性に優れた、式(1)で表される化合物を使用した新規な撮像素子用光電変換素子を提供することができる。
【発明を実施するための形態】
【0016】
本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づくものであるが、本発明はそのような実施態様や具体例に限定されるものではない。
【0017】
本発明の撮像素子用光電変換素子用材料は、下記一般式(1)で表される化合物を含んでなる。
【0019】
上記式(1)中のR
1及びR
2はそれぞれ独立に置換又は無置換の芳香族基を表す。ここで、「置換又は無置換の芳香族基」とは、少なくとも一種の置換基を有する芳香族基又は置換基を有しない芳香族基を意味する。芳香族基が置換基を有する場合は、少なくとも一種の置換基を有していればよく、置換位置と置換基数も特に制限されない。
式(1)のR
1及びR
2が表す芳香族基の具体例としては、フェニル基、ビフェニル基、ナフチル基、アンスリル基、フェナンスリル基、ピレニル基及びベンゾピレニル基等の芳香族炭化水素基、ピリジル基、ピラジル基、ピリミジル基、キノリル基、イソキノリル基、ピロリル基、インドレニル基、イミダゾリル基、カルバゾリル基、チエニル基、フリル基、ピラニル基及びピリドニル基等の複素環基、ベンゾキノリル基、アントラキノリル基及びベンゾチエニル基等の縮合系複素環基等が挙げられる。これらのうち、好ましいものは芳香族炭化水素基又は複素環基であり、より好ましいものはフェニル基、ビフェニル基、ナフチル基、フェナンスリル基又はカルバゾリル基であり、更に好ましいものはフェニル基、フェナンスリル基又はカルバゾリル基であり、特に好ましいのはフェニル基又はビフェニル基である。また、R
1及びR
2の両者が同一であることが好ましい。
【0020】
式(1)のR
1及びR
2が表す芳香族基が有する置換基に制限はないが、例えばアルキル基、アルコキシ基、芳香族基、ハロゲン原子、ヒドロキシル基、メルカプト基、ニトロ基、アルキル置換アミノ基、アリール置換アミノ基、非置換アミノ基(NH
3基)、アシル基、アルコキシカルボニル基、シアノ基、イソシアノ基等が挙げられる。
【0021】
式(1)のR
1及びR
2が表す芳香族基が有する置換基としてのアルキル基の具体例としては、メチル基、エチル基、プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、t−ブチル基、n−ペンチル基、iso−ペンチル基、t−ペンチル基、sec−ペンチル基、n−ヘキシル基、iso−ヘキシル基、n−ヘプチル基、sec−ヘプチル基、n−オクチル基、n−ノニル基、sec−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−エイコシル基、ドコシル基、n−ペンタコシル基、n−オクタコシル基、n−トリコンチル基、5−(n−ペンチル)デシル基、ヘネイコシル基、トリコシル基、テトラコシル基、ヘキサコシル基、ヘプタコシル基、ノナコシル基、n−トリアコンチル基、スクアリル基、ドトリアコンチル基及びヘキサトリアコンチル基等の炭素数1乃至36のアルキル基が挙げられ、炭素数1乃至24のアルキル基であることが好ましく、炭素数1乃至20のアルキル基であることがより好ましく、炭素数1乃至12のアルキル基であることが更に好ましく、炭素数1乃至6のアルキル基であることが特に好ましく、炭素数1乃至4のアルキル基であることが最も好ましい。
【0022】
式(1)のR
1及びR
2が表す芳香族基が有する置換基としてのアルコキル基の具体例としては,メトキシ基、エトキシ基、プロポキシ基、iso−プロポキシ基、n−ブトキシ基、iso−ブトキシ基、t−ブトキシ基、n−ペンチルオキシ基、iso−ペンチルオキシ基、t−ペンチルオキシ基、sec−ペンチルオキシ基、n−ヘキシルオキシ基、iso−ヘキシルオキシ基、n−ヘプチルオキシ基、sec−ヘプチルオキシ基、n−オクチルオキシ基、n−ノニルオキシ基、sec−ノニルオキシ基、n−デシルオキシ基、n−ウンデシルオキシ基、n−ドデシルオキシ基、n−トリデシルオキシ基、n−テトラデシルオキシ基、n−ペンタデシルオキシ基、n−ヘキサデシルオキシ基、n−ヘプタデシルオキシ基、n−オクタデシルオキシ基、n−ノナデシルオキシ基、n−エイコシルオキシ基、ドコシルオキシ基、n−ペンタコシルオキシ基、n−オクタコシルオキシ基、n−トリコンチルオキシ基、5−(n−ペンチル)デシルオキシ基、ヘネイコシルオキシ基、トリコシルオキシ基、テトラコシルオキシ基、ヘキサコシルオキシ基、ヘプタコシルオキシ基、ノナコシルオキシ基、n−トリアコンチルオキシ基、スクアリルオキシ基、ドトリアコンチルオキシ基及びヘキサトリアコンチルオキシ基等の炭素数1乃至36のアルコキシ基が挙げられ、炭素数1乃至24のアルコキシ基であることが好ましく、炭素数1乃至20のアルコキシ基であることがより好ましく、炭素数1乃至12のアルコキシ基であることが更に好ましく、炭素数1乃至6のアルコキシ基であることが特に好ましく、炭素数1乃至4のアルコキシ基であることが最も好ましい。
【0023】
式(1)のR
1及びR
2が表す芳香族基が有する置換基としての芳香族基の具体例としては、式(1)のR
1及びR
2が表す芳香族基の項で述べたものと同じものが挙げられ、好ましいものもまた同じものが挙げられる。
式(1)のR
1及びR
2が表す芳香族基が有する置換基としてのハロゲン原子の具体例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
式(1)のR
1及びR
2が表す芳香族基が有する置換基としてのアルキル置換アミノ基は、モノアルキル置換アミノ基及びジアルキル置換アミノ基の何れにも制限されず、これらアルキル置換アミノ基におけるアルキル基としては、式(1)のR
1及びR
2が表す芳香族基が有する置換基としてのアルキル基と同じものが挙げられる。
【0024】
式(1)のR
1及びR
2が表す芳香族基が有する置換基としてのアリール置換アミノ基は、モノアリール置換アミノ基及びジアリール置換アミノ基の何れにも制限されず、これらアリール置換アミノ基におけるアリール基としては、式(1)のR
1及びR
2が表す芳香族基の項に記載した芳香族炭化水素基と同じものが挙げられる。
式(1)のR
1及びR
2が表す芳香族基が有する置換基としてのアシル基としては、式(1)のR
1及びR
2が表す芳香族基の項に記載した芳香族炭化水素基や式(1)のR
1及びR
2が表す芳香族基が有する置換基としてのアルキル基と、カルボニル基(=CO基)が結合した置換基が挙げられる。
式(1)のR
1及びR
2が表す芳香族基が有する置換基としてのアルコキシカルボニル基としては、式(1)のR
1及びR
2が表す芳香族基が有する置換基としてのアルコキシ基とカルボニル基が結合した置換基が挙げられる。
式(1)のR
1及びR
2が表す芳香族基が有する置換基としては、アルキル基、芳香族基、ハロゲン原子又はアルコキシル基であることが好ましく、アルキル基又は芳香族炭化水素基であることがより好ましく、メチル基、エチル基又はフェニル基であることが更に好ましく、メチル基又はエチル基であることが特に好ましい。
【0025】
即ち、式(1)におけるR
1及びR
2としては、それぞれ独立にアルキル基、芳香族炭化水素基、ハロゲン原子及びアルコキシル基からなる群より選択される置換基を有していてもよい芳香族炭化水素基又は複素環基であることが好ましく、それぞれ独立にアルキル基及び芳香族炭化水素基からなる群より選択される置換基を有していてもよいフェニル基、ナフチル基、フェナンスリル基又はカルバゾリル基であることがより好ましく、それぞれ独立にメチル基、エチル基、フェニル基及びビフェニル基からなる群より選択される置換基を有していてもよいフェニル基、フェナンスリル基又はカルバゾリル基であることが特に好ましく、それぞれ独立にメチル基、フェニル基及びビフェニル基からなる群より選択される置換基を有していてもよいフェニル基であることが最も好ましい。また、上記の好ましい態様において、R
1とR
2が同一であることが、更に好ましい。
【0026】
より具体的には、式(1)におけるR
1及びR
2の両者が同一の、無置換フェニル基、4位に炭素数1乃至4のアルキル基を有するフェニル基、フェニル基若しくはビフェニル基を有するフェニル基(フェニル基若しくはビフェニル基の置換位置は2位,3位及び4位の何れでも良い)、3及び5位にフェニル基を有するフェニル基、無置換のフェナンスリル基又は無置換のカルバゾリル基であることが好ましい。
より具体的には、式(1)におけるR
1及びR
2の両者が同一の、無置換フェニル基、4位に炭素数1乃至4のアルキル基を有するフェニル基、フェニル基若しくはビフェニル基を有するフェニル基(フェニル基若しくはビフェニル基の置換位置は2位,3位及び4位の何れでも良い)、3及び5位にフェニル基を有するフェニル基であることがより好ましい。
より具体的には、式(1)におけるR
1及びR
2の両者が同一の、フェニル基若しくはビフェニル基を有するフェニル基(フェニル基の置換位置は2位,3位及び4位の何れでも良い)、3及び5位にフェニル基を有するフェニル基であることが更に好ましい。
より具体的には、式(1)におけるR
1及びR
2の両者が同一の、フェニル基若しくはビフェニル基を有するフェニル基(フェニル基若しくはビフェニル基の置換位置は2位,3位及び4位の何れでも良い)であることが特に好ましい。
より具体的には、式(1)におけるR
1及びR
2の両者が同一のビフェニル基を有するフェニル基(ビフェニル基の置換位置は2位,3位及び4位の何れでも良い)であることが最も好ましい。
【0027】
上記式(1)におけるR
1及びR
2の置換位置は特に制限されないが、式(1)中の[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンにおける2,7位であることが好ましい。即ち、式(1)で表される化合物としては、下記一般式(2)で表される化合物が好ましい。
【0029】
式(2)中、R
1及びR
2は式(1)におけるのと同じ意味を表し、好ましいものも式(1)におけるのと同じである。
即ち、式(2)で表される化合物としては、式(2)におけるR
1及びR
2の両者が、上記した式(1)における好ましい〜最も好ましい態様のものが好ましく、後述する具体例の式(20)、(21)、(25)又は(26)で表される化合物がより好ましく、具体例の式(20)又は(25)で表される化合物がより好ましく、具体例の式(25)で表される化合物が更に好ましい。
【0030】
式(1)で表される化合物は、特許文献1、特許文献6及び非特許文献1に開示された公知の方法などにより合成することができる。例えば以下のスキーム1に記された方法が挙げられる。原料としてニトロスチルベン誘導体(A)を用いて、ベンゾチエノベンゾチオフェン骨格(D)を形成し、引き続きアミノ化物(E)、ハロゲン化物(F)を経た後、ホウ酸誘導体とカップリングをして所望の化合物を得ることが可能である。なお、特許文献5の方法によれば、対応するベンズアルデヒド誘導体より1ステップで製造できるため、より効果的である。
【0032】
上記式(1)で表される化合物の精製方法は、特に限定されず、再結晶、カラムクロマトグラフィー、及び真空昇華精製等の公知の方法が採用できる。また必要に応じてこれらの方法を組み合わせることができる。
【0033】
以下に、上記式(1)で表される化合物の具体例を例示するが、本発明に用いることができる化合物はこれらの具体例に限定されるものではない。
【0038】
本発明の撮像素子用光電変換素子(以下、単に「光電変換素子」ということもある。)は、対向する(A)第一の電極膜と(B)第二の電極膜との二つの電極膜間に、(C)光電変換部を配置した素子であって、(A)第一の電極膜又は(B)第二の電極膜の上方から光が光電変換部に入射されるものである。(C)光電変換部は前記の入射光量に応じて電子と正孔を発生するものであり、半導体により前記電荷に応じた信号が読み出され、光電変換部の吸収波長に応じた入射光量を示す素子である。光が入射しない側の電極膜には読み出しのためのトランジスタが接続される場合もある。光電変換素子は、アレイ状に多数配置されている場合は、入射光量に加え入射位置情報をも示すため、撮像素子となる。また、より光源近くに配置された光電変換素子が、光源側から見てその背後に配置された光電変換素子の吸収波長を遮蔽しない(透過する)場合は、複数の光電変換素子を積層して用いても良い。可視光領域にそれぞれ異なる吸収波長を有する複数の光電変換素子を積層して用いることにより、多色の撮像素子(フルカラーフォトダイオードアレイ)とすることができる。
【0039】
本発明の撮像素子用光電変換素子材料は、上記(C)光電変換部を構成する材料に用いられる。
(C)光電変換部は、(c−1)光電変換層と、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層及び層間接触改良層等からなる群より選択される一種又は複数種の(c−2)光電変換層以外の有機薄膜層とからなることが多い。本発明の撮像素子用光電変換素子材料は(c−1)光電変換層及び(c−2)光電変換層以外の有機薄膜層のいずれにも用いることができるが、(c−2)光電変換層以外の有機薄膜層に用いることが好ましい。
【0040】
本発明の撮像素子用光電変換素子が有する(A)第一の電極膜及び(B)第二の電極膜は、後述する(C)光電変換部に含まれる(c−1)光電変換層が正孔輸送性を有する場合や、(c−2)光電変換層以外の有機薄膜層(以下、光電変換層以外の有機薄膜層を、単に「(c−2)有機薄膜層」とも表記する)が正孔輸送性を有する正孔輸送層である場合は、該(c−1)光電変換層や該(c−2)有機薄膜層から正孔を取り出してこれを捕集する役割を果たし、また(C)光電変換部に含まれる(c−1)光電変換層が電子輸送性を有する場合や、(c−2)有機薄膜層が電子輸送性を有する電子輸送層である場合は、該(c−1)光電変換層や該(c−2)有機薄膜層から電子を取り出してこれを吐出する役割を果たすものである。よって、(A)第一の電極膜及び(B)第二の電極膜として用い得る材料は、ある程度の導電性を有するものであれば特に限定されないが、隣接する(c−1)光電変換層や(c−2)有機薄膜層との密着性や電子親和力、イオン化ポテンシャル、安定性等を考慮して選択することが好ましい。(A)第一の電極膜及び(B)第二の電極膜として用い得る材料としては、例えば、酸化錫(NESA)、酸化インジウム、酸化錫インジウム(ITO)及び酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、白金、クロム、アルミニウム、鉄、コバルト、ニッケル及びタングステン等の金属;ヨウ化銅及び硫化銅等の無機導電性物質;ポリチオフェン、ポリピロール及びポリアニリン等の導電性ポリマー;炭素等が挙げられる。これらの材料は、必要により複数を混合して用いてもよいし、複数を2層以上に積層して用いてもよい。(A)第一の電極膜及び(B)第二の電極膜に用いる材料の導電性も光電変換素子の受光を必要以上に妨げなければ特に限定されないが、光電変換素子の信号強度や、消費電力の観点から出来るだけ高いことが好ましい。例えばシート抵抗値が300Ω/□以下の導電性を有するITO膜であれば(A)第一の電極膜及び(B)第二の電極膜として充分機能するが、数Ω/□程度の導電性を有するITO膜を備えた基板の市販品も入手可能となっていることから、この様な高い導電性を有する基板を使用することが望ましい。ITO膜(電極膜)の厚さは導電性を考慮して任意に選択することができるが、通常5乃至500nm、好ましくは10乃至300nm程度である。ITOなどの膜を形成する方法としては、従来公知の蒸着法、電子線ビーム法、スパッタリング法、化学反応法及び塗布法等が挙げられる。基板上に設けられたITO膜には必要に応じUV−オゾン処理やプラズマ処理等を施してもよい。
【0041】
(A)第一の電極膜及び(B)第二の電極膜のうち、少なくとも光が入射する側の何れか一方に用いられる透明電極膜の材料としては、ITO、IZO、SnO
2、ATO(アンチモンドープ酸化スズ)、ZnO、AZO(Alドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、TiO
2、FTO(フッ素ドープ酸化スズ)等が挙げられる。(c−1)光電変換層の吸収ピーク波長における透明電極膜を介して入射した光の透過率は、60%以上であることが好ましく、80%以上であることがより好ましく、95%以上であることが特に好ましい。
【0042】
また、検出する波長の異なる光電変換層を複数積層する場合、それぞれの光電変換層の間に用いられる電極膜(これは(A)第一の電極膜及び(B)第二の電極膜以外の電極膜である)は、それぞれの光電変換層が検出する光以外の波長の光を透過させる必要があり、該電極膜には入射光の90%以上を透過する材料を用いることが好ましく、95%以上の光を透過する材料を用いることがより好ましい。
【0043】
電極膜はプラズマフリーで作製することが好ましい。プラズマフリーでこれらの電極膜を作成することにより、電極膜が設けられる基板にプラズマ与える影響が低減され、光電変換素子の光電変換特性を良好にすることができる。ここで、プラズマフリーとは、電極膜の成膜時にプラズマが発生しないか、またはプラズマ発生源から基板までの距離が2cm以上、好ましくは10cm以上、更に好ましくは20cm以上であり、基板に到達するプラズマが減ぜられるような状態を意味する。
【0044】
電極膜の成膜時にプラズマが発生しない装置としては、例えば、電子線蒸着装置(EB蒸着装置)やパルスレーザー蒸着装置等が挙げられる。以下では、EB蒸着装置を用いて透明電極膜の成膜を行う方法をEB蒸着法と言い、パルスレーザー蒸着装置を用いて透明電極膜の成膜を行う方法をパルスレーザー蒸着法と言う。
【0045】
成膜中プラズマを減ずることが出来るような状態を実現できる装置(以下、プラズマフリーである成膜装置という)としては、例えば、対向ターゲット式スパッタ装置やアークプラズマ蒸着装置等が考えられる。
【0046】
透明導電膜を電極膜(例えば第一の導電膜)とした場合、DCショート、あるいはリーク電流の増大が生じる場合がある。この原因の一つは、光電変換層に発生する微細なクラックがTCO(Transparent Conductive Oxide)などの緻密な膜によって被覆され、透明導電膜とは反対側の電極膜(第二の導電膜)との間の導通が増すためと考えられる。そのため、Alなど膜質が比較して劣る材料を電極に用いた場合、リーク電流の増大は生じにくい。電極膜の膜厚を、光電変換層の膜厚(クラックの深さ)に応じて制御することにより、リーク電流の増大を抑制することができる。
【0047】
通常、導電膜を所定の値より薄くすると、急激な抵抗値の増加が起こる。本実施形態の撮像素子用光電変換素子における導電膜のシート抵抗は、通常100乃至10000Ω/□であり、膜厚の自由度が大きい。また、透明導電膜が薄いほど吸収する光の量が少なくなり、一般に光透過率が高くなる。光透過率が高くなると、光電変換層で吸収される光が増加して光電変換能が向上するため非常に好ましい。
【0048】
本発明の撮像素子用光電変換素子が有する(C)光電変換部は、少なくとも(c−1)光電変換層及び(c−2)光電変換層以外の有機薄膜層を含む。
(C)光電変換部を構成する(c−1)光電変換層には一般的に有機半導体膜が用いられるが、その有機半導体膜は一層、もしくは複数の層であっても良く、一層の場合は、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)が用いられる。一方、複数の層である場合は、2〜10層程度であり、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)のいずれかを積層した構造であり、層間にバッファ層が挿入されていても良い。
【0049】
(c−1)光電変換層の有機半導体膜には、吸収する波長帯に応じ、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、カルバゾール誘導体、ナフタレン誘導体、アントラセン誘導体、クリセン誘導体、フェナントレン誘導体、ペンタセン誘導体、フェニルブタジエン誘導体、スチリル誘導体、キノリン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体、キナクリドン誘導体、クマリン誘導体、ポルフィリン誘導体、フラーレン誘導体や金属錯体(Ir錯体、Pt錯体、Eu錯体など)等を用いることができる。
【0050】
本発明の撮像素子用光電変換素子において、(C)光電変換部を構成する(c−2)光電変換層以外の有機薄膜層は、(c−1)光電変換層以外の層、例えば、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層又は層間接触改良層等としても用いられる。特に電子輸送層、正孔輸送層、電子ブロック層及び正孔ブロック層からなる群より選択される一種以上の薄膜層として用いることにより、弱い光エネルギーでも効率よく電気信号に変換する素子が得られるため好ましい。
【0051】
電子輸送層は、(c−1)光電変換層で発生した電子を(A)第一の電極膜又は(B)第二の電極膜へ輸送する役割と、電子輸送先の電極膜から(c−1)光電変換層に正孔が移動するのをブロックする役割とを果たす。
正孔輸送層は、発生した正孔を(c−1)光電変換層から(A)第一の電極膜又は(B)第二の電極膜へ輸送する役割と、正孔輸送先の電極膜から(c−1)光電変換層に電子が移動するのをブロックする役割とを果たす。
電子ブロック層は、(A)第一の電極膜又は(B)第二の電極膜から(c−1)光電変換層への電子の移動を妨げ、(c−1)光電変換層内での再結合を防ぎ、暗電流を低減する役割を果たす。
正孔ブロック層は、(A)第一の電極膜又は(B)第二の電極膜から(c−1)光電変換層への正孔の移動を妨げ、(c−1)光電変換層内での再結合を防ぎ、暗電流を低減する機能を有する。
正孔ブロック層は正孔阻止性物質を単独又は二種類以上を積層する、又は混合することにより形成される。正孔阻止性物質としては、正孔が電極から素子外部に流出するのを阻止することができる化合物であれば限定されない。正孔ブロック層に使用することができる化合物としては、上記一般式(1)で表される化合物の他に、バソフェナントロリン及びバソキュプロイン等のフェナントロリン誘導体、シロール誘導体、キノリノール誘導体金属錯体、オキサジアゾール誘導体、オキサゾール誘導体、キノリン誘導体などが挙げられ、これらのうち、一種又は二種以上を用いることができる。
【0052】
上記一般式(1)で表される化合物を含んでなる(c−2)光電変換層以外の有機薄膜層は、特に正孔ブロック層として好適に用いることが出来る。リーク電流を防止するという観点からは正孔ブロック層の膜厚は厚い方が良いが、光入射時の信号読み出しの際に充分な電流量を得るという観点からは膜厚はなるべく薄い方が良い。これら相反する特性を両立するために、一般的には(c−1)及び(c−2)を含んでなる(C)光電変換部の膜厚が5乃至500nm程度であることが好ましい。なお、一般式(1)で表される化合物が用いられる層が、どのような働きをするかは、光電変換素子に他にどのような化合物を用いるかで変わってくる。
また、正孔ブロック層及び電子ブロック層は、(c−1)光電変換層の光吸収を妨げないために、光電変換層の吸収波長の透過率が高いことが好ましく、また薄膜で用いることが好ましい。
【0053】
図1に本発明の撮像素子用光電変換素子の代表的な素子構造を詳細に説明するが、本発明はこれらの構造には限定されるものではない。
図1の態様例においては、1が絶縁部、2が一方の電極膜(第一の電極膜又は第二の電極膜)、3が電子ブロック層、4が光電変換層、5が正孔ブロック層、6が他方の電極膜(第二の電極膜又は第一の電極膜)、7が絶縁基材、もしくは積層された光電変換素子をそれぞれ表す。読み出しのトランジスタ(図中には未記載)は、2又は6いずれかの電極膜と接続されていればよく、例えば、光電変換層4が透明であれば、光が入射する側とは反対側の電極膜の外側(電極膜2の上側、又は電極膜6の下側)に成膜されていてもよい。光電変換素子を構成する光電変換層以外の薄膜層(電子ブロック層や正孔ブロック層等)が光電変換層の吸収波長を極度に遮蔽しないものであれば、光が入射する方向は上部(
図1における絶縁部1側)または下部(
図1における絶縁基板7側)のいずれでもよい。
【0054】
本発明の撮像素子用光電変換素子における(c−1)光電変換層及び(c−2)光電変換層以外の有機薄膜層の形成方法には、一般的に、真空プロセスである抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、溶液プロセスであるキャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、スプレーコーティング等のコーティング法や、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法等、更にはこれらの手法を複数組み合わせた方法を採用しうる。各層の厚みは、それぞれの物質の抵抗値・電荷移動度にもよるので限定することはできないが、通常は0.5乃至5000nmの範囲であり、好ましくは1乃至1000nmの範囲、より好ましくは5乃至500nmの範囲である。
【実施例】
【0055】
以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの例に限定されるものではない。
実施例中に記載のブロック層は正孔ブロック層及び電子ブロック層のいずれでも良い。実施例中の1及至3及び比較例1の光電変換素子の作製は蒸着機で行い、大気下で電流電圧の印加測定を行った。4及至8の光電変換素子の作製はグローブボックスと一体化した蒸着機で行い、作製した光電変換素子は窒素雰囲気のグローブボックス内で密閉式のボトル型計測チャンバー(エイエルエステクノロジー社製)に光電変換素子を設置し、電流電圧の印加測定を行った。電流電圧の印加測定は、特に指定のない限り、半導体パラメータアナライザ4200−SCS(ケースレーインスツルメンツ社)を用いて行った。入射光の照射は、特に指定のない限り、PVL−3300(朝日分光社製)を用い、照射光波長550nm、照射光半値幅20nmにて行った。実施例中の明暗比は光照射を行った場合の電流値を暗所での電流値で割ったものを示す。
【0056】
実施例1 光電変換素子の作製およびその評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、2,7−ジフェニル[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(上記具体例において、式(11)で表される化合物)を、ブロック層として抵抗加熱真空蒸着により50nm成膜した。次に、前記のブロック層の上に、光電変換層としてキナクリドンを100nm真空成膜した。最後に、前記の光電変換層の上に、電極としてアルミニウムを100nm真空成膜し、本発明の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として5Vの電圧を印加した際の、暗所での電流は−1.68×10
-10A/cm
2であった。また、透明導電ガラス側に5Vの電圧を印加し、光照射を行った場合の電流は−1.01×10
-7A/cm
2であった。透明導電ガラス側に5V電圧印加したときの明暗比は600であった。
【0057】
実施例2 光電変換素子の作製およびその評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、2,7−ビス(4−メチルフェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(上記具体例において、式(14)で表される化合物)を、ブロック層として抵抗加熱真空蒸着により50nm成膜した。次に、前記のブロック層の上に、光電変換層としてキナクリドンを100nm真空成膜した。最後に、前記の光電変換層の上に、電極としてアルミニウムを100nm真空成膜し、本発明の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として5Vの電圧を印加した際の、暗所での電流は−8.85×10
-11A/nm
2であった。また、透明導電ガラス側に5Vの電圧を印加し、光照射を行った場合の電流は−3.05×10
-7A/cm
2であった。透明導電ガラス側に5V電圧印加したときの明暗比は3500であった。
【0058】
実施例3 光電変換素子の作製およびその評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、2,7−ビス(4−エチルフェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(上記具体例において、式(15)で表される化合物)を、ブロック層として抵抗加熱真空蒸着により50nm成膜した。次に、前記のブロック層の上に、光電変換層としてキナクリドンを100nm真空成膜した。最後に、前記の光電変換層の上に、電極としてアルミニウムを100nm真空成膜し、本発明の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として5Vの電圧を印加した際の、暗所での電流は1.41×10
-10A/cm
2であった。また、透明導電ガラス側に5Vの電圧を印加し、光照射を行った場合の電流は5.47×10
-7A/cm
2であった。透明導電ガラス側に5V電圧印加したときの明暗比は3900であった。
【0059】
比較例1 光電変換素子の作製およびその評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、トリス(8−キノリノラト)アルミニウムを、ブロック層として抵抗加熱真空蒸着により50nm成膜した。次に、前記のブロック層の上に、光電変換層としてキナクリドンを100nm真空成膜した。最後に、前記の光電変換層の上に、電極としてアルミニウムを100nm真空成膜し、比較用の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として5Vの電圧を印加した際の、暗所での電流は−1.06×10
-10A/cm
2であった。また、透明導電ガラス側に5Vの電圧を印加し、光照射を行った場合の電流は−3.33×10
-9A/cm
2であった。透明導電ガラス側に5V電圧印加したときの明暗比は31であった。
【0060】
上記の実施例1乃至3及び比較例1の評価において得られた暗電流―電圧グラフを
図2に、明電流―電圧グラフを
図3に示した。
図2、3及び上記の実施例から、本発明の撮像素子用光電変換素子は、比較用の撮像素子用光電変換素子と同等の暗電流防止特性を示し、かつ比較用の撮像素子用光電変換素子よりも優れた明電流特性を示していることは明らかである。
【0061】
実施例4 光電変換素子の作製およびその評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、2,7−ビス(p−ビフェニル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(上記具体例において、式(20)で表される化合物)を、ブロック層として抵抗加熱真空蒸着により50nm成膜した。次に、前記のブロック層の上に、光電変換層としてキナクリドンを100nm真空成膜した。最後に、前記の光電変換層の上に、電極としてアルミニウムを100nm真空成膜し、本発明の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として透明導電ガラス側に5V電圧印加したときの明暗比は15000であった。
【0062】
実施例5 光電変換素子の作製およびその評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、2,7−ビス(m−ビフェニル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(上記具体例において、式(21)で表される化合物)を、ブロック層として抵抗加熱真空蒸着により50nm成膜した。次に、前記のブロック層の上に、光電変換層としてキナクリドンを100nm真空成膜した。最後に、前記の光電変換層の上に、電極としてアルミニウムを100nm真空成膜し、本発明の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として透明導電ガラス側に5V電圧印加したときの明暗比は1800であった。
【0063】
実施例6 光電変換素子の作製およびその評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、2,7−ビス(9−フェナントレニル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(上記具体例において、式(72)で表される化合物)を、ブロック層として抵抗加熱真空蒸着により50nm成膜した。次に、前記のブロック層の上に、光電変換層としてキナクリドンを100nm真空成膜した。最後に、前記の光電変換層の上に、電極としてアルミニウムを100nm真空成膜し、本発明の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として透明導電ガラス側に5V電圧印加したときの明暗比は690であった。
【0064】
実施例7 光電変換素子の作製およびその評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、2,7−ビス(1−ナフチル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(上記具体例において、式(76)で表される化合物)を、ブロック層として抵抗加熱真空蒸着により50nm成膜した。次に、前記のブロック層の上に、光電変換層としてキナクリドンを100nm真空成膜した。最後に、前記の光電変換層の上に、電極としてアルミニウムを100nm真空成膜し、本発明の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として透明導電ガラス側に5V電圧印加したときの明暗比は240であった。
【0065】
実施例8 光電変換素子の作製およびその評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、2,7−ビス(9H−カルバゾール−9−イル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(上記具体例において、式(73)で表される化合物)を、ブロック層として抵抗加熱真空蒸着により50nm成膜した。次に、前記のブロック層の上に、光電変換層としてキナクリドンを100nm真空成膜した。最後に、前記の光電変換層の上に、電極としてアルミニウムを100nm真空成膜し、本発明の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として透明導電ガラス側に5V電圧印加したときの明暗比は47であった。
【0066】
上記の実施例4乃至8の評価において得られた明暗比は撮像素子用光電変換素子として明らかに優れた特性を示す。
【0067】
合成例1 2−([1,1’:4’,1’’−ターフェニル]−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン200部と4−ブロモ−1,1’:4’,1’’−ターフェニル5部、ビス(ピナコラト)ジボロン5部、酢酸カリウム3部、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物0.5部を混合し、還流温度下窒素雰囲気中で4時間撹拌した。得られた液を室温まで冷却した後、シリカゲル20部を加え、5分間撹拌した。その後、固形分をろ別し、溶媒を減圧除去することにより下記式(100)で表される2−([1,1’:4’,1’’−ターフェニル]−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの白色固体5.5部を得た。
【0068】
【化10】
【0069】
合成例2 2,7−ビス(1,1’:4’,1’’−ターフェニル−4−イル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF120部と合成例1により得られた2−([1,1’:4’,1’’−ターフェニル]−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン3.5部、2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン2.1部、リン酸三カリウム14部、水4.0部、テトラキス(トリフェニルホスフィン)パラジウム(0)0.3部を混合し、90℃下窒素雰囲気中で6時間撹拌した。得られた液を室温まで冷却した後、水120部を加え、固形分をろ過分取した。得られた固体をアセトンで洗浄し乾燥した後、昇華精製を行うことで、2,7−ビス(1,1’:4’,1’’−ターフェニル−4−イル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(上記具体例において、式(25)で表される化合物)を3.0部得た。
【0070】
実施例9 光電変換素子の作製およびその評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、2,7−ビス(1,1’:4’,1’’−ターフェニル−4−イル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(上記具体例において、式(25)で表される化合物)を、ブロック層として抵抗加熱真空蒸着により50nm成膜した。次に、前記のブロック層の上に、光電変換層としてキナクリドンを100nm真空成膜した。最後に、前記の光電変換層の上に、電極としてアルミニウムを100nm真空成膜し、本発明の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として透明導電ガラス側に5V電圧印加したときの明暗比は140000であった。
【0071】
上記の実施例9の評価において得られた明暗比は撮像素子用光電変換素子として明らかに優れた特性を示す。